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ABSTRACT 

Arsenic contamination in soil is a serious problem as the toxic metalloid 

impacts both environmental and public health. Phytoremediation is an environmental 

friendly method that can be applied to remediate the arsenic-contaminated soil. 

Arsenic is a non-essential element and it is generally toxic to plants. The efficiency 

of plant arsenic uptake is usually low as most soils contain inorganic arsenic in the 

form of stable arsenate. Bacterial association with the plant can improve plant growth 

and arsenic uptake. Therefore, this project aimed to investigate the efficiency of a 

local plant Melastoma malabathricum L. incorporated with an arsenate-reducing 

bacterium Microbacterium foliorum strain SZ1 in arsenic phytoremediation. The 

effects of M. foliorum SZ1 inoculation on the soil bacterial community and the 

arsenic-exposed M. malabathricum L. leaf proteins expression were also studied. A 

two-month experiment was conducted at the greenhouse using M. malabathricum L. 

treated with four arsenic concentrations (0, 10, 30 and 50 ppm), inoculated or 

uninoculated with M. foliorum SZ1. Plant dry weight, root length and shoot length 

were measured as growth assessment. Arsenic contents in soil and plant tissues (roots 

and shoots) were quantified using inductively coupled plasma-optical emission 

spectrometry (ICP-OES). Illumina MiSeq 16S rRNA was applied to determine the 

total soil bacterial composition. Leaf proteins were separated by sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and identified by liquid 

chromatography-mass spectrometry (LC-MS). At the end of the treatment, plant’s 

survival was only observed in the uninoculated 0 ppm treatment and all 50 ppm 

treatments. The 50 ppm-treated plants showed a significantly higher plant dry weight 

than the respective inoculated 0, 10 and 30 ppm plants by 115%, 80%, and 77%. Soil 

arsenic concentration of the inoculated 30 ppm treatment was 7.7% and 23.6% 

higher than the uninoculated 50 ppm and inoculated 50 ppm soils, respectively. The 

bioconcentration factor of M. malabathricum L. in 50 ppm arsenic was more than 1, 

suggesting the plant’s ability in arsenic phytoextraction. Establishment of M. 

foliorum SZ1 in soil was not observed. M. foliorum SZ1 may have increased the 

abundance of its order Micrococcales in the 50 ppm arsenic-contaminated soil. 

However, the effect of inoculation on the soil was not as prominent as the arsenic 

toxicity. All survived plants expressed proteins that mainly involved in cellular 

respiration and energy metabolism. Arsenic treatment increased the leaf protein 

expression by almost 3-fold. Plant defense against the toxicity was determined by the 

discovered ROS-scavenging enzymes such as peroxidases, glutathione-S-transferase, 

2-cysteine peroxiredoxin and catalase. This project assesses the efficiency of local 

plant-bacteria association in remediating arsenic-contaminated soil and provides 

information on the soil indigenous community and plant physiology. The presented 

data can be used as a reference to optimize the application of bacteria-assisted 

phytoremediation technique in future. 
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ABSTRAK 

Pencemaran arsenik pada tanah merupakan masalah yang serius kerana 

metaloid toksik ini mampu menjejaskan alam sekitar dan kesihatan awam. 

Fitopemulihan merupakan kaedah yang mesra alam dan boleh digunakan untuk 

merawat tanah tercemar arsenik. Arsenik ialah elemen tidak perlu dan beracun. 

Kecekapan tumbuhan dalam penyerapan arsenik adalah rendah memandangkan 

kebanyakan tanah mengandungi arsenik tak organik dalam bentuk arsenat yang stabil. 

Penyekutuan bakteria dengan tumbuhan mampu meningkatkan kadar pertumbuhan 

dan pengambilan arsenik. Justeru, tujuan projek ini adalah untuk menyelidik 

kecekapan penyekutuan pokok tempatan Melastoma malabathricum L. dan bakteria 

penurunan arsenat, Microbacterium foliorum SZ1 dalam fitopemulihan arsenik. 

Seterusnya, projek ini mengkaji kesan inokulasi M. foliorum SZ1 terhadap komuniti 

bakteria tanah dan pengekspresan protein dalam daun M. malabathricum L. yang 

terdedah kepada arsenik. Kajian telah dijalankan dalam rumah hijau selama dua 

bulan dengan M. malabathricum L. yang dirawat pada 4 kepekatan arsenik (0, 10, 30 

dan 50 ppm) dan inokulasi M. foliorum SZ1. Berat kering pokok, ukuran pucuk dan 

akar telah ditentukan sebagai penilaian tumbesaran pokok. Kuantiti kandungan 

arsenik dalam tanah dan tisu pokok (pucuk dan akar) telah dinyatakan menggunakan 

spektroskopi pelepasan optik plasma (ICP-OES). Illumina MiSeq 16S rRNA 

digunakan untuk mengkaji komposisi keseluruhan bakteria dalam tanah. Protein 

daun telah dipisahkan oleh sodium dodesil sulfate-gel elektroforesis poliakrilamida 

(SDS-PAGE) dan dikenal pasti oleh kromatografi cecair-spektrometri jisim (LC-MS). 

Keputusan menunjukkan kelangsungan hidup pokok bagi rawatan 0 ppm (tanpa 

inokulasi) dan semua rawatan arsenik 50 ppm. Berat kering pokok dirawat 50 ppm 

arsenik nyata sekali ganda lebih daripada pokok dirawat 0, 10 dan 30 ppm 

(diinokulasi) sebanyak 115%, 80% dan 77%. Kepekatan arsenik dalam tanah rawatan 

30 ppm pula nyata sekali ganda lebih daripada tanah dirawat 50 ppm arsenik (tanpa 

inokulasi) sebanyak 7.7% dan 50 ppm (diinokulasi) sebanyak 23.6%. Faktor 

biokonsentrasi M. malabathricum L. yang dirawat 50 ppm arsenik adalah lebih 

daripada 1 dan kemampuan pokok dalam fitoekstraksi telah dicadangkan. 

Pembentukan M. foliorum SZ1 dalam tanah tidak dapat diperhatikan. M. foliorum 

SZ1 mungkin telah meningkatkan kelimpahan ordernya Micrococcales dalam tanah 

rawatan 50 ppm arsenik. Namun, kesan inokulasi pada tanah adalah tidak ketara 

seperti kesan ketoksikan arsenik. Semua pokok yang masih hidup mengekspresikan 

protein terutamanya melibatkan dalam proses pernafasan selular dan metabolisma 

tenaga. Rawatan arsenik telah meningkatkan pengekspresan protein daun sebanyak 

tiga kali ganda. Kemampuan pokok dalam toleransi arsenik telah didapati dengan 

penemuan enzim terlibat dalam peneutralan kesan spesis oksigen reaktif seperti 

peroksidase, glutation-S-transferase, 2-sistein-peroksiredoksin dan katalase. Projek 

ini telah menilai kecekapan gabungan pokok tempatan dengan bakteria untuk 

merawat tanah tercemar arsenik dan memberikan maklumat tentang komuniti asli 

bakteria dan fisiologi tumbuhan. Data yang ditunjukkan boleh digunakan sebagai 

rujukan untuk mengoptimumkan aplikasi teknik fitopemulihan dibantu bakteria. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Arsenic is known as a toxic metalloid to all forms of life. It ranks first in the 

Agency for Toxic Substances and Disease Registry (ATSDR) Substance Priority List 

due to its high frequency, toxicity and potential for human exposure (ATSDR, 2019). 

Excessive uptake of arsenic by living organisms usually lead to poisoning as it is a 

non-biologically essential element. Both bioaccumulation and biotransformation of 

arsenic induce oxidative stress in the cellular systems by creating imbalances 

between reactive oxygen species (ROS) and antioxidants (Jomova et al., 2011). The 

equilibrium between ROS production and scavenging determines whether they 

would serve as signaling molecules or cause cellular oxidative inflammation 

(Venditti, Napolitano and Di Meo, 2015). Prolonged cellular damage by ROS 

implicates in the pathogenesis of cancer, cardiovascular diseases and possibly 

diabetes (Flora and Agrawal, 2017). 

Being the 20th most abundant element in the Earth’s crust, arsenic can be 

introduced into the environment in natural and anthropogenic ways. Generally, the 

metalloid presents an organic form and an inorganic form with oxidation states of +3 

and +5 (Mandal and Suzuki, 2002). Lakes, rivers, and groundwater contaminations 

of arsenic are the consequences of its solubility in water. The utilization of the 

contaminated water for irrigation and consumption cause arsenic exposure to living 

organisms. Due to the non-degradable state of arsenic, it is cycled through all 

environmental compartments continuously. The source of arsenic in the soil and 

water impacts the ecosystem health and reduce the available environmental resources 

(Chung, Yu and Hong, 2014). 
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Phytoremediation is a plant-based technology that utilizes plants’ natural 

abilities to transform and accumulate heavy metals in the surrounding soil and water 

environments. Several soil phytoremediation techniques such as phytoextraction, 

phytostabilization and phytovolatilization facilitate the contaminant removal (Ali, 

Khan and Anwar, 2013). A previous review drew the interest of the heavy metal 

remediation using plant-bacteria association (Glick, 2010). The integrated term 

bacteria-assisted phytoremediation (or phytobial-remediation) defines the 

involvement of bacteria with specific mechanisms such as facilitating the plant metal 

uptake and enhancing the plant vigor. Beneficial bacteria can have a synergistic 

relationship with the plant via three methods, including the attachment at the 

rhizosphere (rhizospheric), forming nodules on plant roots (nitrogen-fixing symbiotic) 

or colonizing in plant’s interior tissues (endophytic) (Glick, 2012). The 

multidiscipline bacteria-assisted phytoremediation technique also applies to soil 

arsenic mitigation (Ullah et al., 2015). 

Soil presents a complex ecosystem and potentially influences the survival and 

functionality of the inoculated bacteria. The heterogeneous environment 

accommodates various microorganisms, fungi, microscopic or macroscopic soil 

animals (Fan et al., 2018; Nielsen, Wall and Six, 2015). Effective establishment of 

plant-bacteria interaction is usually uncertain when in the field application due to 

competition between the inoculated bacteria and the indigenous soil microbial 

community and heavy metal toxicity. Contrastingly, the persistence of the inoculated 

bacteria in the soil may cause environmental concerns. The bacteria disturb the soil 

health and shift the composition of the microbial community (Płociniczak et al., 2020; 

Ambrosini, Souza and Passaglia, 2016). It is crucial to examine the effects of 

introducing foreign bacteria on the soil microbial content, hence providing more 

insights into the field application (Beans, 2017). 

Hyperaccumulator describes the heavy metal-resistant plants with the ability 

to actively uptake and accumulates 100 to 1000 fold higher heavy metals in shoots 

than non-hyperaccumulator plants (Muszyńska and Hanus-Fajerska, 2015). One best-

known example of arsenic hyperaccumulator, Pteris vittata L. (Chinese brake fern) 

accumulates a large amount of arsenic (between 1442-7526 ppm) from the 
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contaminated soil (Ma et al., 2001). A strong ROS metabolism and an enhanced 

transport mechanism contributed to the arsenic resistance of the Pteris vittata L. 

(Yan et al., 2019). Plant detoxification of arsenic of non-hyperaccumulator is usually 

performed through the complexation of the absorbed As(III) with phytochelatins 

(PCs), followed by the complex (As(III)-PCs) sequestration into vacuoles (Singh, 

Misra and Sharma, 2020; Ahsan et al., 2008). 

This study aimed to determine the phytoremediation efficiency of Melastoma 

malabathricum L. (locally known as Senduduk), by associating this local plant with 

an arsenate-reducing bacterium, Microbacterium foliorum strain SZ1. A DNA 

sequencing technique elucidated the effect of plant-bacterium association on the 

indigenous soil bacteria. Also, the expressed leaf proteome of uninoculated and 

inoculated plants, in the presence or absence of a phytotoxic arsenate concentration, 

were compared. 

1.2 Problem Statement 

Persistence of arsenic in the soil has gained major environmental concern 

over the years as its accumulation into the food chain deteriorates the public health 

(WHO, 2018). Although the proposed chemical and physical remediation methods 

effectively remediate the arsenic-contaminated soil, the application is costly and 

causing disturbances on the soil native microflora (Ali et al., 2013). Bacteria-assisted 

phytoremediation is an integrated and environmental-friendly approach to remediate 

the arsenic-contaminated soil. Melastoma malabathricum L. is a local plant 

previously reported as a potential arsenic bioaccumulator (Selamat, Abdullah and 

Idris, 2014), while Microbacterium foliorum strain SZ1 is an arsenic-resistant plant 

growth-promoting bacterium that reduces As(V) to As(III) and able to produce 

siderophores and indole-3-acetic acid (IAA). Both secretions are essential to 

promoting plant nutrient uptake and root growth (Bahari, 2016). The effects of 

Microbacterium foliorum strain SZ1 on Melastoma malabathricum L. growth and 

arsenic accumulation were determined in order to understand its phytoremediation 

capacity. 
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To date, the impacts of the inoculated bacteria on soil bacterial composition 

as well as the plant biological functions are not fully clarified. As the microbial 

community affects the arsenic availability and the survival of the inoculated bacteria 

in soil, this project filled the research gap by elucidating the total bacterial 

composition in the arsenic-treated soil inoculated with SZ1. As the data on the plant 

response to arsenic are limited at the proteome level, it is important to identify the 

proteins in Melastoma malabathricum L. leaves under the abovementioned condition 

to understand the arsenic-induced physiological changes in plants. This work 

investigated the possible effects of field application and hence highlighted the factors 

that affected the effectiveness of the application. 

1.3 Research Objectives 

 The objectives of the research were: 

1. To determine the effect of Microbacterium foliorum strain SZ1 

inoculation on the growth of Melastoma malabathricum L. in arsenic-

treated soil 

2. To quantify the arsenic content in plant tissues and soil, and arsenic 

uptake capacity of Melastoma malabathricum L. 

3. To determine the effect of the Microbacterium foliorum strain SZ1 

inoculation on the soil bacterial composition and soil pH 

4. To detect the effects of arsenic and Microbacterium foliorum strain SZ1 

inoculation on Melastoma malabathricum L. leaves protein profile 

1.4 Scope of Study 

This project encompasses multidisciplinary research fields, including 

environmental toxicology, soil microbiology and plant physiology. Microbacterium 

foliorum strain SZ1 was previously isolated and validated for the arsenate-reducing 

ability. Roots length, shoot length, and plant dry weight was recorded to investigate 



 

5 

the growth response of Melastoma malabathricum L. that treated with four levels of 

arsenic concentrations (0, 10, 30, 50 ppm). Analysis of arsenic content in the treated 

soil and the plant roots and shoots were conducted using Inductively Coupled 

Plasma-Optical Emission Spectroscopy (ICP-OES). Illumina MiSeq 16S rRNA gene 

sequencing technique assessed the effect of soil inoculation on the indigenous 

bacterial content of Melastoma malabathricum L. rhizosphere. Melastoma 

malabathricum L. leaf protein was extracted, and the concentration was determined 

by Bicinchoninic Acid (BCA) assay. Identification of protein profile was performed 

using Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

technique followed by the characterization by Liquid Chromatography-Mass 

Spectrometry (LC-MS). 

1.5 Significance of Study 

The bacteria-assisted phytoremediation technique aims to achieve a high 

decontamination efficiency of the plant by increasing the bioavailability of the heavy 

metals and improving the plant vigor. This study utilized the abundance of local 

plant, Melastoma malabathricum L. and arsenate-reducing bacterium 

Microbacterium foliorum strain SZ1 to discover its phytoremediation potential. 

Associating plant growth-promoting bacteria (PGPB) with plants to facilitate the 

phytoremediation process is challenging, as establishing the synergistic plant-

bacteria relationship can be vulnerable in the arsenic-contaminated soil. The 

presented data indicated the rhizosphere community of the treated soil, which 

determined the effects on the rhizosphere soil inoculated. Next, the profiled leaf 

proteome of Melastoma malabathricum L. revealed the governing proteins of the 

plant in arsenic-bioaccumulation and detoxification. The combined information of 

soil microbiology and plant proteomic elucidated the conditions of the rhizosphere 

and plant after the experiment. This study provided a platform to understand the 

mechanisms of bacteria-assisted phytoremediation, particularly in the rhizosphere 

bacterial community and plant physiology. 
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