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ABSTRACT

Multiphase flows (either two or more phases) are signified as the flows of

different matter types. Physically, they represent the carrier phase consisting of the

particulate phase of any random chemical component. The carrier phase is either gas,

liquid, or solid. The solid particle is assumed to be in the form of ash, soot, and

dust. Interest in studying fluid behaviour free from all impurities (clear fluid) has

increased substantially over the past decades due to many engineering applications.

It is well known that pure fluid is rarely available in numerous practical situations.

In this thesis, a study had been conducted to investigate the influence of magnetic

fields on mixed convection flow with heat and mass transfer by considering Newtonian

and non-Newtonian fluid in the presence of dust particles. A mathematical model of

two-phase flow was developed based on Saffman‘s model. Specifically, the primary

governing equation for the two-phase flow model considered the distribution of both

fluids (as a carrier phase) and solid (dust) particles. The two-phase flow model was

governed by modifying the single-phase model. The total fluid-particle interaction force

was also considered into the momentum equation. Correspondingly, some physical

assumptions for dust particles were made. The governing equations were converted to

non-dimensional form and solved numerically via the Keller-box method, programmed

in FORTRAN software. The effects of parameters, namely Prandtl number, fluid-

particle interaction for velocity, fluid-particle interaction for temperature, fluid-particle

interaction for concentration, mixed convection, magnetic field, Deborah number, a

ratio of relaxation to retardation times, chemical reaction and Schmidt number on

velocity, temperature, and concentration profiles had been analyzed based on their

graphical behaviours. Also, the expressions of Sherwood number, Nusselt number,

and skin friction had been evaluated and displayed in tabular forms. Numerical results

showed that the dust particles in both types of fluids offer more resistance to the flow.

The fluid motion was also influenced by the mixed convection parameter. Comparative

results between the two kinds of fluids demonstrated that the velocity profiles are higher

than those without mass transfer. Meanwhile, the dusty Jeffrey fluid velocity is higher

than the velocity of the dusty Newtonian fluid. The presence of chemical reaction in the

dusty Jeffrey fluid generate more physical properties than the dusty Newtonian fluid,

which affected the fluid flow concentration.
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ABSTRAK

Aliran multifasa (sama ada dua atau lebih fasa) dikenali sebagai aliran dari jenis

bahan yang berbeza. Secara fizikal, ianya mewakili fasa pembawa yang terdiri daripada

fasa partikulat dari sebarang komponen kimia rawak. Fasa pembawa terdiri daripada

gas, cecair, atau pepejal. Zarah pepejal dianggap berada dalam bentuk abu, jelaga,

dan debu. Minat dalam mengkaji tingkah laku bendalir bebas dari segala kekotoran

(bendalir jernih) telah meningkat dengan ketara sejak beberapa dekad yang lalu kerana

kewujudan pelbagai aplikasi dalam kejuruteraan. Diketahui bahawa bendalir tulen

jarang ditemui dalam kebanyakan situasi praktikal. Dalam tesis ini, kajian telah

dĳalankan untuk menyelidiki pengaruh medan magnet pada aliran perolakan campuran

dengan pemindahan haba dan jisim dengan mempertimbangkan bendalir Newtonan

dan bukan Newtonan dengan kehadiran zarah debu. Model matematik aliran dua

fasa dibangunkan berdasarkan model Saffman. Khususnya, persamaan menakluk

utama untuk model aliran dua fasa mempertimbangkan pengedaran kedua-dua bendalir

(sebagai fasa pembawa) dan zarah pepejal (debu). Model aliran dua fasa diatur dengan

mengubah model fasa tunggal. Kekuatan interaksi bendalir-zarah juga dipertimbangkan

dalam persamaan momentum. Sejajar dengan itu, beberapa andaian fizikal untuk

zarah debu dilakukan. Persamaan menakluk diubah menjadi persamaan tak bermatra

dan diselesaikan secara berangka melalui kaedah Keller-box, yang diprogramkan

dalam perisian FORTRAN. Kesan parameter, iaitu nombor Prandtl, interaksi bendalir-

zarah bagi halaju, suhu dan kepekatan, perolakan campuran, medan magnet, nombor

Deborah, nisbah kelonggaran dengan masa penundaan, tindak balas kimia dan nombor

Schmidt pada halaju, suhu, dan profil kepekatan telah dianalisis berdasarkan tingkah

laku grafik parameter tersebut. Juga, ungkapan nombor Sherwood, nombor Nusselt,

dan geseran kulit telah dinilai dan dipaparkan dalam bentuk jadual. Hasil berangka

menunjukkan bahawa zarah debu di kedua-dua jenis bendalir mempunyai daya tahan

yang lebih tinggi terhadap aliran. Aliran bendalir juga dipengaruhi oleh parameter

perolakan campuran. Hasil perbandingan antara kedua-dua jenis bendalir menunjukkan

bahawa profil halaju lebih tinggi daripada bendalir tanpa pemindahan jisim. Sementara

itu, halaju bendalir Jeffrey yang berdebu lebih tinggi daripada halaju bendalir Newtonan

yang berdebu. Kehadiran tindak balas kimia dalam bendalir Jeffrey yang berdebu

menghasilkan lebih banyak sifat fizikal daripada bendalir Newtonan yang berdebu,

yang menjejaskan kepekatan aliran bendalir.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This section discusses the key study areas for Newtonian fluids and non-

Newtonian fluids, particularly on two-phase dusty fluid and dusty Jeffrey fluid, along

with some basic and significant physical effects of boundary layer flows. It introduces

the research background, statement of the problem, research objectives, scope of

research and the study’s significance.

1.2 Research Background

Fluid mechanics is the field of science that focuses on the behaviour of fluid.

Gases and liquid are treated as fluid when its related to the fluid mechanics field. Fluid

mechanics are generally subdivided into three parts, which consist of:

i Fluid static: the study of fluids at rest.

ii Fluid kinematic: the study of fluids in motion that disregard the pressure forces.

iii Fluid dynamics: the fluid’s research in operation in view of the pressure force.

Fluid mechanics is fundamental and so essential in daily life. The study of blood moving

through the vessels in human bodies and the motion of the air that goes into the lungs are

simple examples of fluid mechanics ideas. This proves that life is surrounded by fluid

flows. Specifically, a fluid, for instance, water, oil or air, is described as a substance that

will continuously deform (flow) as long as there is shearing stress, 𝜏 = 𝐹/𝐴, applied

on it of any size. Accordingly, to solve the problems in fluid mechanics in terms of

physic and the mathematics of the fluid, it must satisfy:
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i Conservation of Mass (the continuity equation);

ii Newton’s second law of motion (Momentum principle);

iii First and Second Law of Thermodynamics (Energy equation).

In addition, the fluid density, 𝜌(rho) = 𝑚(mass)/𝑣(volume) and the fluid specific

weight, 𝛾(gamma) = 𝜌𝑔 are the fluid properties use to measure the mass and weight

of a fluid, respectively. However, water and oil are the two different fluids that have

grossly different characteristics. Hence, fluid viscosity is listed as another property to

describe the ’fluidity’ of the fluid. Fluid can be classified into two categories, notably

Newtonian and non-Newtonian fluids. Fluids that satisfied Newton’s law of viscosity

and follows the behaviour explained by this law are called Newtonian fluid. Newton’s

law of viscosity defined that the shear stress in a flowing flow is directly proportional

to the shear strain rate. Mathematically, Newton’s law of viscosity is expressed as

𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
, (1.1)

where 𝜇 is the constant of proportionality and is called the dynamic viscosity.

Additionally, the shear strain rate, 𝑑𝑢/𝑑𝑦 should be linear to the dynamic viscosity.

Most commonly, liquids and gases are examples of Newtonian fluid. The other type

of fluid is the non-Newtonian fluid, which is fluids that do not follow Newton’s law

of viscosity. The shearing stress for this type of fluid is not linear to the shear strain

rate. Non-Newtonian fluids are classified based on how their apparent viscosity varies

with shear rate. Verily, these non-Newtonian fluid differential systems are substantially

more complicated than Newtonian fluid due to the higher order of non-linear governing

equations. In particular, blood is one of the non-Newtonian fluid that is crucial for

human life. The blood suspended in the plasma, consisting of red blood cells,has a

slightly higher density than the water. However, its viscosity is more elevated than

water at a constant temperature.

Aside from that, different non-Newtonian fluid models such as Casson fluid,

Maxwell fluid, and viscoelastic fluid have been acknowledged by previous researchers.

All of these fluids typically have their uniqueness of fluid flow properties. Therefore,

no single constitutive equations developed in the literature akin to the Newtonian
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fluid model have the simplest rheological fluid model governed by the Navier-Stokes

equation. Due to that, a few constitutive equations have been proposed to clarify

the dynamic flow of non-Newtonian fluids with different rheological effects. Hence,

analyses on non-Newtonian fluid in various aspects from analytical and numerical

methods have significantly increased, majorly due to the rapid development in many

industrial applications, especially in polymer and food industries. Some foodstuffs

utilise fluids that exhibit the non-Newtonian behaviour, which promotes the flow

characteristic of non-Newtonian significantly.

The term viscoelastic indicate a non-Newtonian fluid that have both properties;

viscous and an elastic material. Here, the resistance of fluid flow to changing form is

referred to as viscosity, where the factor subjected to stress is due to the strain rate.

Meanwhile, the factor stress for the term elasticity is because of strain field. Elasticity

refers to the ability of a solid material to strain first after being stretched at a certain

limit. Then, the material will resume to its earliest shape once the stress is discarded.

However, when pressure is applied to a liquid, it deforms continuously. The Jeffrey

fluid is one of the relatively most specific types of viscoelastic fluid, which displays

both characteristics of relaxation and retardation times (Turkyilmazoglu and Pop, 2013)

has been chosen to represent the non-Newtonian fluid flow. This model is capable of

describing the stress properties of non-Newtonian fluid, which the usual viscous fluid

model cannot describe, where it was found that Jeffrey fluid model can describe well

their properties such as relaxation and retardation time.

Besides, magnetohydrodynamics (MHD) effect is another physical phenomenon

that influences the fluid behaviour. MHD is generally an interaction between a fluid

flow in electrically conducting fluids and magnetic properties that affects the fluid flow.

Plasmas, salt water, electrolytes and liquid metals are among the examples. MHD

effect occurs when a conductor and a magnetic field move relative to each other, where

an electric current is induced in the conductor. The polarisation occurs in fluid when

an electric field is distorted, which consequently affects the magnetic field. Interest in

the MHD flow arose in 1918 when Hartmann created the electromagnetic pump. Later,

in 1942, Hannes Alfven was the first to initiate the term MHD. Without hard work on

MHD effect, there is no success for Hannes Alfven, who won the Nobel prize in 1970.
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According to Mohyud-Din et al. (2018), when a magnetic field is applied, the boundary

layer of separation in various physical phenomena can be controlled. Furthermore,

magnetic fields effects significantly affects the temperature profiles (Yasmin et al.,

2020). Due to this circumstance, MHD has become a primary concern in many studies.

Heat transfer is defined as an exchange of thermal energy within an object due

to differences in temperature. The temperature difference act as a driving force that

causes the heat to flow, which is created by the movement of particles. Boiling water or

baking a cake in an oven are common daily life examples, known as thermal transfer.

Heat transfer can be completed in three processes, specifically convection, radiation,

and conduction. Conduction heat transfer refers to a thermal energy transfer from

more energetic to less energetic particles due to their interaction (molecules collide

in random motion). The conduction generally takes place in solids and liquids. As

a conductor, metal is one example of a substance that can transfer thermal energy

effectively. Meanwhile, wood or paper acts as insulators where the implications

incapably transfer the heat.

Furthermore, heat transfer by radiation happens in a vacuum of space from

one place to another by electromagnetic waves. The transfer of energy by radiation

is presentable in any medium and solids, liquids and gases. Hence, it was considered

different from conduction and convection. Besides, radiation does not require any form

of matter to be transferred. Some simple examples to describe the radiation emitted or

absorbed are the heat that warms the Earth by the Sun and the heat that warms a human

body due to the light of fire. Makinde (2005) and Siddiqa et al. (2012) concluded that

the presence of thermal radiation parameters in their studied increase along with the

heat transfer rate. Therefore, thermal radiation is applied in a variety of engineering

fields and industrial settings.

Next, heat transfer by convection occurs when there is a fluid flowing over a

surface due to the heat movement (warm matter). Convection is a natural phenomenon

that happens when warmer air or liquids rest underneath a cooler layer. This occurs

during boiling water process, where heat from the burner is transferred to the pot,
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heating the water at the bottom. The heated water underneath rises, where colder water

replaces it, resulting in a circular motion.

Additionally, there are three forms of mechanism convection: free, forced, and

mixed convection. Free convection is a natural phenomenon that happened naturally

and not by any external sources. The fluid motion is generated only by buoyant force,

in which the fluid density difference induces it due to the temperature gradients. Free

convection is used to warm up a cold drink in a warmer environment and chill a boiled

egg in a colder climate. In forced convection, the flow occurs when fluid is forced to

move because of moving devices such as a pump or any suction device. For example, a

fan that acts as an external forces (device) creates the air movement, and consequently,

the fan’s spinning causes the air to flows. The most common application for forced

convection is to enhance the heat exchange rate.

Meanwhile, mixed convection occurs when convection free and forced flows

concurrently, leading to heat transfer. These drive the mixed convection flow to

buoyancy force and externally generated flows. A basic example in an electrical fields

is when a fan is needed to provide component free convection. Another example is the

diesel generator used to cool the nuclear reactor during shutdown of emergency power

facilities, called mixed convection.

Although much research work has been done on heat transfer, the mass transfer

phenomenon also acquired attention due to its importance in our daily life and industry.

Mass transfer is defined as an exchange of thermal energy within a mass movement

from one particular place to another owing to the concentration difference. Mass can

be transferred in many ways, such as absorption, adsorption, drying or distillation.

Mass transfer occurs between two phases through an interface where it is assumed that

changes in concentration exist near the boundary. For instance, all gases and liquids

are appropriately mixed during gas and liquid absorption processes except within the

gas and liquid phases (gas-liquid interface). One of the most prevalent industrial uses

is in petrochemical refining. One type of mass transfer process is fractional distillation,

which separates crude oil components. Almost everystep in the refining system relies

on mass transfer.
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In particular, several scholars investigated different cases when fluid flow

is affected by the chemical reaction on different geometries. When the chemical

reaction occurs, the fluid flow encounters two types of reaction processes. The first is

endothermic, where the energy is absorbed, while the other one is exothermic, where

energy is released in the form of heat (Ibrahim et al., 2008). As a result, the fluid flows

are significantly affected. The existence of contaminants between fresh water and the

air is acknowledged. Due to this, in some cases, chemical reaction can be categorised

as heterogeneous and homogeneous processes. Both mixture processes usually occur

either at an interface or a single-phase volume reaction (Muhaimin et al., 2009). The

heat and mass transfer’s research containing chemical reactions is beneficial in the

hydrometallurgical and chemical industry.

Consequently, a chemical reaction in a dusty Newtonian or dusty non-Newtonian

fluids model is needed due to its potential, which can estimate the performance of the

reactor. Therefore, the understanding of effects of convective heat and mass transfer in

the flow is vital for a wide range of situations. All the various processes from which

raw material is converted to final product must undergo heat and mass transfer in one

way.

Overall, a multiphase flow includes a solid (dust) and fluid phase on a variety

of chemical elements. Dusty fluid flows are defined as fluid flow with particulate

suspension, including the suspended matter such as liquid droplets, gas bubbles, solid

particles, or a mixture of these. In addition, it is also labelled as two phase flows since

they required a composite of two materials or two phases with distinct differences.

Particularly, one phase is the fluid medium, which is a continuous phase, while the

particulate suspensions is the other phase dispersed throughout the fluid medium.

In nature, fluid flows containing suspended material particles abound, where typical

examples are water contamination and air pollution. The atmosphere of the Earth has

a mostly gaseous envelope of air that surrounds the planet. It also contains liquid

droplets and solid particles. Furthermore, it is continually contaminated by a variety of

dust particles, such as hazardous substances, which are unavoidable implications and

natural by-products of highly evolving industrialisation.
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Sewage solids are being thrown into oceans and rivers, which leads to the

contamination of the natural waterways (sea and rivers) around us. Many waste

materials are released into flowing waterways as a results of industrial activities

including food processing, chemical manufacturing, and pulp and paper manufacture.

Therefore, understanding the behaviour of two-phase flows is required to reduce and

control these massive water and air pollution issues. Similarly, two-phase flows are a

barrier in a variety of industrial and engineering applications. Fluids containing dust

particles are utilised in gas cooling chambers to improve heat transfer processes in heat

transfer technology.

Furthermore, in the petroleum sector and crude oil purification, understanding

two-phase flows are also essential. Due to these facts, dusty fluid flow, exclusively

related to Saffman’s model, has increased the study of modelling, solving, and analysing

the particles suspension in the fluid flow amongst many researchers. Although extensive

research works have been devoted to heat and mass transfer in dusty Newtonian fluids,

recently, research in dusty non-Newtonian fluid flow in various aspects from both

analytical and numerical methods has increased dramatically among researchers as

well. Theoretical study on these fluids is more exciting and attention-grabbing due to

the complexity of their constitutive equations.

The study on free, forced and mixed convection under the influence of different

physical conditions past a continuous stretching sheet surface has gained much attention

due to its numerous industrial application. Examples of such industrial manufacturing

processes are the purification of crude oil, the glass-fiber or paper production and the

plastic sheet extraction. Wide varieties of this problem deal with heat and mass transfer

involving boundary layer concept. The study found that during some stretching sheet

problems, the stretching motion and the simultaneous heating/cooling are two main

factors that affected the quality of the final products due to the direct impact on heat

transfer rate. Besides, the boundary layer is usually defined as a thin layer of fluid near

the neighbourhood of the solid boundary when a real fluids flows past a body. The idea

of the boundary layer concept over a moving continuous solid surface (sheet issuing)

was very well documented by Sakiadis (1961). The author derived the approximated

and exact solutions for the laminar velocity field. Motivated by Sakiadis’s work, the
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analytical and experimental approach of the heat transfer characteristics effects on a

continuous moving surface was analysed Tsou et al. (1967). Works on finding the

solution to linear stretching sheet problems have also been done by Crane (1970).

However, there were also investigations on the boundary layer flow employing a

non-standard stretching, such as exponentially, quadratically, and nonlinearly stretching

sheet. A paper by Gupta and Gupta (1977) on the mass and heat transfer on stretching

sheet surface may be referred. The authors pointed out that this geometry may not

always be linear. This assumption has been agreed by Kumaran and Ramanaiah

(1996). In this paper, the author considered quadratics stretching sheet for solving

the boundary layer problem. Magyari and Keller (1999) presented a similar solution

using analytical and numerical heat and mass transfer of a flow over an exponentially

stretching sheet. Also, Sajid and Hayat (2008) solved the problem of viscous fluid

analytically in boundary layer flow and heat transfer by considering radiation effect.

The research of viscous fluid flow over an exponentially stretching sheet has been

extended by Ishak et al. (2006) and Bidin and Nazar (2009).

The study of fluid and how forces influence them is called fluid dynamics.

As an instance, fluid dynamics is applied to understand how to fly an aeroplane.

For that reason, partial differential equations (PDEs), which govern the flow, are

often modelled to describe the physical phenomenon of fluid dynamics. Once the

mathematical model has been formulated, including the continuity, momentum, energy

and concentration equations of any heat and mass transfer problems, the analytical

or numerical methods will be used in finding the solutions. In this situation, the

analytical method yields the exact solution, while the numerical method generates

the approximate solution. One drawback to this analytical method is that not all

mathematical equations can be implemented. However, this method is significant for

comparison with the numerical method, which gives efficient and excellent results of

any problems. Thus, as one of the numerical methods, Keller-box, which was invented

by Keller and Cebeci (1971), is a suitable method to be applied to all the issues proposed

in this thesis. Motivated by Keller’s work, the idea of this method very well-exposed by

Cebeci and Bradshaw (1984), which became a general approach for solving boundary

layer equations. The Keller-box method consists of a four-step approach. The first
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step reduces the non-linear governing equations into first order differential equations

system, domain discretization step by writing equations in the finite-difference form

using centred-difference derivatives, express the equations in the matrix-vector form

by linearising the resulting non-linear system using Newton’s method and lastly solve

the linear system by the block tri-diagonal elimination technique (Zokri et al., 2018);

(Sarif et al., 2013).

Mainly, mathematics can simulate any physical phenomenon. However, not

all the problems in fluid dynamics can be solved by direct calculation. Under these

circumstances, numerical approaches based on computer simulations must be solve

the mathematical equations that govern these processes, called computational fluid

dynamics (CFD). The computational codes (algorithms) can be developed in various

languages: FORTRAN, C++, MATLAB, Python, and many more. Additionally, CFD

is a computer-based science that predicts the fluid flows as well as it will figures how

the fluids could affects the surface of the object when passed through it by running the

algorithms or codes.

In light of the previous paragraphs, this study had been conducted to study the

influence of suspended dust particles flow behaviour on Newtonian and non-Newtonian

fluid, where the fluid flow is considered on an exponentially stretching sheet. The Jeffrey

fluid model was chosen over others to represent the non-Newtonian fluid. Heat and

mass transfer were included in the study considering magnetic and chemical reaction

effects on mixed convection flow. The governing partial differential equations have

been reduced into non-dimensional governing equations by employing non-dimensional

variables via a similarity transformation. Consequently, the non-dimensional governing

equations are then solved numerically by adopting the implicit finite-difference method,

called Keller-box method. To obtain the numerical outcomes, the numerical algorithms

from Keller-box method are programmed in FORTRAN 77 software, continued with

the aid of MATLAB to plot the graphs. In this study, FORTRAN programming has

been proposed as a tool for obtaining the numerical results. This tool is a handy and

pleasant language that can handle large matrices for two-phase fluid flow while doing

the Keller-box method.
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1.3 Problem Statement

The interest in the two-phase flow problems has increased substantially over the

past decade due to the circumstance of these fluids in many industrial and technological

applications. This happened because the investigation of single-phase fluid flow are not

relevant enough to describe the nature of fluids that exist in daily life, where the single-

phase flow model cannot solve the fluids problems with the suspended dust particles.

Due to this reasons, the two-phase flow model is introduced so that both properties

of the fluids and dust particles are reckoned. The environmental pollution, crude oils

purification and polymer manufacturing processes are the examples corresponding to

those the two-phase flow problems. Therefore, this thesis will consider a Newtonian

and non-Newtonian fluids type to represent the fluid phase.

In contrast, the spherical solid particles dispersed in the fluid flow is treated

as dust phase. The Jeffrey fluid model is the simplest model, which is considered to

be used with fluids of non-Newtonian type. Owing to this, the two-phase flow model

of Newtonian and non-Newtonian fluids, together with dust particles, is formulated.

Therefore, this research investigates the presence of suspended dust particles in affecting

both Newtonian and non-Newtonian fluids behaviour. Specifically, a two-phase flow

of dusty Newtonian and dusty Jeffrey fluid with the effects of convective heat and mass

transfer is considered. The problem, then, is to analyse the behaviour of suspended dust

particles on the flow motion concerning the velocity profiles, the temperature profiles,

the concentration profiles, as well as the Nusselt and Sherwood numbers and the skin

friction coefficient.

Moreover, the study on these fluid types past an exponentially stretching sheet

with some significant effects such as MHD and chemical reaction is rarely studied. Yet,

they are highly motivated to be learned. Recent research acknowledges that the heat

and mass transfer rate possesses a significant impact on the final product quality. Thus,

this study has been carried out to explore the following research questions:

(i) How are the mathematical models of dusty Newtonian and dusty Jeffrey fluids

past an exponentially stretching sheet formulated?
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(ii) How would the skin friction, Nusselt and Sherwood numbers, and the fluid

flow characteristics be affected due to the presence of suspended dust particles,

together with the physical parameters for dusty Newtonian fluid and dusty

Jeffrey fluid model?

(iii) How do the Keller-box method for convective heat and mass transfer of dusty

Newtonian and dusty Jeffrey fluids be solved?

(iv) How to develop the numerical algorithms in FORTRAN software for

computation of dusty Newtonian and dusty Jeffrey fluids?

(v) How are the dusty Newtonian and dusty Jeffrey fluid models compared with the

existing single-phase of Newtonian and Jeffrey fluid models in the convective

heat and mass transfer problems?

1.4 Research Objectives

This research numerically examines the mixed convection flow of two-phase

dusty Newtonian fluid and dusty Jeffrey fluid past an exponentially stretching sheet.

This investigation mainly reports the flow behaviour of dust particles suspended in the

fluid flows. Specifically, the objectives of this research are:

(i) to derive the mathematical models including the continuity, momentum,

energy and mass equations of two-phase flow and construct the numerical

algorithms for computation;

(ii) to obtain the numerical results of the velocity, temperature and concentration

profiles, and compute the variation of skin friction, Nusselt and Sherwood

numbers, and

(iii) to analyse the heat and mass transfer characteristics influenced by magnetic

field, mixed convection, mass concentration of dust particles parameter, local

fluid-particle interaction parameter for velocity/temperature/concentration,

Deborah number, and Jeffrey fluid parameter for both fluid and dust phase.
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1.5 Scope of Research

This study focuses on the boundary layer analysis of two-phase dusty Newtonian

and dusty non-Newtonian fluids. The flow is established over an exponentially

stretching sheet. The study related to the two-phase flow (fluid-particle) assumes

the common fluid to represent the Newtonian fluid model in nature. In contrast, Jeffrey

fluid has been selected to represent the non-Newtonian fluid model. Thus, in this

study, two types of fluid containing suspended dust particles, namely dusty Newtonian

and dusty Jeffrey fluids, are considered. According to Singleton (1964), solid sphere

particles have been treated as a continuum since the moving particles do no interact

with the fluid flows.

As a consequence, there will be no collisions between particles. Specifically,

this research concerns the presence of dust particles in affecting the behaviour of

Newtonian and Jeffrey fluid models. The following four main problems are addressed

as follows:

(i) Chapter 4: the influence of magnetic parameter on mixed convection flow

of dusty Newtonian past an exponentially stretching sheet induced by heat

transfer,

(ii) Chapter 5: the influence of magnetic and chemical reaction parameters on

mixed convection flow of dusty Newtonian past an exponentially stretching

sheet induced by the combined effects of heat and mass transfer,

(iii) Chapter 6: the influence of magnetic parameter on mixed convection flow

of dusty Jeffrey fluid past an exponentially stretching sheet induced by heat

transfer, and

(iv) Chapter 7: the influence of magnetic and chemical reaction parameters on

mixed convection flow of dusty Jeffrey fluid past an exponentially stretching

sheet induced by the combined effects of heat and mass transfer.

The effects of Prandtl number, fluid particle interaction for velocity, fluid-particle

interaction for temperature, fluid-particle interaction for concentration, mixed

12



convection parameter, Deborah number, a ratio of relaxation to retardation times,

and Schmidt number on velocity, temperature, and concentration profiles are evaluated

based on their graphical behaviours in all four problems. Consequently, the equations

that govern under the Newtonian and Jeffrey model, together with dust particles, are

transformed to a system of non-linear ordinary differential equations by applying

the appropriate similarity transformation. Also, Boussinesq and boundary layer

approximations have been considered to simplify the governing equations. The Keller-

Box method is employed to achieve the numerical solutions. The numerical results

are achieved via the FORTRAN 77 algorithm, and the acquired data will then be

presented visually via MATLAB software. In a nutshell, Figure 1.1 depicts the research

framework for this study.
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Figure 1.1 Research Framework
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1.6 Significance of Research

The significance of the study is stated as follows

(i) The development of mathematical models for two-phase flow has been

introduced, where the interaction between dust particles and fluid medium

is analysed carefully. A modification on an existing single-phase flow model

into a two-phase flow model (consider both Newtonian and non-Newtonian

fluids model) has been constructed successfully. This contributes to the new

mathematical knowledge of the two-phase flow theory and, consequently,

could help future studies.

(ii) This study intends to have a deeper understanding of the rheological flow

behaviour of suspended dust particles in the fluid flows. It aims to understand

the emerging role of dust particles in varying the behaviour of Newtonian and

non-Newtonian fluids. This study can be used as a good reference for other

research and publications as well as the industrial applications.

(iii) The knowledge of heat and mass transfer on convective boundary layer flow

of dusty Newtonian and dusty non-Newtonian fluids problems is important

due to its basic phenomena in our everyday life and engineering applications.

It is needed to determine how the heat and mass transfer has a significant

effect when dealing with convective fluid flow. Learning the heat and mass

transfer would explain why some processes like crystallisation and distillation

are performed at specific density and temperature for a positive outcome.

Thus, by considering the following knowledge, it may provide some insight

on how to enhance the flow rates, which could improve the flow as well as cut

the operation cost.

(iv) One of the numerical methods of the Keller-box method is implemented to

solve and analyse the two-phase fluid flow problems. Then, the numerical

computation is developed in the FORTRAN software to obtain the numerical

results. All of the proposed problems are solved numerically with the help of

computer simulations. The achievable results of this present study can provide

a better understanding of basic engineering knowledge and the development

of computational tools. Moreover, the mathematical modelling of dusty
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Newtonian and dusty non-Newtonian gives an excellent knowledge to the

actual global application controlling the flow characteristics.

1.7 Thesis Outline

This thesis comprises eight chapters. Chapter 1 introduces the research

background, statement of the problem, objectives of the research, scope of the research,

the significance of research, research methodology, and the thesis outline. The literature

review on topics of concern has been thoroughly reviewed and discussed in Chapter 2.

Chapter 3 shows the derivation of governing equations of dusty Jeffrey Fluid

and basic dusty Newtonian fluid in two-dimensional for mixed convection flow past an

exponentially stretching sheet. The derivation of continuity, momentum, energy and

mass equations is presented specifically for fluid and dust phases. The expression of

skin friction coefficient, Nusselt and Sherwood numbers are also discussed in detail.

Chapter 4 presents the numerical solution for MHD mixed convection of dusty

fluid with heat transfer past an exponentially stretching sheet. The dimensional

governing equations are reduced to non-dimensional form using certain significant

non-dimensional variables and then solved numerically via the Keller-box method. The

expressions of velocity and temperature profiles are acquired and plotted by utilising the

MATLAB software. The influence of physical parameters on the velocity, temperature

profiles for both phases are reviewed numerically and displayed in detail on plotted

graphs. The numerical results for skin friction and the Nusselt number are evaluated

and displayed in tabular forms.

Chapter 5 concerns the detailed analysis of suspended dust particles flow

behaviour on heat and mass transfer phenomenon. This chapter is an extension of

Chapter 4. The effect of chemical reaction parameter along with the parameters

considered in Chapter 4 are discussed well. The new velocity and concentration

profiles are generated in this chapter using similar steps as in Chapter 4.
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Chapter 6 presents the study on dusty non-Newtonian fluid by taking Jeffrey

fluid as a base fluid for suspended dust particles into account. The dusty Jeffrey

fluid flow is investigated for both phases. Likewise, the pertinent parameters are kept

similar to Chapter 4. Meanwhile, Chapter 7 is the continuation of Chapter 6. The

heat and mass transfer is investigated for the dusty Jeffrey fluid together with the effect

of a chemical reaction. The obtained numerical results for each chapter consisting of

velocity, temperature and concentration profiles, and skin friction coefficient, Nusselt

and Sherwood numbers are discussed and presented in various forms.

Finally, the summary and conclusions of this research are presented in Chapter

8. Some recommendations for future research in the present problem are also described

in this chapter. Towards the end, the references used for all chapters are indicated. Next,

all the published articles and conferences are also listed. The complete derivation of

the governing equation of the single-phase flow is provided in Appendix A, whereas

the reviews of the Keller-box method is given in Appendix B.
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