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ABSTRACT 

Control charts are statistical tools widely used to monitor changes in the 

parameters of production processes. The most popular control charts in practice are 

Shewhart, cumulative sum (CUSUM) and exponentially weighted moving average 

(EWMA). The Shewhart control chart is considered sensitive to detect large shifts, 

whereas both the CUSUM and EWMA control charts are used to detect small-to-

moderate shifts in a process location. To monitor both the small and large shifts 

simultaneously through a single control chart, several adaptive control charts have 

been suggested in the literature. However, most adaptive control charts approaches 

were designed only to monitor the process location. Thus improvements on the design 

structures of such control charts form the basis of this research. This study aims to 

develop adaptive control charts based on Huber and Bi-square functions as well as 

mixed control charts for efficient monitoring of the process location and dispersion 

parameters. The proposal includes the adaptive EWMA based on EWMA statistic, 

adaptive EWMA based on CUSUM statistic, and adaptive CUSUM based on CUSUM 

statistic. The other proposed charts are the mixed EWMA-CUSUM control chart to 

simultaneously monitor the process location and dispersion; and the mixed CUSUM-

EWMA control charts for monitoring the dispersion of a process. There is also a 

multivariate extension of mixed CUSUM-EWMA which combines the design 

structures of the multivariate CUSUM and EWMA control charts. The statistical 

performances of the proposed control charts are evaluated using different performance 

measures. These performance measures include the average run length, standard 

deviation run length, extra quadratic loss, relative average run length, and performance 

comparison index. The results show that the proposed control charts are very effective 

in detecting wide range of shifts in the process locations and dispersion parameters. 

The graphical displays of statistical plots and operating curves show that the proposed 

charts significantly outperform most of the existing control charts. Interestingly, some 

existing control charts are special cases of the proposed control charts. Illustrative 

examples using real-life data are also given to demonstrate the practical importance 

and procedural details of the proposed methods.  
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ABSTRAK 

Carta kawalan adalah alat statistik yang digunakan secara meluas untuk 

memantau perubahan parameter proses penghasilan. Carta kawalan paling popular 

yang masih dipraktikkan ialah Shewhart, jumlah kumulatif (CUSUM) dan purata 

bergerak berwajaran exponen (EWMA). Carta kawalan Shewmart dikira sensitif bagi 

mengesan anjakan yang besar, manakala carta kawalan CUSUM dan EWMA 

digunakan untuk mengesan anjakan kecil hingga sederhana bagi proses lokasi. Untuk 

memantau kedua-dua anjakan besar dan kecil secara serentak melalui carta kawalan 

tunggal, beberapa carta kawalan penyesuaian telah dicadangkan dalam literatur. 

Namun, kebanyakan pendekatan dengan penyesuaian ini telah dicipta hanya untuk 

memantau proses lokasi. Justeru, penambahbaikan pada struktur reka bentuk carta 

kawalan tersebut menjadi asas bagi penyelidikan ini. Kajian ini bertujuan untuk 

membangunkan carta kawalan penyesuaian berdasarkan fungsi Huber dan Bi-square 

serta carta kawalan campuran untuk pemantauan parameter proses lokasi dan 

penyebaran yang cekap. Cadangan tersebut merangkumi EWMA penyesuaian 

berdasarkan statistik EWMA, EWMA penyesuaian berdasarkan statistik CUSUM, dan 

CUSUM penyesuaian berdasarkan statistik CUSUM. Cadangan carta kawalan lain 

adalah carta kawalan campuran EWMA-CUSUM untuk memantau proses lokasi dan 

penyebaran secara serentak; dan carta kawalan campuran CUSUM-EWMA untuk 

memantau penyebaran sesuatu proses. Terdapat juga sambungan multivariat bagi 

campuran CUSUM-EWMA yang menggabungkan struktur reka bentuk carta kawalan 

multivariat CUSUM dan EWMA. Prestasi statistik bagi cadangan carta kawalan 

tersebut telah dinilai menggunakan pengukur prestasi yang berbeza-beza. Pengukur 

prestasi itu termasuk purata panjang kendalian, sisihan piawai panjang kendalian, 

kehilangan kuadratik tambahan, purata relatif panjang kendalian, dan indeks 

perbandingan prestasi. Hasil kajian menunjukkan bahawa cadangan tersebut sangat 

efektif dalam mengesan peralihan dalam julat yang luas bagi parameter proses lokasi 

dan penyebaran. Paparan grafik plot statistik dan lengkung panjang kendalian 

menunjukkan bahawa carta yang dicadangkan mengatasi dengan signifikan 

kebanyakan carta kawalan yang wujud. Menariknya, beberapa carta kawalan yang 

wujud adalah kes khas daripada carta kawalan yang dicadangkan. Contoh gambaran 

menggunakan data nyata turut disertakan untuk menunjukkan kepentingan praktikal 

dan perincian prosedur bagi kaedah-kaedah yang dicadangkan. 



 

 

ix 

 

Table of Contents 

CHAPTER     TITLE     PAGES 

DECLARATION iii 

DEDICATION iv 

ACKNOWLEDGEMENT v 

ABSTRACT vii 

ABSTRAK viii 

LIST OF TABLES xiv 

LIST OF FIGURES xviii 

LIST OF ABBREVIATIONS xxiii 

LIST OF NOTATIONS xxv 

LIST OF SYMBOLS xxxiv 

1       NTRODUCTION 1 

1.1 Background of Problems 1 

1.2 Memory Control Charts 2 

1.3 Problem Statement 5 

1.4 Motivation 6 

1.5 Research Questions 6 

1.6 Research Objectives 7 

1.7 Scope and Limitations of Study 8 

1.8 Significance of Research 10 

1.9 Structure of the Thesis 10 

2       LITERATURE REVIEW 13 

2.1 Memory Control Charts for Process Location 13 

2.1.1 Improved CUSUM Control Charts 13 

2.1.2 Enhanced EWMA Control Charts 15 

2.1.3 Adaptive Memory Control Charts 16 

2.2 Memory Control Charts for Process Dispersion 17 

2.2.1 Advanced CUSUM Control Charts 17 

2.2.2 Enhanced EWMA Control Charts 18 

2.2.3 Adaptive Memory Control Charts 19 

2.2.4 Mixed Memory Control Charts 20 



 

 

x 

 

2.3 Memory Control Charts for Simultaneous Monitoring 21 

2.4 Multivariate Control Charts for Process Mean Vector 22 

2.5 Score Functions 24 

2.6 Summary and Conclusion 24 

3       RESEARCH METHODOLOGY 27 

3.1 Classical Control Charts for Process Location 27 

3.1.1 Process Characteristic 27 

3.1.2 Shewhart Control Chart 28 

3.1.3 Classical CUSUM Control Chart 29 

3.1.4 Classical EWMA Control Chart 30 

3.2 Memory Control Charts for Process Dispersion 31 

3.2.1 Transformations 32 

3.2.2 CUSUMF Control Chart 35 

3.2.3 EWMAF Control Chart 35 

3.3 Memory Control Charts for Simultaneous Monitoring 36 

3.3.1 Max CUSUM Control Chart 36 

3.3.2 MaxEWMA Control Chart 37 

3.3.3 MaxDEWMA Control Chart 38 

3.4 Multivariate Control Charts for Process Mean Vector 39 

3.4.1 Variables of Interest 39 

3.4.2 Hotelling’s 𝑇2Control Chart 39 

3.4.3 Multivariate Control Chart based on PCA 40 

3.4.4 Multivariate CUSUM Control Chart 41 

3.4.5 MC(1) Control Chart 42 

3.4.6 Multivariate EWMA Control Chart 42 

3.5 Performance Evaluation Measures 43 

3.5.1 Average Run Length 43 

3.5.2 Standard Deviation Run Length 43 

3.5.3 Extra Quadratic Loss 44 

3.5.4 Relative Average Run Length 44 

3.5.5 Performance Comparison Index 44 

3.6 Score Functions 45 

3.6.1 Huber Function 45 

3.6.2 Bi-square Function 46 



 

 

xi 

 

3.7 Research Framework 46 

4       PROPOSED METHODOLOGY 49 

4.1 Proposed Control Charts for Process Location 49 

4.1.1 Proposed AEWMAC Control Charts 50 

4.1.1.1 AEWMAC
(1)

 Control Chart 50 

4.1.1.2 AEWMAC
(2)

 Control Chart 53 

4.1.2 Proposed ACUSUMC Control Charts 53 

4.1.2.1 ACUSUMC
(1)

 Control Chart 54 

4.1.2.2 ACUSUMC
(2)

 Control Chart 55 

4.2 Proposed Control Charts for Process Dispersion 58 

4.2.1 Proposed AEWMAFC Control Charts 58 

4.2.1.1 AEWMAFC
(1)

 Control Chart 58 

4.2.1.2 AEWMAFC
(2)

 Control Chart 60 

4.2.2 Proposed AEWMAFE Control Charts 61 

4.2.2.1 AEWMAFE
(1)

 Control Chart 62 

4.2.2.2 AEWMAFE
(2)

 Control Chart 63 

4.2.3 Proposed MCEF Control Charts 64 

4.3 Proposed Control Charts for Simultaneous Monitoring 71 

4.3.1 Combined Mixed EWMA-CUSUM Control Chart 71 

4.3.2 Combined Mixed double EWMA-CUSUM Control 

Chart 73 

4.4 Proposed Multivariate Control Charts for Process Mean 

Vector 75 

4.4.1 MCPC(1) Control Chart 75 

4.4.2 MCE(1) Control Chart 76 

4.4.3 MCE(2) Control Chart 77 

4.5 Special Cases of Proposed Control Charts 78 

4.5.1 Special Cases of AEWMAC
(1)

 and ACUSUMC
(1)

 Control 

Charts 79 

4.5.2 Special Case of AEWMAFC
(1)

Control Chart 79 

4.5.3 Special Case of AEWMAFE
(1)

Control Chart 80 

4.5.4 Special Case of MCEF Control Chart 81 

4.5.5 Special Case of CMEC Control Chart 81 

4.5.6 Special Case of MCE(1) Control Chart 81 



 

 

xii 

 

4.5.7 Special Case ofMCE(2) Control Chart 82 

5       RESULTS AND DISCUSSION 83 

5.1 Proposed Control Charts for Process Location 83 

5.1.1 Performance of AEWMAC Control Charts 84 

5.1.2 Performance of ACUSUMC Control Charts 89 

5.2 Proposed Control Charts for Process Dispersion 114 

5.2.1 Performance of AEWMAFC Control Charts 114 

5.2.2 Performance of AEWMAFE Control Charts 119 

5.2.3 Performance of MCEF Control Charts 125 

5.3 Proposed Control Charts for Simultaneous Monitoring 155 

5.4 Proposed Multivariate Control Charts for Process Mean 

Vector  166 

5.5 Summary 185 

6       REAL APPLICATIONS 187 

6.1 Application of Proposed Control Charts for Process Location 187 

6.1.1 Example of AEWMAC
(1)

 Control Chart 188 

6.1.2 Example of ACUSUMC Control Charts 189 

6.2 Application of Proposed Control Charts for Process 

Dispersion 202 

6.2.1 Example of AEWMAFC Control Charts 202 

 
(1)

   

     

 
  

  

   

         

   

   

   

   

  

  

  

ARL’s properties of 𝐀𝐄𝐖𝐌𝐀𝐅𝐄
(𝟏)

 proposed control charts 245 

APPENDIX A 245

APPENDICES A-C 243

REFERENCES 231

7.4 Recommendations for Future Research 230

7.3 Conclusion 229

7.2 Contributions of Research 228

7.1 Summary 227

7 CONCLUSIONS 227

Vector 222

6.4 Application  of  Proposed Control  Charts  for  Process  Mean

Monitoring 217

6.3 Application  of  Proposed  Control  Chart for  Simultaneous

6.2.3 Example of MCEV Control Chart 206

6.2.2 Example of AEWMATE Control Chart 204



 

 

xiii 

 

APPENDIX B 247 

Diagnostic abilities of CMEC with some other control charts 247 

APPENDIX C 253 

ARL’s properties of proposed 𝐌𝐂𝐄(𝟏) and 𝐌𝐂𝐄(𝟐) control charts 253 

LIST OF PUBLICATIONS 257 

 

 



 

 

xiv 

 

LIST OF TABLES 

TABLE NO.  TITLE  PAGE 

Table 2.1: Research gap for proposed study based on literature review 25 

Table 3.1: Transformations constants values for different size of 𝑛 34 

Table 4.1: Control limits coefficients L
AEWMAC

(1)  and L
AEWMAC

(2) values 56 

Table 4.2: Control limits coefficients h
ACUSUMC

(1)  and h
ACUSUMC

(2)values 57 

Table 4.3: Control limits coefficients L
AEWMAFC

(1)  and L
AEWMAFC

(2) values 66 

Table 4.4: Control limits coefficients L
AEWMAFE

(1)   and L
AEWMAFE

(2)   values

 69 

Table 4.5: Control limits coefficients LMCET, LMCEJ, and LMCEV values 70 

Table 4.6: Control limits coefficients  hCMEC, and  hCMDEC values 74 

Table 4.7: Control limit HMEC(1) and coefficient hMEC(2) values 78 

Table 5.1:ARL’s properties of AEWMAC
(1)

 control chart at different 

choices of 𝜆, 𝛾, and ARL0 when 𝑘 = 0.20 101 

Table 5.2: ARL’s properties of AEWMAC
(2)

 control chart at different 

choices of 𝜆, 𝛾, 𝑘, and ARL0 103 

Table 5.3: ARL’s properties of other control charts when ARL0 = 500 105 

Table 5.4:ARL’s properties of other control charts when ARL0 = 500 106 

Table 5.5: ARL’s properties of ACUSUMC
(1)

 control chart at different 

choices of 𝜆, 𝛾, 𝑘, when ARL0 = 500 107 

Table 5.6: ARL’s properties of ACUSUMC
(2)

 control chart at different 

choices of 𝜆, 𝛾, 𝑘, when ARL0 = 500 109 

Table 5.7: EQL, RARL, and PCI values of ACUSUMC
(1)
 and 

ACUSUMC
(2)

control charts when ARL0 = 500 111 

Table 5.8: EQL, RARL, and PCI values of ACUSUMC
(1)
 and other control 

charts when ARL0 = 500 112 

Table 5.9: EQL, RARL, and PCI values of ACUSUMC
(2)
 and other control 

charts when ARL0 = 500 113 



 

 

xv 

 

Table 5.10: ARL’s properties of AEWMATC
(1)
  control chart at different 

choices of 𝛾, 𝑘1, and  𝜆 when ARL0 = 200 and  𝑛 = 5 134 

Table 5.11: ARL’s properties of AEWMAJC
(1)

 control chart at different 

choices of 𝛾, 𝑘1, and  𝜆 when ARL0 = 200 and  𝑛 = 5 135 

Table 5.12: ARL’s properties of AEWMATC
(2)

 control chart at different 

choices of 𝛾, 𝑘1, and  𝜆 when ARL0 = 200 and  𝑛 = 5 136 

Table 5.13: ARL’s properties of AEWMAJC
(2)

 control chart at different 

choices of 𝛾, 𝑘1, and  𝜆 when ARL0 = 200 and  𝑛 = 5 137 

Table 5.14: ARL’s properties of other control charts when ARL0 = 200 

and 𝑛 = 5 138 

Table 5.15: EQL, RARL, and PCI values of AEWMAFC and other control 

charts 139 

Table 5.16: ARL1 behaviour of AEWMAFC control charts for the empirical 

parameters other than optimal 140 

Table 5.17: ARL’s properties of AEWMAFE control charts at different 

choices of 𝛾 and  𝜆 when ARL0 = 200 and  𝑛 = 5 142 

Table 5.18:EQL, RARL, and PCI values of AEWMAFE and other control 

charts when ARL0 = 200 and 𝑛 = 5 143 

Table 5.19: ARL’s properties of other control charts when ARL0 = 200 145 

Table 5.20: ARL’s properties of MCEF control charts when ARL0 = 200 

and 𝑛 = 5 147 

Table 5.21: ARL’s properties of MECV control chart when ARL0 = 200 

and 𝑛 = 5 150 

Table 5.22: ARL’s and SDRL’s properties of S2-EWMA and CUSUM-S2 

control charts when ARL0 = 200 and 𝑛 = 5 151 

Table 5.23: SDRL’s properties of MECT and MCEV control charts when 

 ARL0 = 200 and 𝑛 = 5 152 

Table 5.24: EQL, RARL, and PCI values of MCEF, MECF, S2-EWMA, 

and CUSUM-S2 control charts 153 

Table 5.25: ARL’s properties of CMEC control chart for two-sided when 

 ARL0 = 250 159 

Table 5.26: ARL’s properties of CMDEC control chart for two-sided at 

different choices of  ARL0 162 

Table 5.27: ARL’s properties of other control charts when  ARL0 = 250 164 



 

 

xvi 

 

Table 5.28: Presentation of symbols and directions of out-of-control signal 

for diagnostic ability 165 

Table 5.29: ARL/SERL’s properties of MCE(1) control chart when 

 ARL0 = 200 178 

Table 5.30: ARL/SERL’s properties of MCE(2) control chart when 

 ARL0 = 200 179 

Table 5.31: ARL/SERL’s properties of MCE(1) and MCE(2)control charts 

when  ARL0 = 200 and 𝜌 = 0.9 (𝑝 = 2) 181 

Table 5.32: ARL’s properties of other multivariate control charts when 

 ARL0 = 200 182 

Table 5.33: ARL’s properties of MEC(2) and MEC(1) control charts when 

 ARL0 = 200 183 

Table 5.34: EQL, RARL, and PCI values of MCE(1), MCE(2), MCUSUM, 

MC(1), MC(2), Hoteling’s 𝑇2, PC-chart, MEWMA, MEC(1) , and 

MEC(2)  control charts 184 

Table 6.1: An illustrative example of AEWMAC
(1)

 along other control charts

 196 

Table 6.2:Diagnostic analysis of out-of-control signals in two directions 198 

Table 6.3: An illustrative example of ACUSUMC
(1)

 along other control 

charts when ARL0 = 200 199 

Table 6.4: Detection ability of control charts 201 

Table 6.5: An illustrative example of AEWMAJC
(1)

, Shewhart-R, and 

Shewhart-𝑆2 control charts when ARL0 = 200 213 

Table 6.6: An AEWMAJC
(1)

, Shewhart-R, and Shewhart-𝑆2 control charts 

diagnostic abilities to detect out-of-control signals 214 

Table 6.7: An illustrative example of AEWMATE
(1)

,, Shewhart-R, 

Shewhart-𝑆2, and MECT control charts when ARL0 = 200 215 

Table 6.8: An illustrative example of MECV and MCEV control charts 

when ARL0 = 200 216 

Table 6.9: An illustrative example of CMEC control chart when ARL0 =
185 219 

Table 6.10:Total out-of-control points for CMEC, MaxEWMA, and 

MaxDEWMA control charts 221 

Table 6.11: An illustrative example of MCE(1),MCE(1), Hotelling’s 𝑇2, 

and MEWMA control charts when ARL0 = 200 225 



 

 

xvii 

 

Table A.1:ARL’s properties of AEWMAFE
(1)

 at ARL0 = 200 when  𝑛 = 5 245 

Table B.1: Comparison of diagnostic abilities of CMEC with some other 

control charts 247 

Table C.1: ARL/SERL’s properties of MCE(1) control chart at ARL0 =
200 253 

Table C.2: ARL/SERL’s properties of MCE(2) control chart at ARL0 =
200 (𝑝 = 2) 255 



 

 

xviii 

 

LIST OF FIGURES 

FIGURE NO.  TITLE  PAGE 

Figure 3.1: Graphical presentation of the 𝑋̅ control chart 29 

Figure 3.2: Graphical presentation of classical CUSUM control chart 30 

Figure 3.3: Graphical presentation of classical EWMA control chart 31 

Figure 4.1:Flow chart of Monte Carlo simulation 52 

Figure 5.1: ARL’s comparison between ACUSUMC
(1)

 and ACUSUMC
(2)

 

control charts when 𝑘 = 0.25 95 

Figure 5.2: ARL’s comparison between ACUSUMC
(1)

 and ACUSUMC
(2)

 

control charts when 𝑘 = 1.5 95 

Figure 5.3: ARL’s comparison among ACUSUMC
(1)

, ACUSUMC
(2)

, and 

classical CUSUM control charts when 𝑘 = 0.25 96 

Figure 5.4: ARL’s comparison among ACUSUMC
(1)

, ACUSUMC
(2)

, and 

classical CUSUM control charts when 𝑘 = 1.5 96 

Figure 5.5: ARL’s comparison among ACUSUMC
(1)

, ACUSUMC
(2)

, and 

classical EWMA control charts when 𝜆 = 0.05 96 

Figure 5.6: ARL’s comparison among ACUSUMC
(1)

, ACUSUMC
(2)

, and 

classical EWMA control charts when 𝜆 = 0.1 97 

Figure 5.7: ARL’s comparison among ACUSUMC
(1)

, ACUSUMC
(2)

, and 

classical EWMA control charts when 𝜆 = 0.2 97 

Figure 5.8: ARL’s comparison among ACUSUMC
(1)

, ACUSUMC
(2)

, and 

classical EWMA control charts when 𝜆 = 0.4 97 

Figure 5.9: ARL’s comparison among ACUSUMC
(1)

and ACUSUMC
(2)

, and 

AEWMAE control charts when 𝜆 = 0.1 98 

Figure 5.10: ARL’s comparison among ACUSUMC
(1)

, ACUSUMC
(2)

, and 

MEC control charts when 𝜆 = 0.1 98 

Figure 5.11: ARL’s comparison among ACUSUMC
(1)

, ACUSUMC
(2)

, and 

MEC control charts when 𝜆 = 0.5 98 

Figure 5.12: ARL’s comparison among ACUSUMC
(1)

, ACUSUMC
(2)

, and 

MCE control charts when 𝜆 = 0.1 99 



 

 

xix 

 

Figure 5.13: ARL’s comparison among ACUSUMC
(1)

, ACUSUMC
(2)

, and 

MCE control charts when 𝜆 = 0.5 99 

Figure 5.14: ARL’s comparison among ACUSUMC
(1)

, ACUSUMC
(2)

, and 

AEWMAC
(1)

 control charts when 𝜆 = 0.1 99 

Figure 5.15: ARL’s comparison among ACUSUMC
(1)

, ACUSUMC
(1)

, and 

AEWMAC
(1)

 contrl charts when 𝜆 = 0.5  100 

Figure 5.16: ARL’s comparison among AEWMATC
(2)

,, CUSUM-𝑆2, CS-

CUSUM-R, and 𝑆2-EWMA control charts when 𝜆 = 0.05 129 

Figure 5.17: ARL’s comparison among AEWMATC
(2)

, CUSUM-𝑆2, 𝑆2-

EWMA, and CS-CUSUM-R control charts when 𝜆 = 0.5 129 

Figure 5.18: ARL’s comparison among AEWMAFC and PV control charts

 130 

Figure 5.19: ARL’s comparison among AEWMATC
(2)

, AEWMAJC
(2)

, and 

MCEF control charts at 𝜆 = 0.05 130 

Figure 5.20: ARL’s comparison among AEWMATC
(2)

, AEWMAJC
(2)

, and 

MCEF control charts at 𝜆 = 0.3 130 

Figure 5.21: ARL’s comparison among AEWMATE
(1)

, 𝑆2-EWMA, MECV, 

MCET, and CUSUM-𝑆2control charts at 𝜆 = 0.1 131 

Figure 5.22: ARL’s comparison among AEWMAVE
(1)

, AEWMA-ln(𝑆2), 

and CH-EWMA control charts 131 

Figure 5.23: ARL’s comparison among two-sided of MCEF, 𝑆2-EWMA, 

and CUSUM-𝑆2 control charts when ARL0 = 200, 𝑘1 = 0.5, and 

𝜆 = 0.5 131 

Figure 5.24: ARL’s comparison among two-sided of MCEF, 𝑆2-EWMA, 

and CUSUM-𝑆2 control charts when ARL0 = 200, 𝑘1 = 0.75, and 

𝜆 = 0.5 132 

Figure 5.25: ARL’s comparison among two-sided of MCEF,  𝑆2-EWMA, 

and CUSUM-𝑆2 control charts when ARL0 = 200, 𝑘1 = 1, and 

𝜆 = 0.5 132 

Figure 5.26: SDRL’s comparison among two-sided of MCEV,  𝑆2-

EWMA, and CUSUM- 𝑆2 at ARL0 = 200, 𝑘1 = 0.1, and 𝜆 = 0.5 132 

Figure 5.27: ARL’s comparison among two-sided of MCEF and MECF 

control charts  when  ARL0 = 200, 𝑘1 = 0.1 and 𝜆 = 0.5 133 

Figure 5.28: ARL’s comparison among MCEF and other control charts 

when  ARL0 = 200, 𝑘1 = 1, and 𝜆 = 0.05 133 



 

 

xx 

 

Figure 5.29: ARL’s comparison among MCEV and other control charts 

when  ARL0 = 200, 𝑘1 = 1, and 𝜆 = 0.05 133 

Figure 5.30: ARL’s comparison between MCE(1) andMCE(2) control 

charts when ARL0 = 200,  λ = 0.05, and 𝑘𝑚 = 0.5 173 

Figure 5.31: ARL’s comparison between MCE(1) and MCE(2)  control 

charts when ARL0 = 200,  λ = 0.25, and 𝑘𝑚 = 0.5 173 

Figure 5.32: ARL’s comparison between MCE(1) and MCE(2) control 

charts when ARL0 = 200,  λ = 0.5, and 𝑘𝑚 = 0.5 174 

Figure 5.33: ARL’s comparison between MCE(1) and MCE(2) control 

charts when ARL0 = 200,  λ = 0.75, and 𝑘𝑚 = 0.5 174 

Figure 5.34: ARL’s comparison among MCE(1), MCE(2), MCUSUM, 

MC(1), MC(2), and Hotelling’s 𝑇2 control charts when ARL0 =
200 and λ = 0.1 174 

Figure 5.35: ARL’s comparison among MCE(1), MCE(2), MCUSUM, 

MC(1), MC(2), and Hotelling’s 𝑇2 control charts when ARL0 =
200 and λ = 0.5 175 

Figure 5.36: ARL’s comparison among MCE(1), MCE(2), and MEWMA 

control charts when ARL0 = 200 and λ = 0.1 175 

Figure 5.37: ARL’s comparison among MCE(1), MCE(2), and MEWMA 

control charts when ARL0 = 200 and λ = 0.5 175 

Figure 5.38: ARL’s comparison among MCE(1),, MCE(2),, MEC(1),, and 

MEC(2) control charts when ARL0 = 200 and λ = 0.1 176 

Figure 5.39: ARL’s comparison among MCE(1), MCE(2), MEC(1), and 

MEC(2) control charts when ARL0 = 200 and λ = 0.5 176 

Figure 5.40: ARL’s comparison among MCE(1),, MCE(2), W&N, and PC 

(PC-chart) control charts when ARL0 = 200 and λ = 0.05 176 

Figure 5.41: ARL’s comparison among MCE(1), MCE(2), W&N, and PC 

(PC-chart) control charts when ARL0 = 200 and λ = 0.75 177 

Figure 6.1: Cost of processing mortgage loan application fee (transformed 

to z-score) 191 

Figure 6.2: Empirical CDF of cost of processing mortgage loan application 

fee 192 

Figure 6.3: Classical EWMA control chart with real-life data when 𝜆 =
0.1 192 

Figure 6.4: AEWMAE control chart with real-life data when 𝜆 = 0.1 192 

Figure 6.5: MEC control chart with real-life data when 𝜆 = 0.1 193 



 

 

xxi 

 

Figure 6.6: AEWMAC
(1)

 control chart with real-life data when 𝜆 = 0.1 193 

Figure 6.7: Thickness of a metal layer on silicon wafers (transformed to z-

score) 193 

Figure 6.8: Empirical CDF of  thickness of a metal layer on silicon wafers

 194 

Figure 6.9: ACUSUMC
(1)

 control chart with real-life data at false alarm 194 

Figure 6.10: ACUSUMC
(1)

 control chart with real-life data by adding 𝜇1 =

𝜇0 + 1𝜎2
0 194 

Figure 6.11: ACUSUMC
(1)

 control chart  with real-life data by adding 𝜇1 =

𝜇0 + 3𝜎2
0 195 

Figure 6.12: Real-life data of the diameter of cylinder bores 207 

Figure 6.13: Shewhart-S2 control chart with real-life data 207 

Figure 6.14: Shewhart-R control chart with real-life data 207 

Figure 6.15: AEWMAJC
(1)

 control chart with real-life data when 𝜆 = 0.05 208 

Figure 6.16: Real-life data of wafers 208 

Figure 6.17: Shewhart-R control chart with real-life data 208 

Figure 6.18: Shewhart-𝑆2 control chart with real-life data 209 

Figure 6.19: MECT control chart with real-life data when 𝜆 = 0.1 209 

Figure 6.20: AEWMATE
(1)

 control chart with real-life data when 𝜆 = 0.05 

and 𝛾 = 1.5 209 

Figure 6.21: AEWMATE
(1)

 control chart with real-life data when 𝜆 = 0.1 

and 𝛾 = 1.5 210 

Figure 6.22: AEWMATE
(1)

 control chart with real-life data when 𝜆 = 0.05 

and 𝛾 = 2 210 

Figure 6.23: AEWMATE(1) control chart with real-life data when 𝜆 = 0.1 

and 𝛾 = 2 210 

Figure 6.24: AEWMATE
(1)

 control chart with real-life data when 𝜆 = 0.05 

and 𝛾 = 3 211 

Figure 6.25: AEWMATE
(1)

 control chart with real-lfe data when 𝜆 = 0.1 

and 𝛾 = 3 211 

Figure 6.26: Real-life data of parts manufactured by an injection molding 

process 211 



 

 

xxii 

 

Figure 6.27: MECV control chart with real-life data when 𝜆 = 0.05 and 

𝑘 = 0.1 212 

Figure 6.28: MCEV control chart with real-data when 𝜆 = 0.05 and 𝑘1 =
0.1 212 

Figure 6.29: Real-life data of inside diameter of cylinder bores in an engine 

block 217 

Figure 6.30: CMEC control chart when 𝜆 = 0.30 and 𝑘2 = 0.5 218 

Figure 6.31: MEWMA control chart when  λ = 0.25 223 

Figure 6.32: Hotelling’s 𝑆2 control chart 223 

Figure 6.33: MCE(1) control chart when 𝜆 = 0.25 and 𝑘𝑚 = 0.5 224 

Figure 6.34: MCE(2) control chart when 𝜆 = 0.25 and 𝑘𝑚 = 0.5 224 

 



 

 

xxiii 

 

LIST OF ABBREVIATIONS 

AEWMA - Adaptive exponentially weighted moving average  

ACUSUM - Adaptive cumulative sum  

ARL - Average run length  

CDF  Cumulative distribution function 

CMEC  Combined Mixed EWMA-CUSUM 

CMDEC  Combined double Mixed EWMA-CUSUM 

CL - Centre line  

CUSUM - Cumulative sum 

DEWMA - Double exponentially weighted moving average 

EQL - Extra quadratic loss  

EWMA - Exponentially weighted moving average 

FIR - Fast initial response  

HEWMA - Hybrid EWMA 

LCL - Lower control limit  

Max CUSUM - Maximum CUSUM 

MaxEWMA - Maximum EWMA 

MaxDEWMA - Maximum double EWMA 

MaxGEWMA - Maximum generally EWMA 

MCE - Mixed CUSUM-EWMA 

MD - Mahalanobis distance  

MCUSUM - Multivariate CUSUM 

MEC - Mixed EWMA-CUSUM 

MEWMA - Multivariate EWMA 

ML - Mean Value  

NEWMA - New EWMA 

ODRS - Ordered double ranked set sampling  

OIDRSS - Ordered imperfect double rank set sampling  

PCA - Principle component analysis  

PC-chart - Principle component control chart  

PCI - Performance comparison index  



 

 

xxiv 

 

PV - Progressive variance  

RL - Run length  

RARL  Relative average run length  

SDRL - Standard deviation of run length 

SERL  Standard rrror of run length  

SPC - Statistical process control  

UCL - Upper control limit   

VSI - Variable sampling interval  

VSIFT - VSI fixed time 

VSI-WLF - VSI and weight loss function  

VSS - Variable sample size  

VSSI - VSS and sampling intervals 

VSS-AEWMA - Variable sample size AEWMA 

VSSI-WLF - VSSI and weight loss function 

WLF - Weight loss function  

W & N - Woodall and Ncube control chart  



 

 

xxv 

 

LIST OF NOTATIONS 

𝐴𝑇(𝑛) - Constant of 𝑇𝑖 transformation  

𝑎𝑇 - Constant of 𝑇𝑖 transformation 

𝐴𝐽 - Constant of 𝐽𝑖 transformation 

𝑎𝐽 - Constant of 𝐽𝑖 transformation 

𝑎𝑝
′  - Eigenvalues  

CUSUM-S2 - CUSUM control chart for process dispersion 

ACUSUMC - Adaptive CUSUM control charts for process location 

based on classical CUSUM statistic 

ACUSUME - Adaptive CUSUM control chart for process location based 

on classical EWMA statistic 

ACUSUMC
(1)

 - ACUSUMC control chart  based on Huber function  

𝐴𝐶𝑈𝑆𝑈𝑀𝐶𝑖
(1)±

 - Plotting statistics of ACUSUMC
(1)

 control chart 

ACUSUMC
(2)

 - ACUSUMC control chart based on Bi-square function  

𝐴𝐶𝑈𝑆𝑈𝑀𝐶𝑖
(2)±

 - Plotting statistics of ACUSUMC
(2)

 control chart 

AEWMAC - Adaptive EWMA control charts for process location based 

on CUSUM statistic 

AEWMAE - Adaptive EWMA control charts for process location based 

on classical EWMA statistic 

AEWMAC
(1)

 - AEWMAC control chart based on Huber function  

𝐴𝐸𝑊𝑀𝐴𝑐𝑖
(1)

 - Plotting statistic of  AEWMAC
(1)

 control chart 

AEWMAC
(2)

 - AEWMAC control chart based on Bi-square function  

𝐴𝐸𝑊𝑀𝐴𝑐𝑖
(2)

 - Plotting statistic of  AEWMAC
(2)

 control chart 

AEWMAFC - Adaptive EWMA control charts for process dispersion 

based on CUSUM statistic 

AEWMAFC
(1)

 - AEWMAFC control chart based on Huber function  

𝐴𝐸𝑊𝑀𝐴𝐹𝑐𝑖
(1)

 - Plotting statistic of AEWMAFC
(1)

 control chart 

𝐴𝐸𝑊𝑀𝐴𝑇𝑐 𝑖
(1)

 - Plotting statistic of AEWMATC
(1)

 control chart 



 

 

xxvi 

 

𝐴𝐸𝑊𝑀𝐴𝐽𝑐 𝑖
(1)

 - Plotting statistic of AEWMAJC
(1)

 control chart 

AEWMAFC
(2)

 - AEWMAFC control chart based on Bi-square function  

𝐴𝐸𝑊𝑀𝐴𝐹𝑐𝑖
(2)

 - Plotting statistic of AEWMAFC
(2)

 control chart 

𝐴𝐸𝑊𝑀𝐴𝑇𝑐 𝑖
(2)

 - Plotting statistic of AEWMATC
(2)

 control chart 

𝐴𝐸𝑊𝑀𝐴𝐽𝑐 𝑖
(2)

 - Plotting statistic of AEWMAFC
(2)

 control chart 

AEWMAFE - Adaptive EWMA control charts for process dispersion 

based on EWMA statistic 

AEWMAFE
(1)

 - AEWMAFE control chart based on Huber function  

𝐴𝐸𝑊𝑀𝐴𝑇𝐸 𝑖
(1)

 - Plotting statistic of AEWMATE
(1)

 control chart 

𝐴𝐸𝑊𝑀𝐴𝐽𝐸 𝑖
(1)

 - Plotting statistic of AEWMAJE
(1)

 control chart 

𝐴𝐸𝑊𝑀𝐴𝑉𝐸 𝑖
(1)

 - Plotting statistic of AEWMAVE
(1)

 control chart 

AEWMAFE
(2)

 - AEWMAFE control chart based on Bi-square function  

𝐴𝐸𝑊𝑀𝐴𝑇𝐸 𝑖
(2)

 - Plotting statistic of AEWMATE
(2)

 control chart  

𝐴𝐸𝑊𝑀𝐴𝐽𝐸 𝑖
(2)

 - Plotting statistic of AEWMAJE
(2)

 control chart 

𝐴𝐸𝑊𝑀𝐴𝑉𝐸 𝑖
(2)

 - Plotting statistic of AEWMAVE
(2)

 control chart  

𝐴𝑅𝐿(𝛿) - ARL at specific shift  

𝐴𝑅𝐿(𝛿(𝑙)) - ARL of a specific control chart at specific shift 

𝐴𝑅𝐿 𝑚𝑖𝑛(𝛿(𝑙)) - Smallest ARL from all control charts 

𝐴𝑅𝐿 𝑚𝑖𝑛(𝛿) - Smallest ARL from all control charts 

ARLbmk(𝛿) - ARL of benchmark control chart   

ARL0 - In-control average run length 

ARL1 - Out-of-control average run length 

𝐵𝑇(𝑛) - Constant of 𝑇𝑖 transformation 

𝑏𝑇 - Constant of 𝑇𝑖 transformation 

𝐵𝐽 - Constant of 𝐽𝑖 transformation 

𝑏𝐽 - Constant of 𝐽𝑖 transformation 

𝐶𝑇(𝑛) - Constant of 𝑇𝑖 transformation 

𝑐𝑡 - Constant of 𝑇𝑖 transformation 

𝐶𝐽 - Constant of 𝐽𝑖 transformation 

𝑐𝐽 - Constant of 𝐽𝑖 transformation 



 

 

xxvii 

 

𝐶𝑖 - Observations vector of MCUSUM control chart 

𝐶𝑖
1 - Observations vector of MC(1) control chart 

𝐶𝐿EWMA𝑖 - CL of classical EWMA control chart 

𝐶𝐿EWMAF𝑖 - CL of EWMAF control chart 

𝐶𝐿EWMAT𝑖 - CL of EWMAT control chart 

𝐶𝐿EWMA - Constant CL of classical EWMA control chart 

𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑐𝑖

(2) - CL of AEWMAC
(2)

 control chart  

𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐹𝑐𝑖

(1)  - CL of AEWMAFC
(1)

 control charts 

𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑇𝑐𝑖

(1)  - CL of AEWMATC
(1)

 control chart 

𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐽𝑐𝑖

(1) - CL of AEWMAJC
(1)

 control chart 

𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐹𝑐𝑖

(2)  - CL of AEWMAFC
(2)

 control charts 

𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑇𝑐𝑖

(2)  - CL of AEWMATC
(2)

 control chart 

𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐽𝑐𝑖

(2) - CL of AEWMAJC
(2)

 control chart 

𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐹𝐸𝑖

(1)  - CL of AEWMAFE
(1)

 control charts  

𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑇𝐸𝑖

(1)  - CL of AEWMATE
(1)

 control chart  

𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐽𝐸𝑖

(1) - CL of AEWMAJE
(1)

 control chart  

𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑉𝐸𝑖

(1) - CL of AEWMAVE
(1)

 control chart  

𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐹𝐸𝑖

(2)  - CL of AEWMAFE
(2)

 control charts 

𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑇𝐸𝑖

(2)  - CL of AEWMATE
(2)

 control chart 

𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐽𝐸𝑖

(2) - CL of AEWMAJE
(2)

 control chart 

𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑉𝐸𝑖

(2) - CL of AEWMAVE
(2)

 control chart 

CMECU𝑖
± - Plotting statistics of CMEC control chart 

CMECV𝑖
± - Plotting statistics of CMEC control chart 

CMDECU𝑖
± - Plotting statistics of CMDEC control chart 

CMDECV𝑖
± - Plotting statistics of CMDEC control chart  

𝐶𝑈𝑆𝑈𝑀𝑖
± - Plotting statistics of classical CUSUM control chart 

𝐶𝑈𝑆𝑈𝑀𝐹𝑖
± - Plotting statistics of CUSUMF control charts  

𝐶𝑈𝑆𝑈𝑀𝑇𝑖
± - Plotting statistics of CUSUMT control chart  



 

 

xxviii 

 

𝐶𝑈𝑆𝑈𝑀𝑈𝑖
± - Statistics for Max CUSUM control chart  

𝐶𝑈𝑆𝑈𝑀𝑉𝑖
± - Statistics for Max CUSUM control chart 

𝐷𝑖 - Standardized statistic for the AEWMAFE control charts  

𝐷𝐽 - Constant of 𝐽𝑖 transformation 

𝑑𝐽 - Constant of 𝐽𝑖 transformation 

𝐸𝑖 - Observations vector for MEWMA control chart  

𝐸𝑊𝑀𝐴𝑖 - Plotting statistic of classical EWMA control chart 

𝐸𝑊𝑀𝐴𝐹𝑖 - Plotting statistic of  EWMAF control charts 

𝐸𝑊𝑀𝐴𝑇𝑖 - Plotting statistic of the EWMAT control chart 

EWMAU𝑖 - Statistic for MaxEWMA control chart 

EWMAV𝑖 - Statistic for MaxEWMA control chart 

EWMADU𝑖 - Statistic for MaxDEWMA control chart 

EWMADV𝑖 - Statistic for MaxDEWMA control chart 

EQLbest chart  - EQL of the best performing control chart 

𝐹𝑖 - Represents 𝑇𝑖,  𝐽𝑖, and  𝑉𝑖 tranformations 

h - Control limit coefficient of classical CUSUM control 

chart  

H - UCL of classical CUSUM control chart  

hF - Control limit coefficient of CUSUMF control charts 

HF - UCL of CUSUMF control charts 

hT - Control limit coefficient of CUSUMT control chart 

HT - UCL of CUSUMT control chart 

HMaxCUSUM - UCL of Max CUSUM control chart 

HMC - UCL of MCUSUM control chart 

HME - UCL of MEWMA control chart 

h
ACUSUMC

(1)  - Control limit coefficient of ACUSUMC
(1)

control chart  

H
ACUSUMC

(1) - UCL of ACUSUMC
(1)

control chart 

h
ACUSUMC

(2)  - Control limit coefficient of  ACUSUMC
(2)

control chart  

H
ACUSUMC

(2) - UCL of ACUSUMC
(2)

control chart 

 hCMEC - Control limit coefficient of CMEC control chart  

𝐻𝐶𝑀𝐸𝐶𝑖 - Time-varying control limit of CMEC control chart 



 

 

xxix 

 

 hCMDEC - Control limit coefficient of CMDEC control chart  

𝐻𝐶𝑀𝐷𝐸𝐶𝑖 - Time-varying control limit of CMDEC control chart 

HMC(1) - UCL of the MC(1) control chart 

HMCPC(1) - UCL of MCPC(1) control chart 

HMCE(1) - UCL of MCE(1) control chart 

hMCE(2) - Control limit coefficient of MCE(2) control chart  

𝐽𝑖 - Four-parameters logarithmic transformation 

𝐾/𝑘 - Constants of classical CUSUM control chart  

𝐾1/𝑘1 - Constant of CUSUMF control charts 

𝐾2/𝑘2 - Constant of Max CUSUM control chart 

𝑘3 - Constant of CMEC control chart 

𝐾3𝑖 - Time-varying parameter of CMEC control chart 

𝑘4 - Constant of CMDEC control chart 

𝐾4𝑖 - Time-varying parameter of CMDEC control chart 

𝐾𝑚/𝑘𝑚 - Constant of MCUSUM, MC(1), MCPC(1), and MCE(2) 

control charts  

L - Control limit coefficient of classical EWMA control chart  

LF - Control limit coefficient of EWMAF control charts 

LT - Control limit coefficient of EWMAT control chart 

LMaxEWMA - Control limit coefficient of MaxEWMA control charts 

LMaxDEWMA - Control limit coefficient of MaxDEWMA control charts 

LMCEF - Control limit coefficient of  MCEF control charts 

LMCET - Control limit coefficient of MCET control chart 

LMCEJ - Control limit coefficient of MCEJ control chart 

LMCEV - Control limit coefficient of MCEV control chart 

L
AEWMAC

(1) - Control limit coefficient of AEWMAC
(1)

 control chart  

L
AEWMAC

(2) - Control limit coefficient of AEWMAC
(2)

 control chart 

L
AEWMAFC

(1) - Control limit coefficient of AEWMAFC
(1)

 control chart 

L
AEWMATC

(1) - Control limit coefficient of AEWMATC
(1)

 control chart 

L
AEWMAJC

(1) - Control limit coefficient of AEWMAJC
(1)

 control chart 

L
AEWMAFC

(2) - Control limit coefficient of AEWMAFC
(2)

 control chart 



 

 

xxx 

 

L
AEWMATC

(2) - Control limit coefficient of AEWMATC
(2)

 control chart 

L
AEWMAJC

(2) - Control limit coefficient of AEWMAJC
(2)

 control chart 

L
AEWMAFE

(1) - Control limit coefficient of AEWMAFE
(1)

 control chart 

L
AEWMATE

(1) - Control limit coefficient of AEWMATE
(1)

 control chart 

L
AEWMAJE

(1) - Control limit coefficient of AEWMAJE
(1)

 control chart 

L
AEWMAVE

(1) - Control limit coefficient of AEWMAVE
(1)

 control chart 

L
AEWMAFE

(2) - Control limit coefficient of AEWMAFE
(2)

 control chart 

L
AEWMATE

(2) - Control limit coefficient of AEWMATE
(2)

 control chart 

L
AEWMAJE

(2) - Control limit coefficient of AEWMAJE
(2)

 control chart 

L
AEWMAVE

(2) - Control limit coefficient of AEWMAVE
(2)

 control chart 

𝐿𝐶𝐿EWMA𝑖 - Time-varying LCL of classical EWMA control chart 

𝐿𝐶𝐿EWMAF𝑖 - Time-varying LCL of EWMAF control chart 

𝐿𝐶𝐿EWMA - Constant LCL of classical EWMA control chart 

𝐿𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑐𝑖

(1)  - Time-varying LCL of AEWMAC
(1)

 control chart 

𝐿𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑐𝑖

(2)  - Time-varying LCL of AEWMAC
(2)

 control chart  

𝐿𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐹𝑐𝑖

(1) - Time-varying LCL of AEWMAFC
(1)

 control chart 

𝐿𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑇𝑐𝑖

(1) - Time-varying LCL of AEWMATC
(1)

 control chart 

𝐿𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐽𝑐𝑖

(1)  - Time-varying LCL of AEWMAJC
(1)

 control chart 

𝐿𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐹𝑐𝑖

(2) - Time-varying LCL of AEWMAFC
(2)

 control chart 

𝐿𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐹𝐸𝑖

(1) - Time-varying LCL of AEWMAFE
(1)

 control chart 

𝐿𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑇𝐸𝑖

(1) - Time-varying LCL of AEWMATE
(1)

 control chart 

𝐿𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐽𝐸𝑖

(1)  - Time-varying LCL of AEWMAJE
(1)

 control chart 

𝐿𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑉𝐸𝑖

(1) - Time-varying LCL of AEWMAVE
(1)

 control chart 

𝐿𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐹𝐸𝑖

(2) - Time-varying LCL of AEWMAFE
(2)

 control chart 

𝐿𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑇𝐸𝑖

(2) - Time-varying LCL of AEWMATE
(2)

 control chart 

𝐿𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐽𝐸𝑖

(2)  - Time-varying LCL of AEWMAJE
(2)

 control chart 



 

 

xxxi 

 

𝐿𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑉𝐸𝑖

(2) - Time-varying LCL of AEWMAVE
(2)

 control chart 

𝑀𝑎𝑥𝐶𝑈𝑆𝑈𝑀𝑖 - Plotting statistic of Max CUSUM control chart 

𝑀𝑎𝑥𝐸𝑊𝑀𝐴𝑖 - Plotting statistic of MaxEWMA control chart 

𝑀𝑎𝑥𝐷𝐸𝑊𝑀𝐴𝑖  - Plotting statistic of MaxDEWMA control chart 

MC(1) - MCUSUM control chart 

𝑀𝐶𝑖 - Plotting statistic of MCUSUM control chart 

𝑀𝐶𝑖
(1)

 - Plotting statistic of MC(1) control chart 

𝑀𝐶𝐸𝑖
(2)

 - Plotting statistic of MCE(2) control chart 

𝑀𝐶𝐸𝑖
(1)

 - Plotting statistic of MCE(1) control chart 

𝑀𝐶𝐸𝐹𝑖
± - Plotting statistics of MCEF control charts 

𝑀𝐶𝐸𝑇𝑖
± - Plotting statistics of MCET control chart 

𝑀𝐶𝐸𝐽𝑖
± - Plotting statistics of MCEJ control chart 

𝑀𝐶𝐸𝑉𝑖
± - Plotting statistics of MCEV control chart 

𝑀𝐸𝑖 - Plotting statistic of MEWMA control chart  

𝑀𝐶𝑃𝐶𝑖
(1)

 - Plotting  statistic of MCPC(1) control chart 

𝑃𝐶𝐴𝑐𝑖 - Input statistic of MCPC(1) control chart 

𝑃𝐶𝐴𝑖
2 - Plotting statistic of PC-chart  

𝑆𝑖 - Observations vector of MCUSUM control chart 

S2-EWMA - EWMA control chart for process dispersion 

𝑇𝑖 - Tranformation for a process dispersion 

𝑇𝐻𝑖
2  - Plotting statistic of Hotelling’s 𝑇2 control chart 

𝑈𝐶𝐿EWMA𝑖 - Time-varying UCL of classical EWMA control chart 

𝑈𝐶𝐿EWMAF𝑖 - Time-varying UCL of EWMAF control chart 

𝑈𝐶𝐿EWMAT𝑖 - Time-varying UCL of EWMAF control chart 

𝑈𝐶𝐿EWMA - Constant UCL of classical EWMA control chart 

𝑈𝐶𝐿𝑀𝑎𝑥𝐸𝑊𝑀𝐴𝑖 - Time-varying UCL of MaxEWMA control chart 

𝑈𝐶𝐿𝑀𝑎𝑥𝐷𝐸𝑊𝑀𝐴𝑖 - Time-varying UCL of MaxDEWMA control chart 

𝑈𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑐𝑖

(1) - Time-varying UCL of AEWMAC
(1)

 control chart  

𝑈𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑐𝑖

(2) - Time-varying UCL of AEWMAC
(2)

 control chart  

𝑈𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐹𝑐𝑖

(1) - Time-varying UCL of AEWMAFC
(1)

 control chart  



 

 

xxxii 

 

𝑈𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑇𝑐𝑖

(1) - Time-varying UCL of AEWMATC
(1)

 control chart  

𝑈𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐽𝑐𝑖

(1)  - Time-varying UCL of AEWMAJC
(1)

 control chart  

𝑈𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐹𝑐𝑖

(2) - Time-varying UCL of AEWMAFC
(2)

 control chart  

𝑈𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑇𝑐𝑖

(2) - Time-varying UCL of AEWMATC
(2)

 control chart  

𝑈𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐽𝑐𝑖

(2)  - Time-varying UCL of AEWMAJC
(2)

 control chart  

𝑈𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐹𝐸𝑖

(1) - Time-varying UCL of AEWMAFE
(1)

 control chart  

𝑈𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑇𝐸𝑖

(1) - Time-varying UCL of AEWMATE
(1)

 control chart  

𝑈𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐽𝐸𝑖

(1)  - Time-varying UCL of AEWMAJE
(1)

 control chart  

𝑈𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑉𝐸𝑖

(1) - Time-varying UCL of AEWMAVE
(1)

 control chart  

𝑈𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐹𝐸𝑖

(2) - Time-varying UCL of AEWMAFE
(2)

 control chart  

𝑈𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑇𝐸𝑖

(2) - Time-varying UCL of AEWMATE
(2)

 control chart  

𝑈𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝐽𝐸𝑖

(2)  - Time-varying UCL of AEWMAJE
(2)

 control chart  

𝑈𝐶𝐿
𝐴𝐸𝑊𝑀𝐴𝑉𝐸𝑖

(2) - Time-varying UCL of AEWMAVE
(2)

 control chart  

𝑈𝐶𝐿𝑀𝐶𝐸(2)𝑖 - Time-varying UCL of MCE(2) control chart 

UCLT2 - Control limit of Hotelling’s 𝑇2 control chart 

UCLPCA - Control limit of PC-chart 

𝑈𝑖 - Transformation for a process location  

𝑉𝑖 - Transformation for a process dispersion 

𝑤1(𝑒1𝑖) - Proposed time-varying parameter for  AEWMAC
(1)

 and  

ACUSUMC
(1)

control charts 

𝑤2(𝑒1𝑖) - Proposed time-varying parameter for  AEWMAC
(2)

 and  

ACUSUMC
(2)

control charts 

𝑤1(𝑒2𝑖) - Proposed time-varying parameter for AEWMAFC
(1)

 

(AEWMATC
(1)

 and AEWMAJC
(1)

) control charts 

𝑤2(𝑒2𝑖) - Proposed time-varying parameter for AEWMAFC
(2)

 

(AEWMATC
(2)

 and AEWMAJC
(2)

) control charts 

𝑤1(𝑒3𝑖) - Proposed time-varying parameter for AEWMAFE
(1)

 



 

 

xxxiii 

 

(AEWMATE
(1), AEWMAJE

(1)
, and AEWMAVE

(1)
)  control 

charts 

𝑤2(𝑒3𝑖) - Proposed time-varying parameter for AEWMAFE
(2)

  

(AEWMATE
(2), AEWMAJE

(2)
, and AEWMAVE

(2)
)  control 

charts 

𝑦𝑝𝑖 - PC of 𝑋𝑖 

𝑌𝑝𝑖 - PC of 𝐶𝑖
1 

Z𝑖 - Input observations vector of MCE(1) control chart  



 

 

xxxiv 

 

LIST OF SYMBOLS 

𝑑𝐹(𝛿)/𝑑𝛿 - Integral for operation of shift  

𝑑(𝜇(1)𝑋) - Non-centrality parameter  

𝑒𝑖, 𝑒1𝑖, 𝑒2𝑖 , and 𝑒3𝑖 - Error  

𝐹(𝛿) - CDF of shifts 

𝑖𝑡ℎ - 𝑖𝑡ℎ observation 

𝑗𝑡ℎ - 𝑗𝑡ℎ observation of 𝑖𝑡ℎ sample of size 𝑛  

𝑛 - Sample size 

𝑛𝑖 - Time-varying 𝑖𝑡ℎ sample size 

𝑝 - Number of variables  

𝑣 - Degree of freedom 

𝑥𝑖𝑗 - Variable of interest 

𝑥̅𝑖 - Sample mean of ith observation  

𝑋𝑖 - Random observations vector  

𝑋̅ - X-bar control chart  

𝜇𝐹 - Mean of 𝐹𝑖 transformation 

𝜇𝑇 - Mean of 𝑇𝑖 transformation 

𝜇𝐽 - Mean of 𝐽𝑖 transformation 

𝜎𝐹
2 - Variance of 𝐹𝑖 transformation 

𝜎𝑇
2 - Variance of 𝑇𝑖 transformation 

𝜎𝐽
2 - Variance of 𝐽𝑖 transformation 

𝛷−1(. ) - Inverse function of 𝛷(. ) 

𝜆 - Constant of classical EWMA control chart 

 𝛾 - Constant of score functions  

𝛾(𝑡) - Eigenvalues of Σ 

𝜒(.)
2  - Chi-square distribution 

𝜇0 - In-control mean  

𝜇𝑋 - In-control mean vector 

𝜇𝐶𝑈𝑆𝑈𝑀𝐹𝑖  - Mean of 𝐶𝑈𝑆𝑈𝑀𝐹𝑖
± statistics by empirical method 

𝜇𝐶𝑈𝑆𝑈𝑀𝑇𝑖 - Mean of 𝐶𝑈𝑆𝑈𝑀𝑇𝑖
± statistics by empirical method 



 

 

xxxv 

 

𝜇𝐶𝑈𝑆𝑈𝑀𝐽𝑖  - Mean of 𝐶𝑈𝑆𝑈𝑀𝐽𝑖
± statistics by empirical method  

𝜇𝐶𝑈𝑆𝑈𝑀𝑉𝑖  - Mean of 𝐶𝑈𝑆𝑈𝑀𝑉𝑖
± statistics by empirical method 

𝜇𝑀𝐶𝑃𝐶(1) - Mean of 𝑀𝐶𝑃𝐶𝑖
(1)

 statistic by empirical method 

𝜇𝑆 - Mean vector of 𝑆𝑖 by empirical method  

𝜇𝑉 - Mean of 𝑉𝑖 transformation by empirical method 

𝜎0
2 - In-control variance  

Σ - Variance-covariance matrix of 𝑋𝑖 

𝜎𝐶𝑈𝑆𝑈𝑀𝐹𝑖
2  - Variance of 𝐶𝑈𝑆𝑈𝑀𝐹𝑖

±  statistics by empirical method 

𝜎𝐶𝑈𝑆𝑈𝑀𝑇𝑖
2  - Variance of 𝐶𝑈𝑆𝑈𝑀𝑇𝑖

±  statistics by empirical method 

𝜎𝐶𝑈𝑆𝑈𝑀𝐽𝑖
2  - Variance of 𝐶𝑈𝑆𝑈𝑀𝐽𝑖

±  statistics by empirical method 

𝜎𝐶𝑈𝑆𝑈𝑀𝑉𝑖
2  - Variance of 𝐶𝑈𝑆𝑈𝑀𝑉𝑖

± statistics by empirical method 

𝜎𝐹  - Variance of 𝐹𝑖 transformation by empirical method 

𝜎𝑇 - Variance of 𝑇𝑖 transformation by empirical method 

𝜎𝐽 - Variance of 𝐽𝑖 transformation by empirical method 

𝜎EWMAU𝑖 - Standard deviation of EWMAU𝑖 statistic by empirical 

method 

𝜎EWMADU𝑖 - Standard deviation of  EWMADU𝑖 statistic by empirical 

method 

𝜎EWMAV𝑖 - Standard deviation of EWMAV𝑖 statistic by empirical 

method 

𝜎EWMADV𝑖 - Standard deviation of EWMADV𝑖 statistic by empirical 

method 

𝜎𝑀𝐶𝑃𝐶(1) - Standard deviationof 𝑀𝐶𝑃𝐶𝑖
(1)

statistic  by empirical 

method 

Σ𝑆 - Variance co-variance matrix of 𝑆𝑖 

Σ𝑍 - Variance co-variance matrix based on Σ𝑆 and 𝜆 

Σ𝐸 - Variance co-variance matrix of 𝐸𝑖  

𝑁(𝜇0, 𝜎0
2) - Normal distributed 

𝑁(𝜇𝑋 , Σ) - Multivariate normal distribution  

𝜇1 - Represents an out-of-control value of 𝜇0 

𝛿 - Shift occurs in the process location 

𝛿𝑚𝑎𝑥 - Maximum shift 



 

 

xxxvi 

 

𝛿𝑚𝑖𝑛 - Minimum shift 

𝛿∗ - Shift occurs in the process dispersion 

𝜎𝐸𝑊𝑀𝐴
2  - Variance of 𝐸𝑊𝑀𝐴𝑖 statistic 

∅1() - Huber function 

∅2() - Bi-square function 

 



 

 

1 

 

CHAPTER 1  

INTRODUCTION 

1.1 Background of Problems 

Product quality, price effectiveness, and public services are the important 

aspects to attract the clients and customers. Consequently, to contest in the market, 

companies focus to serve cost-effective and high-quality products. Product quality is 

a valuable part that improves a company’s revenue and repute, and it is determined by 

the product characteristics (also known as the variable(s) of interest). Therefore, a 

company is motivated to produce such a product, which meets a specified quality 

standard. To achieve a product according to the specified quality standard, we 

generally minimize the source(s) of variations. The sources are categorized as a 

random cause and special cause of variations. The random cause variations, also 

known as natural variations, are considered an integral part of a process and cannot be 

eliminated completely. A process is declared statistically in-control if it operates under 

random cause variations. In contrast, special cause variations may appear due to 

several reasons such as improper adjustment of tools, operators’ errors, improper 

adjustment of the machine, and defective raw material. In brief, special cause 

variations are not assumed natural part of a process and a process governed by these 

variations is stated as statistically out-of-control. However, an effective action towards 

eliminating the special cause of variations results into process in-control state. The 

intensity of the special cause variations occurring in a process parameter (location 

and/or dispersion) is quantified in terms of a shift. 

Statistical process control (SPC) tools consist of control chart, cause and effect 

diagram, the histogram of stem-and-leaf plot, check sheet, Pareto chart, scatter 

diagram, and defect concentration diagram are famous to achieve the stability in the 

output of the process parameters by eliminating or identifying the shift  (Montgomery, 

2012). Among these tools, quality control charts are most valuable tools to distinguish 
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a shift in the process parameters. The control chart is a graphical display to diagnose a 

shift in process parameters. The design structure of the classical control chart contains 

of centre line (CL), upper control limit (UCL), and lower control limit (LCL). As long 

as, the plotting statistic remains inside UCL and LCL, a process is known as in-control. 

In the continuity, classical control charts include of Shewhart-type control 

charts, proposed by Shewhart (1931); cumulative sum (CUSUM) control chart, 

recommended by Page (1954); and exponentially weighted moving average (EWMA) 

control chart, recommended by Roberts (1959). To diagnose a large-size shifts 

effectively, the Shewhart-type control charts are famous and also recognized as 

memory-less control charts. These control charts utilize only present sample 

information, therefore, they performed effective to diagnose larger-size shift, but at the 

same time, less sensitive for small-to-moderate size shifts (Montgomery, 2012). On 

the other hand, the classical EWMA and CUSUM control charts are recognized as 

memory control charts. In these control charts, we integrate both present and past 

sample information to compute the plotting statistic which makes them more efficient 

to diagnose small-to-moderate shifts. Since the classical quality control charts 

introduced, several enhancements and modifications were recommended to improve 

the diagnose ability of control charts. The detection ability of a control chart can be 

evaluated by various performance procedures such as average run length (ARL). ARL 

is the average number of samples in-control until an out-of-control signal is triggered 

(Sanusi et al., 2018). 

1.2 Memory Control Charts 

Many researchers, quality engineers, and practitioners introduced 

modifications and enhancements in the basic structures of classical memory control 

charts (Page, 1954; Roberts, 1959) by taking into account several circumstances and 

suitable conditions of a real-life process. For instance, Lucas (1982) designed a 

combined Shewhart-CUSUM control chart to identify different sizes of shifts. 

Likewise, for simultaneous monitoring of the process parameters, Chen et al. (2001) 

suggested maximum EWMA (MaxEWMA) control chart. Capizzi & Masarotto (2003) 

developed adaptive EWMA (AEWMA) control charts using score (Huber and Bi-
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square) functions and the classical EWMA statistic, denoted as AEWMAE control 

charts. The AEWMAE control charts structures consist of time-varying parameters 

instead of constant parameters. Due to time-varying parameters features, AEWMAE 

control charts are useful to discover different sizes of shifts in the process location. 

Also, these control charts are helpful to handle the inertia issue. Similarly, Jiang et al. 

(2008) designed an adaptive CUSUM (ACUSUM) scheme using Huber function and 

classical EWMA statistic, named as ACUSUME control chart. Like AEWMAE control 

charts, the ACUSUME control chart time-varying parameter also helps to diagnose 

different sizes of shifts. For simultaneous process parameters monitoring, Chen et al. 

(2001) designed a single MaxEWMA scheme. An output statistic of MaxEWMA 

control chart is the maximum value (magnitude) of the plotting statistics of EWMA 

for location and dispersion. 

The MaxEWMA control chart performed well against the combination of 𝑋̅ (x-

bar) and S schemes to distinguish a shift that occurs either in process location or 

dispersion. Khoo et al. (2010) redesigned the idea of Chen et al. (2001) to maximum 

double EWMA, called as MaxDEWMA control chart. The output statistic of the 

MaxEWMA control chart is used as input for the conventional EWMA control chart.  

The MaxDEWMA control chart utilized the maximum value of either conventional 

EWMA control chart for process location or dispersion. Besides, the MaxDEWMA 

control chart handles the variable sample size (VSS) problem. Zhang et al. (2012) 

recommended and offered an adaptive control chart. They integrated the statistics of 

generalized likelihood ratio test and the conventional EWMA scheme. Abbas et al. 

(2013b) designed mixed EWMA-CUSUM, named as MEC control chart for the 

process location. The MEC scheme methodology uses mixed technique of the classical 

memory control charts. The output statistic of the conventional EWMA control chart 

is used as an input statistic for the traditional CUSUM control chart. The MEC control 

chart is effective to identify small shifts. Later, Abbas et al. (2013a) expanded the 

concept of the MEC control chart from the process location to process dispersion. 

Later, Zaman et al. (2015) contributed a mixed idea of CUSUM-EWMA (MCE) 

control chart to monitor the process location. It is worthy to mention, the MCE control 

chart is an inverse version of the MEC control chart which is designed by Abbas et al. 

(2013b). Therefore, the MCE control chart used plotting statistics of the classical 



 

 

4 

 

CUSUM control chart as an input for the classical EWMA schemes. The MCE control 

chart is effective to distinguish small shifts in the process location against to some 

existing control charts.  The traditional CUSUM and EWMA control charts are special 

cases of MEC and MCE control charts when specific choices of parameters are 

considered. 

The above-mentioned control charts serve the purpose to monitor one or more 

related characteristics in independent manner. To monitor multi-related characteristics 

jointly, multivariate control charts were proposed, namely multivariate CUSUM 

(MCUSUM), Hotelling’s 𝑇2, and multivariate EWMA (MEWMA). Hotelling’s 𝑇2 

control chart proposed by Hotteling (1947) to identify large shifts in the process mean 

vector. Mainly, Hotelling’s 𝑇2 control chart is an extended form of 𝑋̅ (X-bar Shewhart-

type) control chart. In contrary, to diagnose small-to-moderate shifts in the process 

mean vector, Crosier (1988) and Pignatiello Jr & Runger (1990) suggested MCUSUM 

control charts. Similarly, Lowry et al. (1992) recommended the MEWMA control 

chart to identify small-to-moderate shifts in the process mean vector of multi-related 

characteristics. Recently, Ajadi & Riaz (2017) designed multivariate MEC control 

charts to handle the shift of the process location vector for multi-related characteristics. 

Classical and advanced memory control charts are famous and most valuable 

tools of SPC to handle small-to-moderate shifts in the process location parameter 

(Nazir et al., 2016). Besides the several advantages of the memory control charts, there 

are some rooms to improve or extend their methodologies. For example, procedures 

of AEWMAE and MCE schemes do not exist for monitoring dispersion parameter. In 

other words, the AEWMAE and MCE schemes are designed to handle only process 

location, but they can be designed to monitor a process dispersion, too. Similarly, the 

MCE scheme is utilized to monitor related characteristics separately instead of jointly. 

Similarly, MEC control charts efficiently identify a shift either in the process location 

or in the process location dispersion independently; they could be developed for 

simultaneous monitoring as well. Further details about their limitations are given in 

Section 1.3. 
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1.3 Problem Statement 

In light of the background of problems, the problem statement of this study is 

described as follows: 

i. A practitioner has an interest in the stability of both location and dispersion 

parameters (Abujiya et al., 2016). The AEWMAE and MCE control charts help 

to monitor the location parameter of a process. It is valuable to mention that 

the concept of the AEWMAE and MCE control charts are not explored to handle 

the process dispersion shift. 

ii. There is no explicit rule to choose an optimal value of reference parameter of 

classical EWMA control chart to detect a specific shift (Hawkins & Wu, 2014). 

Therefore, it does not guarantee that either the AEWMAE control charts detect 

the particular shifts or not in which practitioners are interested. 

iii. The MEC control charts are designed to identify a shift either in a process 

location or dispersion parameter independently (Abbas et al., 2013a, 2013b). 

Therefore, the MEC control charts are incapable to diaganose a shift 

simultaneously in the process parameters. 

iv. The MCE control chart is effective to handle a process location shift of multi-

related characteristics independently (Zaman et al., 2015), while quality 

engineers, researchers, and practitioners are often interested to monitor multi-

related characteristics jointly. The MCE control chart is effective to monitor a 

process location shift of multi-related characteristics independently (Zaman et 

al., 2015), while quality engineers , researchers, and practitioners are often 

interested to monitor multi-related characteristics jointly. 

v. The in-control ARL of multivariate control charts are expected to deviate from 

the intended level when variables are highly correlated (Montgomery, 2012). 

vi. In a multivariate control chart, a shift is distributed among process variables 

through Mahalanobis distance (MD) statistic. However, as 𝑝 increases, it 

becomes hard to find which of variables are the cause of out-of-control 

(Montgomery, 2012). 

vii. The MD statistic is based on the inverse of the variance-covariance matrix. The 

inverse of the variance-covariance matrix is misinterpreted when the variables 

of interest are highly correlated (Leys et al., 2018). 
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1.4 Motivation 

Many researchers have contributed to enhancing control chart’s performance 

(see Section 1.2), but these control charts perform effectively when certain ideal 

conditions are fulfilled. Therefore, the motivation of this work is to recommend control 

charts by considering the limitations of existing studies as mentioned in Section 1.3. 

These are based on the following points: 

i. To develop an adaptive EWMA control charts using the classical CUSUM 

statistic, named as AEWMAC control charts to monitor a particular shift in the 

process parameters. 

ii. Offering an adaptive CUSUM control charts utilizing the classical CUSUM 

statistic, named as ACUSUMC control charts to monitor a specific shift in the 

process location parameter.  

iii. Constructing AEWMAE and MCE control charts to identify a shift in the 

process dispersion parameter. 

iv. Introducing the MEC schemes to handle the shift jointly of the process 

parameters.  

v. Developing MCE control chart to monitor the shift in the process location 

vector of multiple quality characteristics. 

vi. To establish an advanced form of multivariate control charts for small-to-

moderate and as highly correlated variables to detect small shift timely. 

1.5 Research Questions 

Background of problem and problem statement along with the study 

motivation gave rise to the following research questions. 

i. How AEWMAC and ACUSUMC  control charts can diagnose various sizes of 

shift in the process location? 

ii. What significant gain can be accomplished when the AEWMAC  and AEWMAE 

control charts are constructed to distinguish a shift in the process dispersion? 

iii. What significant gain is achievable when the MCE control chart is extended to 

monitor a process dispersion shift? 
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iv. How MEC control charts can be developed to monitor a shift in the process 

parameters jointly to achieve significant performance? 

v. How the desired results can be achieved when MCE control chart is designed 

to monitor multi-related characteristics jointly for the process mean vector? 

vi. What are the reliable performance measures for the proposed control charts, 

and how these possibilities can be carried out for comparison purposes? 

vii. How the proposed control charts significantly gain outstanding performance 

against the existing counterparts for the same motivation? 

viii. What the application of proposed control charts is convenient for practitioners 

to monitor real-life processes? 

1.6 Research Objectives 

The objective of this research is to design new memory control charts for the 

adequate and optimal overall performance of the process parameters. Therefore, the 

following research goals based on problem statement and motivation have been 

outlined: 

i. To construct an adaptive EWMA control charts utilizing the optimal reference 

parameter of the conventional CUSUM control chart and score (Huber and Bi-

square) functions, namely AEWMAC control charts, to identify a certain range 

of shift in the process parameters. 

ii. To design an adaptive CUSUM control charts applying optimal reference 

parameter of the standard CUSUM control chart and score functions, denoted 

as ACUSUMC control charts, to diagnose various sizes of shift in the process 

location. 

iii. To develop AEWMAE and MCE schemes for the process dispersion. So, the 

practitioners, quality engineers, and researchers can benefit from the proposed 

control charts to keep the stability of process dispersion. 

iv. To design the MEC control chart to monitor a shift in the process parameters 

simultaneously. To reach this objective, the classical memory control charts 

structures are combined. 
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v. To propose multivariate MCE control charts to monitor the shift jointly in the 

process mean vector of multiple quality characteristics. To achieve this target, 

design structures of MCUSUM, MEWMA, and principal component analysis 

(PCA) control charts are used (Farokhnia & Niaki, 2019). 

1.7 Scope and Limitations of Study 

The scope of this study is categorized into three main aspects including 

theoretical, computational, and practical. Besides, limitations of the proposed study, 

score functions, and descriptions of real-life data also part of this section.  

i. Theoretical aspect 

This aspect describes the rationality of mathematical properties of the classical 

memory control charts. Further, it highlights the designing procedures of the proposed 

memory control charts based on mixed, adaptive, and simultaneous methods for the 

stability of the process parameters. Also, mathematical definitions and properties of 

performance evaluation measures to analyse the proposed control chart’s performance 

are also discussed. 

ii. Computational aspect 

To show the superiority of all proposed control charts against some other 

control charts, numerical results needed. Therefore, to carry out the computational 

procedure, the Monte Carlo simulation technique is utilized to calculate the run length 

(RL) properties for all proposed control charts. The algorithms for all proposed control 

charts are developed in MATLAB. Besides, graphical techniques such as line plot, 

scatter plot, and dot plot are also used to compare control charts performances. 

iii. Practical aspect 

Besides the numerical and graphical comparison of the proposed control charts 

against some of the existing counterparts, the proposed control charts are also 

implemented on real-life data to illustrate procedural details to quality engineers, 

researchers, and practitioners. This research considered real-life data sets from 

manufacturing, banking sector, and meteorological industries. 

iv. Limitations 
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This study also has some limitations which are associated with the proposed 

control charts constraints, parameters, sample size, designed structures, behavior of 

interested characteristics, and sampling methods. So, any deviances in these strongly 

influence the findings, analysis, and interpretations. For example, constraints and 

parameter values rather than that will increase or decrease the out-of-control ARL. 

Besides, sample techniques such as simple random sampling (SRS) plays a vital role 

to enhance their performance of the study instead of others. Similarly, the proposed 

study provides efficient results if characteristics of interest follow a normal 

distribution. Correspondingly, the designed structures of the proposed study only 

served the listed objectives in the light of background of problems and problem 

statement. 

v. Score functions  

The score functions such as Huber and Bi-square functions (Capizzi & 

Masarotto, 2003) are famous among the quality engineers, practitioners, and 

researchers because of their ability to detect different sizes of a shift in the process 

parameters effectively as compare to others. The Huber and Bi-square functions enable 

the parameters of memory control charts as as a time-varying via self-adjustment to 

react according to the nature of a process parameter shifts.  

vi. Real-life data 

The proposed univariate and multivariate control charts are implemented with 

real-life data sets to show practical aspects. For example, the real-life data from 

banking sector such as cost of processing mortgage loan application fee and thickness 

of a metal layer on silicon wafers, diameter of cylinder bores, real-life data of wafers, 

parts manufactured by an injection molding process, and inside diameter of cylinder 

bores in an engine block from manufacturing are considered for proposed univariate 

control charts. Similarly, average wind speed data for every ten minutes generated at 

10m (meters), 20m, 30m, and 40m above the ground levels is used for multivariate 

proposed control charts.  
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1.8 Significance of Research  

The occurrence of new quality issues and concerns in the different industrial 

setups such as manufacturing is a continuous process. However, the implementation 

of the traditional control charts may not resolve all the issues perfectly. Therefore, 

quality engineers, researchers, and practitioners continue to search for more enhanced 

control charts that provide stability for the process parameters. Hence, the goal of this 

research is to propose advanced memory control charts that can be beneficial to 

improve the process efficiency against existing control charts. 

1.9 Structure of the Thesis  

This thesis includes seven chapters. A short introduction of every chapter is 

reviewed as follows: 

Chapter 1 describes the general introduction of SPC control charts. The 

background of problems, problem statement, motivation, research questions, and 

research goals are explained in this chapter. It also presents the scope of the study, the 

significance of the research, and structure of the thesis. 

Chapter 2 offers a broad and thoroughly review of the literature on related 

topics and concepts. Previous review work on modified and enhanced memory control 

charts for the process parameters are also discussed. This chapter also explains review 

work on multivariate control charts, the role of mixed, adaptive, and simultaneously 

methods in control charts to monitor the process parameters. 

Chapter 3 is focused on the research methodology. It introduces the classical 

memory-less and memory control charts for the process parameters monitoring. It also 

includes multivariate control charts for the process mean vector. Performance 

evaluation measures such as extra quadratic loss (EQL), performance comparison 

index (PCI), average run length (ARL), standard deviation of run-length (SDRL), and 
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relative average run length (RARL) measures are also part of this chapter. Lastly, score 

functions such as Huber and Bi-square methodologies are also described. 

Chapter 4 is about the proposed memory control charts research 

methodologies. It explains the structures of the suggested AEWMAC and ACUSUMC 

control charts to handle the process location shift. Likewise, it also defines the 

proposed AEWMAC and AEWMAE control charts to handle a shift in the process 

dispersion. Furthermore, it provides the research methodologies of the proposed MEC 

control charts for simultaneous monitoring of the process parameters. The MCE 

control charts to handle the shifts in the process dispersion of a single variable, and to 

handle the shifts of the  process mean vector are also part of it. Finally, some existing 

control charts for some specific values of parameters/constants became special cases 

of the proposed control charts also part of this chapter. 

Based on results, Chapters 5 deals with performance evaluation of the proposed 

control charts versus other control charts. It contains the comparative analysis of 

control charts to diagnose shifts in the process parameters. Numerical results and 

graphical presentations are used to measure the effectiveness of control charts. The 

efficiency of the control charts is judged based on a single shift and a certain range of 

shifts as well. 

Chapter 6 describes the real-life data sets. It also contains the applications of 

the proposed and other control charts using industrial data for comparison purposes. 

Finally, Chapter 7 concludes the study with research findings followed by 

summarizing thesis contributions and recommendations for future research. 
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