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ABSTRACT

The simultaneous effect of pulsatile blood flow and double stenoses with 
different severities, lengths, and interspacing on mass transport using the Newtonian 
as well as the non-Newtonian power-law models of blood flow are considered in this 
thesis. These models are important from a physiological perspective as their effects on 
certain blood flow characteristics that are clinically significant can be analysed. The 
effect of some essential issues like the diffusivity of mass and the rate of absorption at 
the lumen-tissue interface are also studied to investigate the effectiveness of solute 
delivery. The flow is considered two-dimensional, unsteady and axisymmetric in 
the cylindrical polar coordinate system, while the transport of mass is modelled as 
an unsteady convection-diffusion equation. A numerical technique in the form of 
finite-difference approximations in staggered grids, widely known as the Marker and 
Cell (MAC) method has been used to tackle the coupled system of non-linear partial 
differential equations. Simultaneous effects of pulsatile flow conditions and double 
stenoses show an increase in the pressure drop across the stenosis length, as well as 
in the transport of mass at the throat and mass flux at the artery wall. The delivery of 
solute is observed to be more effective in the non-Newtonian model. In this study, 
another concern is on the effect of catheter’s eccentricity on blood flow and heat 
transfer characteristics using the Carreau model. The perturbation method which is 
an approximate analytical technique, has been applied to the catheter problem. The 
accuracy of results is confirmed in the limiting cases, where the existing solutions in 
the literature are recovered as special cases. The position of the catheter’s eccentricity 
in Carreau fluid leads to a reduction in the number and size of the circulating bolus 
zone which agree with physiological observations that the risks and complications 
associated with catheterization are alleviated when the eccentric position of the 
catheter is considered. The results of the simulation could provide insights towards 
the detection of aggregation sites, allowing the treatment of disease to be initiated 
quickly before it becomes clinically significant.
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ABSTRAK

Kesan serentak aliran darah berdenyut dan stenosis berganda dengan 
tahap keparahan, panjang, dan jarak yang berbeza terhadap pengangkutan jisim 
menggunakan model aliran darah Newtonan dan tak-Newtonan hukum kuasa 
dipertimbangkan di dalam tesis ini. Model-model ini penting dari perspektif fisiologi 
kerana kesannya terhadap beberapa ciri aliran darah tertentu yang signifikan secara 
klinikal dapat dianalisis. Kesan daripada beberapa isu utama seperti penyebaran 
jisim dan kadar penyerapan di kawasan antara-muka tisu-lumen juga dikaji untuk 
menguji keberkesanan pengangkutan bahan terlarut. Model aliran bendalir dianggap 
dua dimensi, tak mantap dan simetri sepaksi dalam sistem koordinat silinder, 
sementara pengangkutan jisim dimodelkan sebagai persamaan perolakan-penyebaran 
tak mantap. Teknik berangka dalam bentuk penghampiran perbezaan terhingga dengan 
grid berperingkat, yang lebih dikenali sebagai kaedah Marker dan Cell (MAC) telah 
digunakan untuk menyelesaikan sistem persamaan pembezaan separa tak linear. Kesan 
gabungan antara aliran berdenyut dengan stenosis berganda menunjukkan peningkatan 
dalam tahap penurunan tekanan di sepanjang stenosis, serta pengangkutan jisim di 
kawasan kerongkong dan fluks jisim di dinding arteri. Pengangkutan bahan terlarut 
diperhatikan lebih berkesan bagi model tak-Newtonan. Di dalam kajian ini, satu 
lagi permerhatian adalah kepada kesan eksentrik kateter terhadap aliran darah dan 
ciri pemindahan haba menggunakan model Carreau. Kaedah usikan yang merupakan 
suatu kaedah analisis penghampiran, telah diterapkan pada masalah kateter. Ketepatan 
hasilnya disahkan dalam kes-kes penghad, di mana hasil kajian yang terdapat di dalam 
literatur diperoleh sebagai kes khas. Kedudukan eksentrik kateter dalam bendalir 
Carreau menyebabkan bilangan dan saiz zon bolus yang beredar berkurang, dengan 
menepati pemerhatian fisiologi bahawa risiko dan komplikasi yang berkaitan dengan 
kateter dapat dikurangkan ketika kateter berada pada kedudukan eksentrik. Hasil 
simulasi dijangka dapat mengesan situs agregasi yang membolehkan rawatan segera 
di ambil sebelum sesuatu penyakit itu dikesan secara klinikal.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Stenosis is the narrowing or restriction of blood vessel or valve that reduces 

blood flow. For example, aortic stenosis is the aortic valve in the heart. This narrowing 

often causes a sharp increase in the resistance to flow through the vessels. Over time, 

stenosis can advance to a complete blockage of the artery (Young (1968)). It affects 

the velocity of blood flowing through the artery, affecting blood pressure and may 

cause the heart to collapse. The damage caused to the heart or blood vessels can 

cause cardiovascular disease (CVD). Examples of CVD are coronary artery and carotid 

artery diseases. In coronary artery disease, a plaque buildup occurs in the arteries of 

the heart and can cause a heart attack while carotid artery disease can cause stroke 

(Ougrinovskaia et al. (2010)).

The narrowing usually results from atherosclerosis, which refers to a build-up 

of plaque on the inside of the arteries. The process of build up is call artherogenesis. 

The artery walls are normally smooth to allow blood flow easily through the artery 

and for easy transportation of mass or atherogenic particles such as fat, cholesterol 

which exists in blood in the form of low-density lipoproteins (LDL), calcium, and 

other substances within the artery wall. When the plaque is brittle and ruptures the 

most serious harm takes place in which the tear of plaque causes blood clots which 

could block the arterial lumen and/or move to another part of the circulatory system, 

which are eventually responsible for strokes, and heart attacks, difficulty in walking 

and gangrene (Thubrikar (2007)). Atherosclerosis is the major cause of CVD and 

remains the leading factor of death. Ross (1999) wrote that atherosclerosis is an
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inflammatory disease, in which high concentrations of cholesterol in the blood is one 

of the principal risk factors.

Caro et al. (1971) reported that atherosclerosis (see Figure (1.1)) may occur 

based on shear-dependent mass transfer mechanism between blood cholesterol and 

the arterial wall. Caro and Nerem (1973) noted that the correlations between shear 

stress and atherosclerosis may be due to the alteration in convection mass transfer 

since the mass transfer due to convection depends on the velocity gradient, which is 

related to shear stress. This means the balance between convection and diffusion in 

the bloodstream and arterial wall determines which molecules enter, exit and remain 

entrapped (Fry (1987)). In order to make an appropriate assessment regarding the 

possible relationship between the spots of atherosclerotic lesions and the mass transfer 

patterns, an accurate characterization of mass transport behavior is very important. 

Moreover, a clear knowledge of mass transfer in a stenosed artery is of considerable 

medical interest in the formation and development of atherosclerosis.

S e v e r e  M il d
a t h e r o s -  a t h e r o s -  N o r m a l
c l e r o s i s  c l e r o s i s  a r t e r y

Figure 1.1: Progression of atherosclerosis (https://www.newbeginningshealthcare.net/blog/what- 
is-atherosclerosis).

The study of blood rheology and the dynamical characteristics of its flow is a 

very important step towards the comprehension, prediction, diagnosis, and therapy of 

CVD. Blood is a complex and exhibits various types of rheology behavior depending 

on the size of the vessel in a specific location. From a biofluid mechanics point of view, 

blood would not be expected to obey the very simple, one parameter, and linearized 

law of viscosity as developed by Newton (Mustapha and Amin (2008)).

2
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However, CVD usually develops over a long time, thus it can be prevented 

or delayed by effectively managing and modifiable risk factors. Corrective therapies 

involve drug regimens and various forms of surgical intervention. The delivery of a 

solute from the bloodstream to the site of drug action primarily depends on blood flow 

but blood flow to different organs of the body is not equal. The effect of some essential 

issues like the diffusivity of mass, the rate of its absorption at the lumen-tissue interface 

with the flowing blood are important to analyze.

In some instances, surgery may be necessary to treat clogged arteries and 

prevent arterial plaque accumulation. The most common surgical intervention is artery 

catheterization and it is a quick procedure involving minimal risk while in more severe 

cases coronary bypass is used. Artery catheterization is the insertion of small plastic 

tubes (catheters) into arteries and veins (see Figure (1.2)) to the heart to obtain x- 

ray pictures (angiography) of coronary arteries, to determine whether blood vessels 

supplying the heart muscle are obstructed and to measure pressures and flow velocity 

or flow rate in the heart (hemodynamics). The transportation of drug or its delivery 

also involves a catheter being inserted into the artery.

Figure 1.2: Arterial catheter (https://www.medline.com/product/Arterial-
Catheters/Kits-by-Argon-Medical/Z05-PF27732).

The procedure involving catheter brings about potential complications which

3
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may include reaction to sedation, infection, and bleeding. When a catheter is inserted 

into the artery, it creates an annular region between the walls of the catheter and 

artery. Insertion of catheter further increases impedance frictional resistance to flow 

that would change the flow characteristics such as velocity, pressure, and streamlines 

(Dash et al. (1996)).

Blood does not only transport metabolites, oxygen and other dissolved 

substances to and from the tissues, but it also alters heat transfer or the transport of 

heat within the body. This is to meet the changing demands of the organism whose 

cardiovascular system for example, is sensitive to changes in the environment such as 

temperature change. In biological systems, it is very important to consider the variation 

of temperature because a slight change in temperature, for example, if the temperature 

of human blood rises above 1° C , irreversible harm occurs in the blood proteins (Quast 

and Kimberger (2014)).

Over the years, many mathematical models have been developed to study blood 

flow. These mathematical models are being continuously improved and upgraded to 

take into account more realistic physical conditions. The solution to these problems 

involve complex mathematical equations which are difficult to solve and most solutions 

obtained involved numerical methods. Analytical methods can only be approached in 

special cases when the equations are very much simplified. In this thesis, four different 

situations based on the research background above are analysed to study the effect of 

boundary conditions, the type of fluid , the effect of certain parameter on mass transport 

at the lumen-artery interface and the effect of catheter insertion on heat transfer, with 

specific problem statements and research questions as outlined in Section 1.2.
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1.2 Problem Statement

Most mathematical models to investigate mass transfer in stenosed artery 

assume the artery to have a single mild stenosis, the artery wall is rigid, the flow is 

time independent and the inlet velocity is parabolic. In real situation, the patient is 

found to have multiple stenoses in the same arterial segment, the arterial blood flow 

is unsteady and the effect of the unsteadiness on pressure drop is important and flow 

from the heart comes from a large pressure reservoir into successively smaller tubes 

resulting in pulsatile velocity at the inlet region. The first research question is how 

are the blood flow and mass transfer characteristics altered when flow pulsatility and 

double stenoses are considered simultaneously.

The next problem is concerned with the nature of blood itself. Experimental 

investigations have revealed that blood exhibits non-Newtonian properties at low shear 

rate. The non- Newtonian behavior of blood is most evident in small vessels or at very 

low shear rates (Tu and Deville (1996)). Since the shear rate is low in the downstream 

of the stenosis, a correct analysis of the flow pattern should include the non-Newtonian 

factor. The question then is how the non-Newtonian model of blood flow affects 

the characteristics of flow and mass transport in an artery with double stenoses and 

pulsatile inlet condition.

Where mass transfer is concerned, the majority of works on mass or solute 

transport were performed by considering tubular geometrical model with thin boundary 

and the analysis was restricted to the solute dispersion in the fluid phase of the tube 

only. In reality, the arterial wall is thick and mass is transported via a number 

of realistic lumen-tissue interface conditions, thus the unsteady coupled problem 

interconnecting the dispersion of mass from lumen into tissue must be taken into 

consideration. The interphase mass transfer due to the absorption at the tube wall 

plays an important role on the dispersion process of solute. This phenomenon has lots 

of applications in hemodynamics for permeable blood vessels, tubular flow reactors 

with heterogeneous catalysis, bioengineering (haemodialysers and oxygenators) and
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physiology. Applications in which absorptive wall is also of major importance include 

tubular flow reactors and soluble gas uptake by the walls of pulmonary airways, and 

is of particular significance in the mixing and the transportation of drugs or toxins in 

physiological systems. Since the therapeutic domain for atherosclerotic disease is the 

stenosed arterial wall and for the better treatment of the patient, study the uptake of an 

injected drug under various luminal conditions at the absorptive lumen-tissue interface 

and its subsequent dispersion into the arterial wall is an important consideration 

because it closely resembles the physiological situation concerning intravenous drug 

delivery. The research question here is how the absorptive wall affects the diffusivity 

of mass within lumen and the arterial tissue.

In the course of drug transport or delivery, where the insertion of a catheter is 

concerned, the catheter is usually placed in an eccentric position, one reason being 

to reduce pain in the patient. However, most analysis involving catheterized flow 

considered that the catheter to be in concentric position. But a more realistic condition 

is that the catheter is usually placed in an eccentric position, one reason being to reduce 

pain. Another condition to consider is a mathematical model that takes into account 

temperature change as it is common knowledge that a temperature rise of merely 1°C 

or 2°C for example would cause a fever. A more realistic flow model should include 

the energy equation. The research question here is how the eccentric catheter affects 

blood flow characteristics when temperature is taken into account.

1.3 Research Objectives

The main objective of this research is to carry out a mathematical analysis 

using both analytical and numerical means to investigate the effects of different 

boundary conditions and flow domains on the flow, mass transport and heat transfer 

characteristics of blood in a stenosed artery.

Specific objectives are:
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(a) To determine the simultaneous effect of pulsatile blood flow and double stenoses 

on mass transport.

(b) To analyze the effects of power-law model of blood flow and pulsatile inlet on 

mass transfer in an artery with double stenoses.

(c) To calculate the distribution of mass from lumen to tissue through a stenosed artery 

in the presence of absorption at the tube wall.

(d) To determine the effects of eccentric catheterization on Carreau model of blood 

flow with heat transfer in an overlapping stenosed artery.

1.4 Scope of the Study

This research takes into consideration blood flow through a double stenosed 

artery with pulsatile boundary condition. The geometry of stenosis considered is the 

double and overlapping one. The fluid is assumed to be incompressible where only the 

Newtonian and non-Newtonian models of blood characterized by the power-law model 

and Carreau model are considered. The flow is assumed laminar, two-dimensional 

axisymmetric in the cylindrical coordinate system. For the solution procedure, the 

analytical technique is the perturbation method with mild condition approximation 

while the numerical technique is the finite difference the Marker and Cell (MAC) 

method. Simulations are carried out using published data in the literature.

1.5 Significance of Research

Mathematical models of blood flow in the cardiovascular system provide 

insight into normal and diseased conditions in blood vessels and have applications 

in areas such as surgical planning and designs of medical devices. A mathematical 

analysis on the flow characteristics of blood with the consideration of the real situation 

could make it possible to predict whether the problems faced by patients need medical
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intervention in the form of invasive surgery or otherwise. For example in CVD, the 

cardiologist needs to determine whether the patient need a bypass or not based mostly 

on his experience. This is very risky for the patient if the doctor is inexperienced.

On the other hand, with mathematical analysis possible complications could 

be determined non-invasively and cheaply without unnecessary complications. In 

the present work, if the geometry of stenosis of a cardiac patient could be obtained 

through angiograms, the flow characteristics namely the wall shear stress, the pressure 

drop and the streamlines could be calculated and a suitable range of values that cause 

complications could be established.

Specifically in this project, the critical length of stenoses , severity etc could 

determine whether they affect mass transport, whether recirculations have occurred 

and so on. Further, it provides information on how absorption affects mass transport 

at the lumen, how catheter position, size and velocity of insertion affects the artery, 

thus enabling medical practitioners to choose a suitable catheter for insertion, and by 

how much it should expand an artery. If a catheter is not expanded enough it will 

not be doing its job, but if it is expanded too much it can risk damaging the artery. 

Most importantly, with sufficient statistical data, mathematical analysis has the ability 

to predict various flow characteristics that could be used for validation purposes with 

experimental and clinical results.

Mathematical analysis could significantly reduce the cost of diagnosing and 

treating a disease. It could be expected to minimize physiological through non-invasive 

procedure psychological stress and cost of treatment on patients. For manufacturers of 

products and regulators, mathematical analysis can be the mechanism that supports 

efficient review of novel products and approaches without compromising on safety 

and effectiveness.
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1.6 Thesis Organization

This thesis is comprising of eight chapters as given below: Chapter 1 starts with 

the research background which outlines the general introduction followed by problem 

statement, research objectives, scope and significance of the study.

In Chapter 2, a literature review with respect to the issues sketched out within 

the problems outlined in the objectives is displayed and discussed in detail.

In Chapter 3, the differential form of the equations and the mathematical 

model that governed the flow namely Newtonian, power-law and Carreau models are 

presented. This chapter starts with the conservation of mass, momentum, mass and 

energy equations. It then follows with the discussion about the appropriate boundary 

conditions.

In Chapter 4, the first problem which looked at the numerical investigation 

to determine the effect of severity, the distance between double narrowings and flow 

pulsatility on the transport of blood and mass. This chapter is divided into six main 

sections including the introduction, governing equations, solution procedure, stability 

and accuracy, numerical algorithm and numerical results and discussion.

Chapter 5, accounts for shear-thinning model of blood flow, known as power- 

law model through a double stenosed artery to improve the previous chapter by 

considering the non-Newtonian nature of blood.

Chapter 6, addresses the distribution of mass in a stenosed arterial segment as 

well as in the tissue with the streaming blood represented by the power-law model. The 

coupled system of non-linear mass and momentum transport along with appropriate 

boundary conditions is solved numerically using the finite difference scheme MAC 

method.
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In Chapter 7, describes the effect of catheter insertion on blood flow and heat 

transfer characteristics of a Carreau fluid model by using the perturbation method 

involving two appropriate small parameters. Finally, in chapter 8 concludes the thesis 

together with useful suggestions and recommendations for pursuing future research.
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