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ABSTRACT

Nanotechnology has played a significant role in multi-fields of heat transfer 

processes and has made impressive advances in energy applications. This technology 

has significantly developed the science of thermal energy by improving various 

properties of energy transmitting fluids. This includes the development of nanofluid that 

can provide high heat transfer rates in a thermal energy system. A new class of nanofluid 

is known as hybrid nanofluid. Hybrid nanofluid has better chemical and mechanical 

strength, excellent thermal and electrical conductivity, lower cost, high heat transfer 

rates, and reliable physio-chemical properties. Bearing in mind such interesting features 

of nanofluid, the predominant idea of this thesis is to investigate heat transfer in the 

boundary layer flow of unsteady viscous nanofluids and hybrid nanofluid. Specifically, 

the water based nanofluids and hybrid nanofluid flow along a vertical cone enclosed 

in a porous medium is considered. The effects of external magnetic field and thermal 

radiation are additional features to the innovation of the constructed mathematical 

model. The system of nonlinear coupled equation supported by related initial and 

boundary conditions are solved numerically by using finite difference method. In the 

analysis, the impact of various physical parameters are scrutinized and the results are 

exhibited graphically. The physical quantities of wall shear stress and heat transfer 

coefficient versus governing constraints are evaluated and their results are summarized 

in the form of tables. The heat transfer performance of hybrid nanofluid is compared 

with the performance of nanofluid. The results show that the thermal performance 

of the system increases in the presence of magnetic field and thermal radiation. In 

addition, high heat transfer rates are observed when the flow is induced by varied heat 

flux as compared to varied wall temperature. Moreover, the viscosity is also responsible 

to enhance the heat transfer rates of the fluids. This research contributes to a better 

understanding on the effects of magnetohydrodynamic in mixed convection for radiative 

hybrid nanofluid flow.
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ABSTRAK

Nanoteknologi telah memainkan peranan yang signifikan dalam pelbagai 

bidang proses pemindahan haba dan telah mencapai kemajuan yang impresif dalam 

penggunaan tenaga. Teknologi ini telah mengembangkan sains tenaga termal 

dengan menambahbaik pelbagai sifat penghantaran tenaga bendalir. Ini termasuk 

perkembangan dalam nanobendalir yang dapat, menyediakan kadar pemindahan haba 

yang tinggi dalam sistem tenaga termal. Satu kelas nanobendalir yang baharu dikenali 

sebagai nanobendalir hibrid. Nanobendalir hibrid mempunyai kekuatan kimia dan 

mekanikal yang lebih baik, kekonduksian termal dan elektrik yang sangat baik, kos 

yang lebih rendah, kadar pemindahan haba yang tinggi, dan sifat fisiokimia yang boleh 

dipercayai. Dengan mengambil kira ciri menarik dalam nanobendalir, idea utama 

tesis ini adalah untuk menyiasat pemindahan haba dalam aliran lapisan sempadan 

nanobendalir likat tidak stabil dan nanobendalir hibrid. Khususnya, nanobendalir 

berasaskan air dan nanobendalir hibrid yang mengalir di sepanjang kon menegak yang 

tertutup dalam poros medium telah dipertimbangkan. Kesan medan magnet luaran 

dan sinaran termal adalah ciri tambahan kepada inovasi model matematik yang dibina. 

Sistem persamaan gandingan tak linear yang disokong oleh syarat awal dan syarat 

sempadan yang berkaitan telah diselesaikan secara berangka dengan menggunakan 

kaedah beza terhingga. Dalam analisis ini, kesan pelbagai parameter fizikal telah 

diteliti dan keputusan ditunjukkan secara grafik. Kuantiti fizikal bagi tegasan ricih 

dinding dan pekali pemindahan haba melawan kekangan tertakluk telah dinilai dan 

keputusannya diringkaskan dalam bentuk jadual. Prestasi pemindahan haba bagi 

nanobendalir hibrid telah dibandingkan dengan prestasi nanobendalir. Kepatusan 

menunjukkan bahawa prestasi termal bagi sistem meningkat dengan kehadiran medan 

magnet dan sinaran termal. Tambahan lagi, kadar pemindahan haba yang tinggi telah 

diperhatiken ketika aliran disebabkan oleh perubahan fluks haba berbanding dengan 

perubahan suhu dinding. Selain itu, kelikatan juga berperanan dalam meningkatkan 

kadar pemindahan haba cecair. Kajian ini menyumbang kepada pemahaman yang 

lebih baik ke atas kesan hidromagnetik magnet dalam olakan campuran untuk aliran 

nanobendalir hibrid sinaran.
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CHAPTER 1

INTRODUCTION

This chapter addresses the important research area that focuses on heat transfer 

enhancement using nanofluid and hybrid nanofluid along with some essential and 

relevant physical effects. It includes an overview of the research background, problem 

statement, research objectives, scope and significant of the research.

1.1 Research Background

Throughout the latest literature and engineering curricula, heat transfer has 

become not just an autonomous discipline but also an essential discipline at the interface 

with other crucial and older disciplines. For example, fluid mechanics is able to explain 

heat transport and other contentment due to the great strides made in modern convective 

heat transfer. On the other hand, thermodynamics is prepared to teach modeling, 

simulation and optimization of the natural energy system due to the great advances in 

transfer of heat. In general, heat transfer phenomena describes the heat flow (thermal 

energy) due to the difference in temperature. A few common examples of heat transfer 

in day to day life include heating and cooling system of buildings, water boiling, hot 

air rising, light bulb fire and sun warming.

There are three main mechanisms of heat transfer; thermal conduction, thermal 

convection, and thermal radiation. The definition of conduction refers to the molecular 

activity of the subject material or body. Conduction is the transfer of energy from 

higher-energy molecules to the less-energy molecules. Such molecular energies are 

directly linked to the temperature, which means the transfer of heat takes place from 

the higher temperature side to the lower temperature side. Then, it can be assumed that 

thermal energy is diffused.

Convection is the second form of heat transfer. Under this mode, a fluid 

under motion is the medium in which the heat transfer is performed. This motion

1



leads to the transfer of heat in the presence of a temperature gradient [1]. As 

in the same conduction scenario, energy diffusion is also present. There are two 

distinctive broad types of convective heat transfer, namely, natural convection and forced 

convection. Convection is called natural convection when the density change, arising 

from temperature variations within the fluid, induces fluid motion. In forced convection, 

an external agent such as a pump or blower induces the fluid movement. Sometime 

in forced convection scenario, natural convection also exists due to gravitational 

body forces. This mode of convection is termed as mixed convection, when natural 

convection and forced convection work together to transfer heat. In many engineering 

and industrial applications the mixed convective flow contributed significantly including 

solar central receivers exposed to wind currents, nuclear reactors cooled during 

emergency shutdown, electronic devices cooled by fans and heat exchangers placed 

in a low velocity environment [2].

In thermal radiation, energy transfers in the form of electromagnetic waves by 

mean of proton. In other words, radiation causes energy transfer by the emission of 

electromagnetic radiation. This implies radiation is everywhere as all matters absorb 

and emit electromagnetic radiation. The radiative heat transfer can not be overlooked 

when a high temperature is needed for final product preparation. Many processes occur 

at high temperature in engineering environments, and knowledge of the radiative heat 

transfer is very important for the design of the related devices such as gas turbine, 

nuclear power plant and several propulsion equipment from satellites, aircraft, missiles 

and space vehicles [3].

As a consequence of the global energy crisis, which is one of the most critical 

issues due to the significant and persistent rise in demand, the growing lack of energy 

resources and the high cost. Many researchers have accomplished to increase the 

capacity of thermal systems and to reduce the size and thus energy consumption levels. 

Enhancement of heat transfer corresponds to the application of basic principles of heat 

transfer techniques to increase the rate of heat removal or deposition on a surface. 

The heat transfer enhancement methods are used to improve the heat transfer without 

adversely impacting the overall understanding of the systems. It includes a broad 

variety of fields in which heat exchangers are used for such functions as refrigeration,
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Figure 1.1: Classification of nanomaterials

air-conditioning, heating systems, automotive cooling equipment and other chemical 

industry applications.

There are many approaches in place to increase the efficiency of heat transfer. 

Some approaches include using extended surfaces, applying vibration to the heat 

transfer surfaces and using micro channels. Increasing the thermal conductivity of 

the working fluid can also increase heat transfer efficiency. In contrast to solid, 

widely used heat transfer fluids such as water, kerosene, ethylene glycol and engine oil 

have comparatively low thermal conductivity. Scientist and engineers have therefore 

recommended a new class of fluid termed as nanofluid, which are produced by adding 

small size nanoparticles/nanotubes in traditional single-phase liquids including water, 

kerosene, ethanol, ethylene glycol, etc. The presence of nano-scaled materials, even 

with a low volume concentration, plays a notable role in heat transfer (cooling and 

heating) processes. This beautiful discovery resulted from the experimental work of 

Choi and Eastman [4]. They declared that a small amount of nanoparticles can boost the 

efficiency of thermal system dramatically. Many researchers have been carried out on 

their footstep which are significant for numerous industrial, environmental and clinical 

applications. The revolutionary features of nanofluids can be implemented practically in

3



solar energy field [5], cancer treatment [6], antibacterial and anti cancer activities [7], as 

a coolant in electrical and mechanical devices [8, 9], heat enhancement in transformer

[10], nano-refrigerant boiling heat transfer enhancement[11], CO2 absorption [12], 

plate heat exchangers [13]. Based on the morphology, size, shape, composition, 

physio-chemical properties, nanomaterials can be categorized into different groups, 

depicted in Figure 1.1.

Even though nanofluids help the engineers and scientists in improving the 

performance of thermal system but a better form of a fluid is still in quest until today. 

Since the availability and low cost of the nanoparticles are the most crucial preconditions 

for the practical applications of nanofluid in thermal energy systems. But, unfortunately, 

the availability of nanoparticles with high thermal conductivity like copper (Cu), silver 

(Ag) and gold (Au) is limited due to their high cost. Also, unmodified Cu, Ag and Au 

particles might be the source to exhibit toxicity risks [14]. On the other hand, oxide 

nanoparticles are mostly available nanoparticles due to low cost, but their thermal 

conductivity is lower than other nanomaterials and high volume concentration of oxide 

nanoparticles (> 5%) need to achieve the desired improvement in thermal conductivity. 

At low concentration, high performance with low cost remains the most important 

challenge in the field of nanofluid technology. In dealing with this, a new class of 

nanofluid,’ hybrid nanofluid ’ has been introduced. These are the fluids containing two 

or more nanoparticles, and could be the most potential in terms of cost [15]. Moreover, 

hybrid nanofluids are capable to ameliorate the thermal performance of energy system 

because of synergistic effects [16]. The desired heat transfer efficiency can be attained 

even with small volume fraction of nanoparticles by hybridizing a suitable combination 

of nanoparticles. The current research therefore focuses primarily on the significant 

applications of hybrid nanofluids, which is authors’ ultimate goal of improving heat 

transfer performance of nanofluid.

Besides on the characteristics of nanofluids, another important factor affecting 

the behavior of fluid is an applied magnetic field. The mutual interaction between 

magnetic field and moving fluid is dealt in magnetohydrodynamic (MHD), which is 

the physical-mathematical framework dealing with the dynamics of magnetic field in 

electrically conductive fluids. Hannes Alfven pioneered the field of MHD in 1942, for
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which he was awarded the Nobel Prize in physics in 1970. In the past few years, MHD 

has played an incredibly important role in the development and progress of industrial 

science and technology, for instance, in astrophysics processes, cooling of nuclear 

reactors, MHD power generators, MHD pumps, accelerators [17, 18]. In addition, 

MHD boundary layer flow with heat transfer of nanofluids is becoming a major topic 

of modern-day interest over the last few decades [19- 21].

Moreover, porous media are ideal candidates for transport phenomena and heat­

intensive applications including pollution control of soil, groundwater flow, production 

of crude oil, solar receivers, porous burners, catalytic chemical reactors, chemical 

reformers and heat exchangers [22- 24]. It is well understood that the complicated 

pore structure is the unique property of a porous medium which distinguishes it from 

solid bodies. In addition to that, MHD flow inside porous media has provided a new 

interdisciplinary concept that can enhance and amend convective heat transfer. It has 

extensive applications in agricultural/mechanical engineering and petroleum industries 

science such as underground water resources, energy extractions, geothermal energy 

recovery, oil exploration, hydromagnetic generators [25, 26].

For physical applications, the geometry of a problem plays an important 

role. In particular, fluid flow over a cone has high demands in several real-life 

situations including aeronautical engineering, health care systems, energy conservation, 

astrophysics, space engineering and technology. In addition, canonical surfaces 

are often used in grinding, pumping, drilling, and degassing machines and so on 

in the chemical industry. Therefore, it is important not only to investigate these 

parameters, but also to get an idea of the fluid flow behavior when it especially flows 

along this type of geometry. Besides, the nature of flow and the participation of 

nanoparticles in heat transfer applications in diverse industrial chemical processes is 

also crucial to understand and predict. In reference to the aforementioned discussion, 

the heat transfer in the fluid, containing solo and hybrid nanoparticles, flow along 

a vertical cone is considered in current thesis. It is assumed that the cone is 

encapsulated in a porous media and a uniform magnetic field is induced normal to 

the surface of the cone. The effects of thermal radiation using Rosseland heat flux 

approximation and heat generation/absorption are the additional feature of the current
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study. Moreover, convective heat transfer is considered in two different modes, natural 

and mixed convection, subject to different boundary conditions including constant wall 

temperature, variable wall temperature, constant heat flux and variable heat flux. To be 

able to fully understand the physics of the flow in easy way, the governing equations of 

proposed problems are nondimensionalized using appropriate set of non-dimensional 

variables. Thereafter, the non-dimensional, coupled, nonlinear partial differential 

equations (PDEs) are discretized by exploiting an implicit finite difference method, 

specifically, Crank Nicolson method [27]. This method was proposed by John Crank 

and Phyllis Nicolson in the mid 20th century for solving the heat type parabolic PDEs. 

It is one of the most reliable, convergent, second order accurate in space and time and 

unconditionally stable scheme [28- 30]. After discretization, the algebraic difference 

equations are evaluated using Thomas algorithm with the aid of MATLAB software.

1.2 Problem Statement

Heat transfer enhancement is a technique to improve the rate of heat removal or 

deposition on the surface [31]. It is a topic of interest to researchers as it contributes 

in both energy and cost savings. Nowadays, adding nanoparticles to traditional fluids 

is among the most efficient ways to improve heat transfer [32]. The presence of nano­

scaled materials, even with a low volume concentration, plays a notable role in heat 

transfer (cooling and heating) processes. Besides nanomaterials, MHD is another 

important factor which plays a key role in intensifying the heat transfer capabilities of 

a thermal system. Nonetheless, placing porous materials in path of the fluid is one of 

the passive ways to improve heat transfer of thermal system. In the light of the above 

rationale, present research shows that the thermal performance of poor convectional 

fluid can be improved impressively with the help of solo and hybrid nanoparticles under 

existent magnetic field. In particular, this research will envision MHD boundary layer 

flow and convective heat transfer of fluids, suspended with solo/hybrid nanoparticles, 

past a vertical cone inside a porous medium. The mathematical heat transfer and 

fluid flow models are derived assuming single-phase flow. The proposed models are 

comprised of non linear coupled PDEs which ensures that the solutions do not exist 

in closed integral. Therefore, an implicit finite difference method, namely, Crank 

Nicolson method is proposed in order to find the numerical solutions.
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The research might be incomplete without responding to the following 

questions: How do the existing steady, natural convective flow models can be modified 

to analyze unsteady, natural as well as mixed convection in nanofluid and hybrid 

nanofluid over a vertical cone through porous medium? How do mixed convective flow 

behave together with variable wall temperature, constant heat flux and variable heat 

flux boundary conditions? How do the presence of MHD together with porous medium 

affect the heat transfer characteristics of nanofluid and hybrid nanofluid? How do the 

Rosseland heat flux together with heat generation/absorption affect the heat transfer 

characteristics of nanofluid and hybrid nanofluid? How to develop a programming in 

MATLAB software to find the numerical solutions of the problems?

In this study, the proposed problems are as follow:

(i) MHD flow and heat transfer of nanofluids with constant heating.

(ii) MHD flow and heat transfer of nanofluids with variable heating.

(iii) MHD flow and heat transfer of hybrid nanofluid with variable heating.

(iv) MHD flow and heat transfer of hybrid nanofluid with variable heat flux.

(v) MHD flow and heat transfer of hybrid nanofluid with variable viscosity and

heat flux.

1.3 Research Objectives

This research investigates unsteady, convectional heat transfer in nanofluids and 

hybrid nanofluid past a vertical cone in a porous medium. The external magnetic field, 

thermal radiation and heat generation/absorption effects are also taken into account. The 

nonlinear coupled PDEs are discretized by Crank Nicolson method. Further, Thomas 

algorithm is implemented to get the numerical results with the help of MATLAB 

software. In addition, for certain special cases, computational results are compared with 

the results provided in previous published studies for validation purpose. Following 

are the objectives of present study:

(i) To derive the mathematical models representing the unsteady two dimensional

MHD flow of nanofluid and hybrid nanofluid over a vertical cone in presence 

of porous medium.
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(ii) To solve the proposed problems numerically using Crank Nicolson method 

combined with Thomas algorithm.

(iii) To develop a programming in MATLAB software in order to obtain the solutions 

for proposed problems and also verify the results with the tolerance rate of 10-5.

(iv) To investigate the effects of physical parameters including nanoparticle volume 

fraction, porosity, magnetic, radiation and heat generation/absorption on virtual 

flow profiles, i.e., velocity, temperature, wall shear stress and Nusselt number.

1.4 Scope of Research

Researchers have been paying attention to the utilization of nanofluid and hybrid 

nanofluid since they have disclosed their potentiality as a magnificent working fluid 

in thermal energy systems. Holding such interesting characteristics of nanofluid in 

mind, the main concern in the present research is to scrutinize the heat transfer 

characteristics of nanofluids along a vertical cone embedded in a porous medium. 

The governing equations, continuity, momentum and energy equations, are simplified 

with the aid of boundary layer and Boussinesq approximations. Thereafter, appropriate 

non-dimensional parameters are used to obtain the non-dimensional models. Moreover, 

solo (CdTe, Cu, Fe3O4) and hybrid nanoparticles (Cu-Fe3O4) are used to analyze the 

heat transfer enhancement in convectional fluids. To the best of the authors’ knowledge, 

CdTe nanoparticles are not used to enhance the heat transfer rates of electrically 

conducting fluids. Therefor, this research analyzes the heat transfer enhancement 

due to CdTe nanoparticles. On the other hand, magnetite (Fe3O4) nanoparticles are 

capable to increase the heat transfer rates of thermal system in presence of magnetic 

field. However, the thermal conductivity of Fe3O4 is low as compared to other 

metal nanoparticles. Therefore, highly conducting metal specifically, Copper (Cu) 

has been used to increase the thermal conductivity of Fe3O4-water nanofluid. The 

spherical shaped nanoparticles are suspended in water based nanofluid, except where 

specified. In addition, the behavior of magnetic field, porosity, thermal radiation and 

heat generation/absorption on fluid features, velocity, temperature, wall shear stress 

and Nusselt number, are also analyzed.

The solution of non-dimensional, nonlinear, coupled PDEs are obtained 

numerically by using Crank Nicolson method assisted by Thomas algorithm. The
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MATLAB is used for the computation of numerical results as well as for plotting the 

graphs for visual display. The computational method is validated by comparing the 

results for certain cases with the numerical results of previously published papers. The 

theoretical framework for this thesis can be seen in Figure 1.2.

1.5 Significance of Research

Energy is one of the vital resource in all over the world and global demand for 

energy is steadily rising. This increasing demand is partly due to population growth 

and economic development. Scientists are actively looking for new technologies 

and equipment to cope with this problem, which at the same time are highly 

thermally efficient. Many engineering systems including optical devices, high precision 

microelectronics, transport system, high power engine, synthetic chemical process, 

etc., experience a rise in thermal load. Traditional heat reduction methods seem 

insufficient to tackle this problem. Scientist and engineers have therefore recommended 

to use nanofluids instead of traditional fluids. The nanofluids are the traditional fluids 

suspended by nanomaterials. The presence of nano-scaled materials, even with a low 

volume concentration, plays a notable role in intensifying the heat transfer (cooling 

and heating) processes. Therefore, the current study is conducted to examine heat 

transfer enhancement in convectional nanofluid in presence of magnetic field and 

porous medium.

In addition, hybrid nanoparticles have capability to improve the thermal 

performance of convectional nanofluid at low cost. Bearing this in mind, hybrid 

nanoparticles are used to enhance the heat transfer in unsteady MHD fluid flow over 

a vertical cone in porous medium. Moreover, the effects of thermal radiation and 

heat generation/absorption are also taken into account. By doing this research, it is 

hoped that the outputs or results will contribute on better understanding on MHD effect 

in natural and mixed convection for radiative hybrid nanofluid flow. Furthermore, 

this study gives a clear vision that how hybrid nanofluid can enhance the thermal 

conductivity and heat transfer rates in transient time with various boundary conditions.

A numerical method is chosen to solve all the models, hence this thesis 

contributes in the development of numerical programming which can be helpful to
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Figure 1.2: Research framework
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solve the complex unsteady MHD fluid flow models. In addition, this study provides a 

clear picture of the simulations and analysis to other researchers.

1.6 Thesis Organization

This thesis is divided into eight chapters dealing with heat transfer enhancement 

in electrically conducting fluid flow over a vertical cone inside a porous medium 

with solo/hybrid nanoparticles. Chapter 1 provides a brief overview of the research 

background together with problem statement, objectives, scope and significant of 

the research. In Chapter 2, a systematic overview of literature relating to proposed 

problems, as illustrated in problem statement, is discussed.

Chapter 3 is designed to examine the unsteady MHD flow and heat transfer of 

nanofluids over a vertical cone inside porous medium in presence of thermal radiation. 

This chapter is more focused on heat transfer behavior of nanofluid due to CdTe 

nanoparticles. However, the fluid flow features of CdTe-nanofluid are also compared 

with nanofluids containing copper, magnetite, gold and silver nanoparticles. The 

computational results for some limited cases are compared with peer reviewed literature, 

and an excellent agreement is found between the results. The unsteady MHD flow and 

heat transfer of nanofluids suspended with non-spherical CdTe nanoparticles past a 

vertical cone with variable wall temperature is considered in Chapter 4 . The flow 

simulation is executed in presence of thermal radiation and heat generation/absorption. 

The Hamilton Crosser model of thermal conductivity is used for different shape of 

nanoparticles. In addition, for certain cases, the computational results are compared 

with the provided results of previous published studies for validation purpose. In this 

regard, a perfect correlation exist between peer reviewed and the current results.

In light of amazing features of hybrid nanofluid, Chapter 5 explores unsteady, 

MHD flow and mixed convective heat transfer of hybrid nanofluid over an inverted 

cone. The cone is surrounded by a porous medium and the flow influenced by an 

external magnetic field and variable wall temperature. In addition, the fluid is moving 

in upward direction with uniform velocity. The hybrid nanoparticles Cu-Fe3 O4  are 

utilized to increase the heat transfer rate in water based hybrid nanofluid. Furthermore, 

the entropy generation in hybrid nanofluid is also scrutinized. Chapter 6 is structured
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to discuss the unsteady MHD flow and heat transfer of hybrid nanofluid flow over a 

vertical cone with variable wall temperature and heat flux. The effects of external 

magnetic field and thermal radiation in a porous medium are the additional features 

to the innovation of the constructed mathematical model. Moreover, the heat transfer 

enhancement by hybrid nanoparticles is also compared with that of solo nanoparticles. 

Next, Chapter 7 reveals the effects of variable viscosity on unsteady MHD flow and 

heat transfer of hybrid nanofluid over a vertical cone in presence of porous medium. 

The numerical analysis is accomplished in presence of radiative heat flux and heat 

generation/absorption. Finally, an overview of the thesis is presented in Chapter 8. 

This chapter also discusses the research contribution together with future findings. In 

Table 1.1, the summary of all considered problems along with considered effects are 

outlined.

Table 1.1: Summary of all problems with considered effects

Specifications
Problems

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

Nanofluid / / / / /

Hybrid nanofluid X X / / /

Natural convection / / / X X

Mixed convection X X / / /

MHD / / / / /

Porosity / / / / /

Thermal radiation / / X / /

Heat generation/absorption X / X X /

Variable viscosity X X X X /

Variable wall temperature X / / / X

Heat flux X X X / /
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