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ABSTRACT 

Lower Extremity Robotic Device (LERD) is a four-degree of freedom 

hydraulic exoskeleton that assists the paralysed patient to walk. The nonlinear 

dynamic model of the hydraulic exoskeleton system used in Model Predictive 

Control (MPC) is challenging to be modelled, especially in the state-space model 

form. Traditional torque constraint technique restricts the exoskeleton to provide 

wide variability of wearers’ weight. For a heavy wearer, the torque constraint could 

limit the system’s performance where the hydraulic force will be cut off when 

exceeds the predetermined torque. Angular acceleration constraint could be an 

alternative method to overcome the weight variations among different wearers. 

However, this technique has not been reported elsewhere in the literature. This study 

aimed to develop mathematical models of the empiric relationship between the 

median of absolute angular accelerations and pulse width modulation duty cycle of 

the LERD exoskeleton to facilitate system interfacing. An optimal motion 

constrained MPC controller for trajectory tracking was designed first, and the results 

were benchmarked with Proportional-Integral-Derivative (PID) controller. Using 

cross-correlation analysis, the dynamic models were then selected and used to 

analyse the designed controllers. The average absolute trajectory tracking error 

(AATTE) was chosen as the performance parameter with the AATTE closer to zero-

degree reference point indicates better trajectory tracking. Results of the simulation 

study for both MPC and PID controllers at three different speeds showed that 

AATTE became farther as the walking speed increased. Benchmarked for simulation 

result showed that the PID controller produced closer AATTE of all joints compared 

to the MPC controller at the slowest speed (0.3m/s). However, as the speed 

increased, the MPC controller achieved closer AATTE of all joints than the PID 

controller. The simulation results were further validated with an experimental study 

at 0.3m/s. After cross-correlation analysis between reference and output trajectories, 

the PID controller has produced all joints’ AATTE of 2.64 degrees nearer to zero 

degrees than the MPC controller’s AATTE of all joints (2.99 degrees). In overall, the 

MPC controller exhibits a smoother control signal compared to the PID controller 

where the latter produces fluid hammer during operation which can harm the wearer 

and potential to cause possible damage to the exoskeleton system’s components. The 

proposed control system is able to avoid the need to derive several important 

parameters such as valve’s orifice area, flow coefficient, frictions, etc.  Based on the 

findings of this study, it can be concluded that the proposed simulation and prototype 

models together MPC controller are acceptable for use in the exoskeleton control 

system.  
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ABSTRAK 

Peranti Robot Lampauan Bawah (LERD) adalah sebuah eksorangka hidraulik 

empat darjah kebebasan yang membantu pesakit lumpuh untuk berjalan. Model 

dinamik tak lelurus sistem eksorangka hidraulik yang digunakan dalam Kawalan 

Ramalan Model (MPC) sukar untuk dimodelkan, terutama dalam bentuk model 

keadaan-ruang. Teknik kekangan kilas tradisional menghadkan eksorangka untuk 

menampung pelbagai berat para pemakai. Bagi pemakai yang berat, kekangan kilas 

boleh menghadkan prestasi sistem yang mana daya hidraulik akan terpotong apabila 

melebihi kekangan kilas yang telah ditentukan. Kekangan pecutan sudut boleh 

menjadi kaedah alternatif untuk mengatasi variasi berat antara para pemakai yang 

berbeza. Walau bagaimanapun, teknik ini tidak dilaporkan di mana-mana dalam 

literatur. Kajian ini bertujuan untuk membangunkan pemodelan matematik hubungan 

empirik antara median pecutan sudut mutlak dan kitar tugas pemodulatan lebar 

denyut eksorangka LERD untuk memudahkan pengantaramukaan sistem. Pergerakan 

optimum terkekang pengawal MPC untuk penjejakan trajektori direkabentuk dahulu, 

dan keputusan telah ditanda aras dengan pengawal Perkadaran-Kamiran-Terbitan 

(PID). Dengan menggunakan analisis sekaitan-silang, model dinamik kemudiannya 

dipilih dan digunakan untuk menganalisis pengawal yang telah direkabentuk. Ralat 

penjejakan trajektori mutlak purata (AATTE) telah dipilih sebagai parameter prestasi 

dengan AATTE lebih dekat kepada titik rujukan darjah-sifar yang menunjukkan 

penjejakan trajektori yang lebih baik. Keputusan kajian penyelakuan untuk kedua-

dua pengawal MPC dan PID pada tiga kelajuan yang berbeza menunjukkan bahawa 

AATTE menjadi semakin jauh ketika kelajuan berjalan semakin meningkat. 

Keputusan penanda aras untuk keputusan penyelakuan menunjukkan bahawa 

pengawal PID menghasilkan AATTE semua sendi yang lebih dekat berbanding 

dengan pengawal MPC pada kelajuan yang paling perlahan (0.3m/s). Walau 

bagaimanapun, semakin kelajuan meningkat, pengawal MPC mencapai AATTE 

semua sendi yang lebih dekat berbanding dengan pengawal PID. Keputusan 

penyelakuan selanjutnya disahkan dengan kajian ujikaji pada 0.3m/s. Selepas analisis 

sekaitan-silang antara trajektori rujukan dan keluaran, pengawal PID telah 

menghasilkan AATTE semua sendi iaitu 2.64 darjah lebih hampir kepada darjah sifar 

berbanding dengan AATTE pengawal MPC semua sendi (2.99 darjah). Secara 

keseluruhan, pengawal MPC didapati mempamerkan isyarat kawalan yang lebih licin 

berbanding dengan pengawal PID yang mana, yang terkemudian menghasilkan tukul 

bendalir semasa operasi yang boleh membahayakan pemakai dan berpotensi 

menghasilkan kerosakan kepada komponen sistem eksorangka. Sistem kawalan yang 

dicadangkan boleh mengelakkan keperluan untuk menerbitkan beberapa parameter 

penting seperti luas orifis injap, pekali aliran, geseran dan lain-lain. Berdasarkan 

penemuan kajian ini, dapat disimpulkan bahawa model penyelakuan dan prototaip 

bersama pengawal MPC dapat diterima untuk digunakan dalam sistem kawalan 

eksorangka.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

During the early stages of robotic systems development, most of their 

systems were hydraulically powered. However, hydraulic actuation has lost favour in 

various fields of mechatronics in the last decades since the electrical actuation (e.g., 

brushed and brushless DC motors) took over due to size, weight, price, ease, and 

accuracy of control (Yang et al., 2009; Cunha et al., 2010). The hydraulic system 

needs a complex control algorithm in order to handle its flow dynamics and motor 

friction. They also require an expensive installation, including a pump, reservoir, 

manifolds, valves, and hoses (Otten et al., 2015). Furthermore, hydraulic oil can leak 

out easily causes environmental pollution (Li et al., 2015). Still, the requirements for 

dealing with heavy objects and fast response to external disturbances and inputs have 

lately exhibited a renewed interest in hydraulic actuators and their application in the 

robotics field. Compared to electrical actuation, hydraulic actuation systems have 

high power-to-weight ratio, a wide range of speed operating conditions, swift 

dynamic response, overload protection, and reliability in outdoor environments. By 

considering these advantages, hydraulic actuation fulfils all the requirements that 

show a good and effective driving method for legged robots (Semini et al., 2011). 

The hydraulic actuators have been mainly considered within the robotics 

community for several years not to fit the dynamic control challenges in locomotion 

robots since these actuators are difficult to control (Cunha et al., 2010). However, the 

usage of the hydraulic actuator in the robotics field has recently increased with some 

successful applications such as Kenken (Hyon and Mita, 2002), COMET-III 

(Nonami et al., 2003; Barai and Nonami, 2008), BigDog (Buehler et al., 2005; 

Raibert et al., 2008), HyQ (Semini, 2010), and SARCOS (Hyon et al., 2007). As for 

the hydraulically actuated exoskeletons, only a few of them have been reported, and 
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most of them are designed as the power augmentation exoskeletons (e.g., BLEEX, 

UESuit, and HyPER) that concentrate on the power amplifier to enhance the wearer’s 

stamina and strength when carrying heavy objects (Yang et al., 2008). The hydraulic 

actuator is rarely chosen to develop the lower limb assistive and rehabilitation 

exoskeletons that focus more on assisting the paralysed patients to walk and recover 

their mobility. 

1.2 Problem Statement 

The hydraulic exoskeletons can help the wearer to carry heavy loads and 

handle large force tasks because the hydraulic actuator has high power-to-weight 

ratio, large bandwidth, and fast dynamic response (Mavroidis et al., 1999; Cunha et 

al., 2010; Khan et al., 2015; Mattila et al., 2017). These advantages are particularly 

important for rehabilitating the paralysed patients and handling heavy loads in the 

military, shipbuilding, construction, industries, etc. Despite these favourable features, 

the hydraulic actuator is challenging to control, owing to its nonlinear characteristics. 

Therefore, this study proposes a novel Model Predictive Control (MPC) control 

strategy for the accurate actuation of hydraulic cylinders in the exoskeleton system. 

The MPC controller’s main advantage is it optimizes the current time interval while 

keeping future time intervals in the account. Besides, the MPC controller can predict 

future events and take control actions appropriately, while the conventional PID 

controller does not have this predictive ability. The MPC controller can also handle 

constraints that the PID controller is not capable of it. 

The MPC controller’s system model is required in the MPC control 

architecture design of the nonlinear hydraulic actuated exoskeleton system. However, 

this nonlinear dynamic model is challenging to be modelled, especially in the state-

space model form. The hydraulic exoskeleton has high nonlinear dynamics and 

parameter uncertainties of the Lagrange’s dynamic equation, hydraulic cylinder’s 

friction force, hydraulic fluid compressibility, and valve’s flow rate-pressure 

characteristics (Sheng and Li, 2016). Thus, an alternative state-space model form of 

the hydraulic exoskeleton system can be designed using angular acceleration inputs 
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and angular position outputs. These motion constraints are derived based on average 

healthy human walking gait data. Angular acceleration constraint is applied instead 

of torque constraint to avoid the torque restriction if the exoskeleton is required to 

displace a heavier subject. For a heavy subject, the torque constraint could limit the 

system’s performance where the hydraulic force will be cut off when exceeding the 

predetermined torque. However, this method has not been reported elsewhere in the 

literature. 

Real-life implementation of MPC controller in exoskeleton motion control 

also poses a big hindrance to the practical issue of MPC controller. The solution of 

the nonlinear hydraulic actuation system model could be more demanding on the 

computational resources. One such application is converting MPC control signals to 

appropriate current and voltage signals, which could be challenging to model and 

numerically solve. The MPC control signal is usually represented in the form of 

torque. However, the relationship between the computed control torque and its 

corresponding electro-hydraulic input signal is highly nonlinear and difficult to be 

modeled. It is well-known that a rotational torque is proportional to exoskeleton 

inertia, which is nonlinear and dependent on system dimension and current states. 

Translational acceleration is a more appropriate choice in the search for converting 

the MPC control signal to the hydraulic cylinder because both of them move on the 

same axis. Therefore, this study hypothesizes that angular acceleration is used 

instead of torque. Also, an empirical approach is resorted for establishing the 

relationship between the MPC control signal and the electro-hydraulic signal. 

The hydraulic actuator’s ability can harm the wearer of the hydraulic 

exoskeleton system if it exceeds his range of motion (ROM) and strength. Therefore, 

safety is an important issue in this exoskeleton system since the wearer is strapped 

into it (B. Chen et al., 2016; Huo et al., 2016). The risks can be reduced by 

implementing passive and active safety mechanisms into the exoskeleton system 

(Tucker et al., 2015). The passive safety mechanisms restrict the exoskeleton’s 

power transmission without needing any input power or feedback control. One of 

these mechanisms is the physical stoppers placed at the exoskeleton mechanical 

structure to constrain the ROM and resist the maximum intrinsic force/torque that the 
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actuators can generate (Zoss et al., 2006; Bortole et al., 2015; B. Chen et al., 2016). 

Besides that, the electrical circuits are constructed with suitable fuses and grounding 

to enhance safety. The external emergency switches deactivate the powered 

exoskeleton manually to protect the wearer from unexpected accidents while walking 

(Chen et al., 2007; Long et al., 2017). The active safety mechanisms restrict the 

exoskeleton’s power transmission using the feedback control that usually needs input 

power (Tucker et al., 2015). These mechanisms consist of configuration-dependent 

actuation torque and ROM constraints in the control system. The redundant sensors 

can monitor the system’s performances (e.g., velocity and human-exoskeleton 

interaction force) in real-time and detect the actuator, sensor, or controller failures. If 

there is a system failure, the exoskeleton system should warn the wearer about 

resetting or recovering the controller system. The exoskeleton should also be 

designed with an emergency shutdown system to prevent the wearer from being 

injured. 

The controller design is a critical part of the exoskeleton system 

development, where it has important aspects such as the level of patient participation, 

overall safety, and robotic transparency (Pennycott et al., 2012). The exoskeleton 

control system is designed according to the principle that this robotic device can 

mimic the human’s movement intention, but it does not obstruct the human 

movement (Low, 2011). For example, a simple position-controlled system tracks the 

joint reference trajectories, but it minimizes the system’s adaptability. Thus, different 

sensors are required to obtain the system and environment information for 

implementing higher-level control. One of the important aspects of the control 

system is the wearer’s safety. Since the current exoskeleton robots are programmed 

under complex algorithms, it is hard to secure their safety by controlling their 

physical stability such as damaged parts. A dangerous accident can happen if a small 

bug in the control programming software (Hasebe et al., 2014). Thus, safety 

measures have been made to guarantee the software safety of exoskeleton robots. 

Furthermore, safety should be integrated into the exoskeleton control system to 

warrant the user’s safety and stability in emergency conditions (B. Chen et al., 2016). 

The system incorporates the safety layers to achieve safe human-exoskeleton 

interaction, particularly considering the amount of power these robotic devices can 

produce (Tucker et al., 2015). 
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Algorithmic restrictive motion constraints could be presented in many forms, 

like restraining the actuator motion range, speed, acceleration, and lifting strength, in 

accordance with the most stringent human safety requirements. The strategies are to 

design the controller that avoids forcing the limb into inappropriate configurations or 

motions that could physically harm the patient’s limbs. It is well known that Model 

Predictive Controller (MPC) has the ability to apply constraints, which makes it 

suitable for the synthesis of optimal safety walking patterns and motion control 

(Kajita and Espiau, 2008). 

1.3 Research Objectives 

The research work detailed in this thesis aims to contribute in a very small 

degree to the existing sphere of knowledge in hydraulic exoskeleton control design. 

In order to achieve the aim of this research, the objectives are outlined as follows: 

 

(a) To develop mathematical models of the empiric relationship between the 

angular acceleration and input electro-hydraulic control signal of the Lower 

Extremity Robotic Device (LERD) exoskeleton to facilitate system 

interfacing. 

(b) To develop simulation and prototype models of the LERD control system for 

simulation and experimental studies respectively, with angular acceleration as 

the controller output. 

(c) To design Model Predictive Control (MPC) for position control of the four-

degree of freedom (DOF) LERD exoskeleton with constrained angular 

acceleration and angular position. 
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1.4 Scopes of Research 

Several scopes were explored to achieve the research objectives. The scopes 

of this research are: 

 

(a) Mathematical modelling for kinematics and dynamics of a five-link human 

bipedal model wearing a four-DOF LERD exoskeleton in the sagittal plane. 

(b) Discrete-time state-space formulation of the MPC controller’s internal system 

model through the computational platform by MATLAB Simulink 2017b. 

(c) Empirical translation of the MPC controller’s control signal (angular 

acceleration) into the PWM duty cycle’s electrical signal. 

(d) The trajectory tracking performance of the MPC controller in the LERD 

exoskeleton is assessed through simulation and experimental studies. 

(e) Validation of the MPC controller with the Proportional-Integral-Derivative 

(PID) controller. 

 

1.5 Research Contributions 

One of the contributions in this study is the mathematical modelling of 

empiric relationships between the angular acceleration (controller output) and pulse 

width modulation (PWM) duty cycle signals at the hip and knee joints of the LERD 

exoskeleton. Data collection during retraction and extension movements are carried 

out from the LERD exoskeleton to achieve the joint’s median of absolute angular 

acceleration value based on the PWM duty cycle value. The empirical relationships 

of hip and knee joints are then inserted into the LERD control system architecture for 

converting its angular acceleration control signal outputs to the PWM duty cycle. 

These empirical relationships also can describe the characteristics of hip and knee 

joints during retraction and extension movements directly from the real hydraulic 
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exoskeleton system. The hydraulic cylinder at the knee joint needs to lift and hold the 

lower leg (between knee and ankle), lighter than the whole leg (between hip and 

ankle) lifted and held by the hip joint. Therefore, the hydraulic cylinders’ 

characteristics at these joints are different because of their different positions. 

The second contribution is the development of simulation and prototype 

models of the LERD control system for simulation and experimental studies 

respectively, with angular acceleration as controller output. Unlike the conventional 

modelling method, the proposed models use angular acceleration as the controller’s 

output because it is easy to measure and proportionally related to torque. Besides, 

constraining the angular acceleration does not limit the hydraulic cylinder’s output 

torque/force, especially when people with different weights and strengths use the 

exoskeleton. It is different from the controller’s torque, force, or pressure constraints, 

where the hydraulic force will be cut off when exceeding the predetermined torque 

limit if a heavy subject uses the exoskeleton. Therefore, the simulation and prototype 

models are designed using an alternative method without considering the crucial 

component parameters such as valve’s orifice area, flow coefficient, discharge 

coefficient, fluid density, frictions, etc. These models employ the mathematical 

model of empiric relationships between the median of absolute angular acceleration 

and PWM duty cycle directly obtained from the LERD exoskeleton system. The 

PWM duty cycle values are calculated based on the median of absolute angular 

acceleration values to regulate the proportional flow control valve in the LERD 

exoskeleton system. Besides, the simulation model also uses the PWM duty cycle-

current and current-flow rate converters based on the proportional flow control valve 

datasheet. 

The third contribution is the design and development of an interfacing 

approach for the MPC controller with angular acceleration control output in the 

LERD exoskeleton. In this research, the internal MPC controller’s system model of 

the LERD exoskeleton system is defined by linearization based on an alternative 

discrete-time state-space model form using angular acceleration inputs and angular 

position outputs. The MPC controller can generate a smooth control signal of angular 

acceleration to regulate every LERD exoskeleton’s joint. Besides, the imposition of 
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the angular position and angular acceleration constraints into the MPC controller 

warrants the wearer’s safety. Therefore, the LERD exoskeleton gives another 

protection for the wearer besides the mechanical mechanisms in every joint.  

1.6 Organization of Thesis 

This thesis is organized into five chapters that explain the theoretical aspects 

and the development process of this research. These chapters are arranged as follows: 

Chapter 2 (Literature Review) studies the related topics that can be used in 

this research, such as previous studies about developing robot-assistive systems and 

Model Predictive Control (MPC). 

Chapter 3 (Research Methodology) describes the theoretical frameworks and 

methods utilized in the simulation and experimental studies of this research. 

Chapter 4 (Results and Analysis) presents the findings and observations in 

this research. The performance results of the LERD exoskeleton under control of 

MPC and Proportional-Integral-Derivative (PID) controllers are presented, analysed, 

and discussed. 

Chapter 5 (Conclusion and Recommendations) presents the overall 

conclusions from this research’s results and discusses possible future improvements 

and recommendations on the LERD exoskeleton system as the contribution for others 

to acquire from this research. 
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