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ABSTRACT 

Owing to the rapid growth of electric vehicles (EV), temporary energy 

storage and mobile applications, the battery management system (BMS) plays an 

indispensable role in ensuring the safety, efficiency, and longevity of the battery. To 

achieve these features, the state of charge (SOC) estimation algorithm must be 

enhanced. Since the BMS processor repeatedly executes the SOC for a massive 

number of cells, the algorithm must be computationally simple, efficient, and 

accurate. The online estimation of lithium-ion SOC using the recently published 

adaptive Lyapunov-based observer is an attractive proposition due to the stability, 

adaptability, and reduced computing requirements. However, the observer requires 

the presence of persistent excitation (PE) to guarantee the convergence of the battery 

model parameters to their correct values. Although several important works have 

utilized this observer, they only apply dc excitation—which implies that the PE 

condition was never met. Thus, one objective of this thesis is to modify the observer 

so that it can be used to estimate the SOC for the dc and low excitation signals. 

Furthermore, there is insufficient work in the literature that demonstrates the 

application of the observer to estimate the SOC for EV. The motivation is the 

possibility of capitalizing on the EV driving profiles' inherent sufficiently rich (SR) 

signals to satisfy the PE condition. The performance of the SOC algorithm based on 

the proposed online observer is simulated on MATLAB/Simulink. Furthermore, the 

experimental validations are done at room temperature for a 3 Ah single cell of type 

Lithium Nickel Manganese Cobalt oxide (NMC). The algorithm is tested using 

dynamic stress test (DST) and real EV driving profiles, namely the supplemental 

federal test procedure (US06) and the federal urban driving schedule (FUDS). The 

performance of the observer is compared to the extended Kalman filter-recursive 

least squares (EKF-RLS). The proposed scheme requires 2.5 times less 

computational effort while retaining similar degree of accuracy to the latter. In 

addition, to fulfil the PE condition at low current excitation, a method called forced 

excitation is proposed. The SR signals are generated by chopping the battery current 

at a certain rate for a specific interval. The simulation and experimental results 

showed that the forced excitation method enables the observer to estimate the SOC 

reliably under dc condition. In addition, a simple scheme using a supercapacitor to 

compensate for the interruption in battery current and deliver continuous current to 

the load is suggested. It is envisaged that the proposed observer can contribute to the 

design of a customized and high performance BMS for many applications. 
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ABSTRAK 

Berdasarkan pada perkembangan kereta elektrik, penyimpan tenaga sementara 

aplikasi mudah alih yang berasaskan bateri, sistem pengurusan bateri (BMS) memainkan 

peranan yang amat penting bagi memastikan keselamatan, kecekapan dan jangkahayat 

bateri. Untuk mencapai manafaat ini, algoritma anggaran keadaan cas (SOC) perlu di 

pertingkatkan. Oleh kerana pemproses BMS melaksanakan SOC secara berulang kali 

untuk sejumlah besar sel, algoritma mestilah bersifat ringkas, cekap dan tepat. Terbarun, 

anggaran dalam talian bagi Lithium-ion SOC dengan menggunakan pemerhati 

berasaskan Lyapunov merupakan cadangan yang menarik kerana kestabilan, 

kebolehsuaian dan pengurangan kepada keperluan pengkomputeran. Walau 

bagaimanapun, ia memerlukan kehadiran pengujaan berterusan (PE) untuk menjamin 

penumpuan parameter model bateri pada nilai yang betul. Walaupun beberapa kajian 

penting telah menggunakan pemerhati ini, mereka hanya menggunakan pengujaan arus 

terus (DC) - yang menunjukkan bahawa keadaan PE tidak dapat dicapai. Oleh itu, salah 

satu objektif kajian dalam tesis ini adalah untuk mengubah pemerhati sehingga dapat 

digunakan bagi menganggar SOC untuk dc dan isyarat rangsangan rendah. Tambahan 

pula, kajian yang tidak mencukupi dalam literatur yang menunjukkan penerapan 

pemerhati bagi menganggarkan SOC untuk kenderaan elektrik (EV). Motivasinya adalah 

kemungkinan bagi memanfaatkan isyarat yang cukup kaya (SR) dari profil pemanduan 

EV untuk memenuhi syarat PE. Prestasi algoritma SOC berdasarkan pemerhati dalam 

talian disimulasikan dalam MATLAB/Simulink. Kerja ujikaji dan pengesahan dilakukan 

pada suhu bilik untuk sel tunggal 3 Ah jenis Lithium Nickel Manganese Cobalt oxide 

(NMC). Algoritma diuji menggunakan ujian tekanan dinamik (DST) dan profil 

pemanduan EV sebenar, iaitu prosedur ujian persekutuan tambahan (US06) dan jadual 

pemanduan bandar persekutuan (FUDS). Prestasi pemerhati dibandingkan dengan 

penapis Kalman filter dipanjangkan-recursive least squares (EKF-RLS). Skim yang 

dicadangkan memerlukan 2.5 kali kurang usaha pengiraan sambil mengekalkan 

ketepatan yang serupa dengan yang terakhir. Tambahan lagi, untuk memenuhi syarat PE 

pada pengujaan arus rendah, kaedah yang dipanggil pengujaan paksa dicadangkan. 

Isyarat SR dijana dengan memotong arus bateri pada kadar tertentu untuk selang 

tertentu. Hasil simulasi dan ujikaji menunjukkan bahawa pengujaan paksa membolehkan 

pemerhati menganggar SOC dengan tepat di bawah keadaan dc. Sebagai tambahan, 

skema mudah bagi mengimbangi gangguan arus bateri dan untuk menyampaikan arus 

berterusan ke beban adalah disarankan dengan menggunakan supercapacitor. Adalah 

dinyatakan juga bahawa pemerhati yang dicadangkan ini dapat memberi sumbangan 

untuk merancang BMS yang sesuai dan berprestasi tinggi kepada banyak lagi aplikasi 

lain. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

Battery-powered devices such as mobile phones, laptops, home appliances, 

portable tools, electric bikes, and electric vehicles (EVs) have become an 

indispensable part of modern daily life. The batteries, which are the workhorses of 

these devices, are in great demand, particularly in the areas of renewable energy (RE) 

and electric vehicle (EV). In the RE system, batteries are utilized to stabilize the grid 

and provide assistance during the absence of renewable sources [1]. Since the 

sources are intermittent, it is vital to store the energy during excess generation and 

re-deliver it when the demand is high. For EV, many countries have set new policies 

that aim to replace internal combustion engine (ICE) vehicles to reduce air pollution 

and prepare for the expected depletion of fossil fuels.  

The developments in electro-chemistry research and manufacturing processes 

have paved the way for various battery technologies with different capabilities and 

features. Among them, the lithium-ion battery is the most popular due to its intrinsic 

advantages, such as low self-discharge, high energy density, and high efficiency. It 

also has an extensive lifespan and offers more deep-discharge cycles [2]. However, 

lithium-ion batteries are sensitive to over-charging and over-discharging problems. 

Therefore, a battery management system (BMS) has become a necessity to monitor, 

control, and maximize the battery’s lifetime. The BMS needs to acquire, measure, 

condition, and process the voltage, current, and temperature signals, perform cell 

balancing, and protect the battery pack from over-charging and over-discharging. For 

EV applications, it also acts as an interface with other electronic devices inside the 

vehicle [3, 4]. 



 

 2 

Many battery-related accidents have been reported in recent years, mainly in 

mobile phones (particularly Samsung phones), e-cigarettes, and EVs. For example, 

critical accidents were repeated three times in the lithium-ion battery pack of the 

Boeing 787 aeroplanes. These accidents happened at Boston Airport (2013), 

Takamatsu Airport, Japan (2013), and Narita International Airport (2014) [5]. Figure 

1.1 shows the new and damaged lithium-ion battery pack in one of the said 

aeroplanes. A malfunctioning BMS is believed to be the main reason for the damage, 

in which the thermal runaway initiates the problem in a cell of the pack. 

 

Figure 1.1 A new and damaged lithium-ion battery pack in a Boeing 787 [6] 

 

1.2 State of Charge Estimation  

The main function of the BMS is to estimate the battery states accurately. 

Three important indices are the state of charge (SOC) [7], the state of health (SOH) 

[8] and the state of power (SOP) [9]. The SOC is a measure to know the available 

charge in the battery; the SOH provides the battery ageing level information; and the 

SOP indicates the available power in the immediate future.  

By far, the SOC is the most important function for BMS. Therefore, any work 

related to BMS should directly improve the accuracy and efficiency of the SOC 

algorithm. The SOC estimation approaches vary widely: one can opt for the simple 
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but inaccurate coulomb counting (CC) method [7]. There are options to utilize 

advanced algorithms based on machine learning and artificial intelligence [10, 11]. 

High accuracy can be achieved, but at the expense of complexity and high computing 

requirements. 

The Kalman filter (KF)-based methods are the most widely used SOC. They 

estimate the battery state very accurately, even in the presence of noise. It has several 

variations, for example, the extended Kalman filter (EKF) [12] and the sigma point 

Kalman filter (SPKF) [13, 14]. One of the main drawbacks of the KF-based methods 

is the need for extensive computing power to perform a large number of matrix 

multiplications. As a result, it consumes a large portion of BMS’s computing 

resources [15]. Moreover, the EKF requires prior knowledge of the battery model’s 

parameters before the estimation can be made. To obtain these parameters, additional 

procedures have to be incorporated into the original EKF algorithm. Two popular 

methods, namely the dual EKF (D-EKF) [16] or EKF with recursive least square 

(EKF-RLS) [17], are used. By using this improved approach, the algorithm is able to 

estimate the state and the parameters simultaneously. Although the estimation 

performance is improved, the D-EKF and EKF-RLS require even more processing 

time to satisfy these additional functions.  

Recently, another SOC method based on an online adaptive observer has 

been published in several reputable journals [18-23]. Its main feature is inherent 

stability, which is proven by the Lyapunov approach. Another advantage is the 

simplicity of the observer’s structure. It contains a few simple recursion equations 

without matrix inversion; thus, the computational burden is significantly reduced. In 

addition, it is claimed that the observer achieves simultaneous estimation of SOC and 

the battery’s model parameters. Therefore, additional parameter estimation technique 

is not needed. This is in contrast with the methods (for example, EKF), which require 

all battery parameters to be known prior to the estimation. It also avoids the need for 

an additional online parameter estimation technique (for example, D-EKF and EKF-

RLS).  



 

 4 

Despite these favourable advantages, the above-mentioned adaptive observer 

requires the persistence excitation (PE) condition to be fulfilled. In order to estimate 

the battery parameters, PE entails that the current and voltage signals of the battery 

must contain sufficient information about its dynamics. In practice, the PE condition 

is satisfied using a sufficiently rich (SR) input current that includes a number of 

frequency components [24]. For EV applications, PE can be achieved by the driving 

profiles, which have a fluctuating nature. However, in the literature, the observer has 

not been extensively studied in this context. Therefore, it is important to test the 

observer’s performance under different driving profiles of EVs. On the other hand, 

for the application that exhibits low current excitation, or dc, the PE can never be 

met, and thus, the observer does not work under this condition.  

It has to be noted that the PE requirement is not easily implementable, 

especially in the discharging mode. This is because the current changes 

uncontrollably according to battery consumption. A typical solution in parameter 

estimation to fulfil PE is to add a perturbation that is considered an SR signal and 

remove it once the convergence is achieved [25, 26]. However, adding an external 

signal means additional current needs to be drawn from the battery. This process is 

unacceptable as it disrupts the primary function of the battery by hastened discharge. 

On top of that, a physical circuit is needed to generate the signal within the battery 

system. Therefore, a method needs to be devised so that the SOC can be estimated 

without severely impacting the discharging current profile on the load. 

1.3 Problem Statement 

Based on the overview mentioned above, it is concluded that the online 

adaptive Lyapunov-based observer is a noteworthy concept and worth investigating. 

It has several distinct advantages that make it superior to other SOC methods. 

However, this particular observer has one significant restriction: it needs to excite the 

battery with an SR signal, which can be achieved by fulfilling the PE conditions. 

Since the typical charging and discharging profiles of the battery are not able to 

create such a condition, the observer is not practically viable [18-23].  
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Although the application of this observer is reported in [19-22], they did not 

provide any evidence for the fulfilment of PE. For its practical demonstration, the 

battery model is shown to be excited by direct current, which does not qualify as an 

SR signal. With the lack of frequency excitation, the observer will never converge 

toward the battery parameters, and thus, the validity of the published results is in 

serious doubt. Based on these premises, the following research statements are 

written: 

1. There is a need for a comprehensive proof of this observer stability criterion, 

based on the Lyapunov theory, under the PE condition.  

2. There is a potential for this observer to be applied as the SOC scheme of an 

EV application. This is due to the inherent availability of SR signals in the 

EV driving profiles. Moreover, it is important to evaluate its performance 

when compared to other more established SOC methods. Since there is 

insufficient research on these aspects, the observer's implementation for EV 

applications needs to be investigated. 

3. Furthermore, it is essential to find a scheme that will allow the observer to be 

used under dc and slow time-varying signals. Thus, the observer can still be 

used in applications such as storage for RE systems. An analysis and solution 

for the observer under a low excitation level needs to be sought. 

 

1.4 Research Objectives 

The research statements on the application of the adaptive Lyapunov-based 

observer for SOC estimation have led to the following objectives: 

1. To improve the design of an adaptive Lyapunov-based observer for 

simultaneous estimation of battery parameters and SOC. 
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2. To apply the adaptive Lyapunov-based observer for SOC estimation in an EV 

application and to evaluate its superiority in terms of computational cost 

compared to EKF-RLS. 

3. To propose the forced excitation approach, which allows the observer to work 

with low excitation levels. 

 

1.5 Research Scope 

This research has the following limitations: 

1. The algorithm is developed to estimate the SOC for a single lithium-ion cell. 

In general, most of the SOC algorithms in the literature are evaluated on a 

signal cell only, while the SOC calculation for the whole pack is related to 

another research scope. In the battery pack, if the cells are connected in 

series, they will have the same current but different voltages. On the other 

hand, if they are connected in parallel, they will have the same voltage but 

different currents. Since the SOC algorithm requires the voltage and current 

for each individual cell, the SOC estimation for the whole battery pack is 

performed first by the SOC estimation of each individual battery. Then, the 

average results can be taken.  

2. The experimental work and algorithm validation are done at room 

temperature. The validation for different temperatures can be done in the 

future if a temperature chamber is available. The relationship between open 

circuit voltage (OCV) and the SOC of the battery can be acquired at different 

temperatures. Then, a temperature post-compensation scheme can be added to 

the observer [20-22], allowing parameter estimation for varying temperature 

conditions. 

3. The algorithm is tested for the Lithium Nickel Manganese Cobalt oxide 

(NMC) battery type. However, it is also applicable to other kinds of lithium-

ion and different types of batteries. It is important to note that the 



 

 7 

implementation for the Lithium Iron Phosphate (LFP) chemistry is expected 

to result in less accuracy due to the flat OCV-SOC relation compared with 

other batteries. 

 

1.6 Thesis Organization  

The thesis is organized into six chapters. The outlines of the contents are as 

follows: 

1. Chapter 2 presents the battery's working principle and the characteristics of 

the most common battery types. Then the main functions of the BMS are 

explained. After that, the benefits of SOC and definitions related to it are 

introduced. A large part of this chapter is dedicated to a comprehensive 

literature review of SOC methods, showing advantages and disadvantages for 

each of them. 

2. In chapter 3, the adaptive observer design is presented, which contains four 

main steps: At the beginning, the first-order battery model is written as one 

input/output equation. Second, the adaptive laws of the observer are 

proposed, and its stability is proved based on the Lyapunov theory. Third, 

simulation analysis of the observer performance is discussed to show the 

appropriate input signals that achieve the PE condition. Finally, the 

continuous-time equations of the observer are discretized. Thus, the observer 

can be directly implemented on a digital controller. 

3. In Chapter 4, the experimental verification of the proposed method is shown. 

In the beginning, the initial tests on the lithium-ion battery are conducted, 

which include a capacity test, a SOC-OCV curve, and the identification of the 

battery model parameters using Particle Swarm Optimization (PSO). These 

tests are essential as reference values to validate the observer’s performance 

and battery model. After that, the observer algorithm validation under real 

driving profiles of EV is presented and compared with EKF-RLS. Finally, the 
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proposed observer code's computational cost evaluation shows a massive 

improvement compared to the EKF-RLS code. 

4. In Chapter 5, the observer is evaluated when the input current has low level 

excitation, which does not meet the PE condition. Simulation work is carried 

out using MATLAB and Simulink to demonstrate the flaws in previous works 

that claim the observer's workability under DC excitation. Then, the idea of 

forced excitation is simulated by MATLAB/Simulink. The functionality of 

the observer with forced excitation has been experimented on the tested 

battery. Finally, the recommended applications that require the 

implementation of forced excitation are described. 

5. In Chapter 6, the conclusion of the thesis is presented. An overview of the 

recommended and expected work to improve the observer in the future is 

suggested.
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