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ABSTRACT

Malaysia’s rivers and ocean energy can be the best resource for green marine 

renewable energy. The generation of electricity by the burning of fossil fuels are 

expensive and produce undesirable greenhouse gases. Malaysia’s sea has average 

speed of 1 m/s, which is twice less than the minimum speed that can operate the 

conventional turbines. Low-Speed Vertical Axis Turbine (LS-VACT) as a drag device 

represents a promising technology to exploit marine currents. It can be applied to 

harness current energy in rivers, coastal area and ocean due to their relative simplicity 

with reduced installation and maintenance costs. The purpose of this research is to 

investigate performance of the turbine and the influence of added mass, damping and 

arm-length to its performance at low current velocities. To achieve that, numerical 

simulation was conducted using MATLAB program by utilizing the hydrodynamic 

coefficients and derivatives of the hydrodynamic forces and moments acting on the 

turbine buckets. The simulation program was validated through the experiments of the 

LS-VACT. This developed simulation program can be used as a fast and useful tool to 

achieve design improvements for this turbine at several speeds and various loads. This 

computer programming can match and integrate the full-scale turbine to a suitable 

generator with different powers and loads efficiently. The simulation results showed 

that the performance of LS-VACT agreed within 10% with the experiment results and 

having the same trend at various flow speeds. A parametric study was performed to 

analyse the effects of added mass and arm-length at several current speeds. LS-VACT 

has the highest power coefficient of 0.196 at 0.32 m/s. Also, the peak power (8.6W) 

and the maximum torque (19.4N.m) values were recorded at a flow velocity of 0.64 

m/s. At low water flow speed of 0.17 m/s and 0.32 m/s, the added mass has a significant 

influence on the LS-VACT performance. At this condition, the inertia forces were 

dominant at low Keulegan-Carpenter number (K-C) of 3 to 9. The torque and the 

power magnitudes of the turbine decreased about 18 % and 52.7% respectively. At K­

C number above 10, the boundary layer separated with formation of vortex shedding 

occur. The drag forces were found to be dominant in this situation. At the current speed 

of 0.32 m/s and arm-length of 0.27 m, the maximum torque of 10.11 N.m and 

corresponding power of 1.75 W was achieved. However, further increase of the arm- 

length results in decreasing torque and power. The dynamic performance of LS-VACT 

was carried out and it can facilitate improvements in its design at low current speed.
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ABSTRAK

Air sungai dan tenaga lautan di Malaysia boleh menjadi sumber yang terbaik 
untuk tenaga hijau diperbaharui. Penjanaan elektrik dengan pembakaran bahan api 
fosil adalah mahal dan menghasilkan gas rumah hijau yang tidak diingini. Laut 
Malaysia mempunyai kelajuan arus purata kira-kira 1 m/s, iaitu dua kali ganda kurang 
daripada kelajuan minimum yang boleh mengendalikan turbin konvensional. Turbin 
Paksi Vertikal Kelajuan Rendah (LS-VACT) sebagai peranti daya seret merupakan 
teknologi yang mampu untuk mengeksploitasi arus laut. Ia boleh digunakan untuk 
menjana tenaga arus di sungai, kawasan pantai dan lautan kerana kesederhanaan 
kompleksiti mereka dapat mengurangkan kos pemasangan dan penyelenggaraan. 
Tujuan penyelidikan ini adalah untuk mengkaji prestasi turbin dan pengaruh jisim 
tambahan, redaman dan panjang lengan kepada prestasinya ketika halaju arus yang 
rendah. Untuk mencapai itu, simulasi kaedah berangka telah dijalankan dengan 
menggunakan program MATLAB berdasarkan pekali hidrodinamik dan terbitan daya 
hidrodinamik dan momen yang bertindak pada baldi turbin. Program simulasi telah 
disahkan dengan ujikaji LS-VACT. Program simulasi ini boleh digunakan sebagai alat 
yang cepat dan berguna untuk mencapai penambahbaikan reka bentuk turbin pada 
beberapa kelajuan dan beban. Pengaturcaraan komputer ini boleh menyamai 
keberkesanan turbin berskala penuh kepada penjana elektrik yang sesuai dengan kuasa 
dan beban yang berlainan. Hasil simulasi menunjukkan bahawa prestasi LS-VACT 
adalah dalam julat perbezaan sebanyak 10% dengan keputusan ujikaji dan mempunyai 
corak yang sama pada pelbagai kelajuan aliran. Kajian parametrik telah dijalankan 
untuk menganalisis kesan jisim tambahan dan panjang lengan pada beberapa kelajuan 
arus. LS-VACT mempunyai pekali kuasa tertinggi sebanyak 0.196 pada 0.32 m/s. 
Kuasa puncak (8.6 W) dan nilai kilas maksimum (19.4 N.m) dicatatkan pada halaju 
aliran 0.64 m/s. Pada kelajuan arus air rendah 0.17 m/s dan 0.32 m/s, jisim tambahan 
mempunyai kesan yang penting terhadap prestasi LS-VACT. Dalam keadaan ini, daya 
inersia adalah dominan pada nombor Keulegan-Carpenter (K-C) yang rendah iaitu dari 
3 hingga 9. kilas dan kuasa turbin turun sebanyak 18% dan 52.7% masing-masing. 
Pada nombor K-C di atas 10, lapisan sempadan memisahkan pembentukan vorteks. 
Daya seretan didapati dominan dalam keadaan ini. Pada halaju arus 0.32 m / s dan 
panjang lengan 0.27 m, kilas maksimum 10.11 N.m dan kuasa sepadan 1.75 W dapat 
dicapai. Namun, peningkatan panjang lengan yang akan mengurangkan kilas dan 
kuasa. Prestasi dinamik LS-VACT telah dijalankan dan ia boleh memudahkan 
penambahbaikan dalam reka bentuk pada kelajuan arus rendah.
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CHAPTER 1

INTRODUCTION

1.1 Research Background and Research Rationale

Malaysia’s total carbon dioxide emissions from fossil fuels increased from 

approximately 115 million metric tonnes in 2000 to approximately 195 million metric 

tonnes in 2010 and 2011 (The Energy Information Administration, 2012). Burning 

fossil fuels - such as coal, oil, and natural gas - to generate electricity produces 

greenhouse gases (Kang et al., 2012) harmful to the ozone and environment, as the 

Energy Information Administration at US Department of Energy (2011) reports. 

Moreover, fossil fuels are expensive (Yee et al., 2009) and their reserves limited 

(Hook, 2013) and quickly disappearing (Bhutta et al., 2012) - and, as if  these threats 

to traditional energy were not enough, no perfect technique exists to estimate how 

many fossil fuels remain (Ng et al., 2013). Accordingly, using fossil fuels alone to 

generate conventional electricity is considered unsustainable and, not unrelatedly, 

insufficient for the demand of the world’s seven billion people (Khan et al., 2009), and 

especially for the demand of those in remote communities. While global energy 

demand forecasts indicate that energy needs will nearly triple by 2050, renewable 

power sources only presently provide somewhere between 15% -  20% of total 

worldwide energy needs and demand. In response to the emerging deficit in renewable 

energy, researchers and developers are exploring and investigating potential renewable 

energy resources and trying to extract these resources by developing novel devices and 

innovative technologies that enable them to generate electricity (Ng et al., 2013).

The recent trend toward a Renewable Energy solution, as stated by Ashnani et 

al. (2014), emerged in part to reduce carbon dioxide emissions. For our purposes, it is 

important to note that Malaysia has recently been home to rapid economic 

development and, with it, increased energy demand (Oh et al., 2010; Chandran et al.,

2010). To be sure, effective alternative power sources are necessary meet this demand.
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Accordingly, Malaysia formulated the National Green Technology policy in 2009 

(Hassan et al., 2012) to encourage the use of green technology alongside its economic 

development, as Chua and Oh (2010) state. On the other hand, Global Carbon 

Reduction Commitments are pushing to use reliable sources of power. Such initiatives 

must grapple with the double-digit annual growth experts anticipate for the energy 

sector by 2020.

In November 2008, Marine Current Turbines (MCT), a company focused on 

green renewable energy, successfully implemented Sea-Gen, a commercial-scale 

project in Northern Ireland (Garman, 1998) involving two horizontal turbines of a total 

power of 1.2 megawatts, able to provide electricity to approximately 1500 households. 

To date, Sea-Gen has provided over 3 gigawatt hours of power in the mean grid system, 

and the power system generates the most electricity of any such systems based on tidal 

current. Similar projects remain in the planning stage, such as Anglesey Skerries’ 10 

MW project in Wales and Kyle Rhea’s 8 MW project in Scotland.

As is well known, marine - and especially ocean - energy can be categorised 

according to current, tide, thermal gradient, wave and salinity (OES-IA, 2006; Bedard 

et al., 2010). Among these elements, marine flow streams represent a relatively new 

and practically unexploited source, with potentially highly productive sites present 

worldwide. Because water is 800-835 times denser than air (Yaakob et al., 2008a; 

Chua and Oh, 2010; Maniaci and Ye, 2011), a current turbine can produce 

approximately 800 times more power (per unit area of the turbine) than a wind rotor. 

The power produced can be then transferred through a marine electric cable to the 

coastline or shore, and then connected to the grid. But the important thing to hold onto 

here is that water current turbines can harness hydrokinetic energy from flowing water 

such as ocean currents, run-of-river and tidal streams.

Khan et al. (2009) state that two kinds of hydro-turbines - vertical axis 

and horizontal axis - can be used as power generation devices for marine flow energy. 

Much work has been done on the feasibility of power generation devices, systems and 

plants as well as on their advantages, including on vertical axis and horizontal axis 

turbines. Horizontal axis turbines are a complex system and are appropriate only for
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large power plants since such plants can balance the high expenses of the turbines’ 

installation and maintenance by producing a great deal of energy. On the other hand, 

vertical axis turbines are relatively simple and represent a promising technology for 

exploiting marine currents - unlike horizontal axis turbines, vertical axis turbines can 

be used by small power plants (Khan et al., 2007) and in remote areas (Das and 

Balakrishnan, 2012; Rae and Bradley, 2012) due to their relatively low costs of 

installation, repair and maintenance (Khan et al., 2007).

Malaysia's rivers and ocean serve as great resources for green marine 

renewable energy. Hassan et al. (2012) suggest that the success of marine current 

turbines in Malaysia depends on the current velocity and water depth of their 

installation sites. More specifically, the researchers suggest that 4 knots (2 m/s) is the 

minimum ideal marine current velocity for a turbine’s operation. Meanwhile, the 

Malaysian Sea has an average current speed of only 2.0 knots (1 m/s), as the Royal 

Malaysian Navy reports (2010). Hassan et al. (2012) situate 2 knots as half the flow 

velocity required by conventional turbines, which are primarily designed and 

developed outside Malaysia. Moreover, the researchers also report that due to the low 

current velocity, a big device or turbine system is required to harness the energy of 

Malaysia’s sea currents, which presents a problem in that blade size is limited by water 

depth.

Addressing this context, Yaakob et al. (2008) proposed a Savonius vertical axis 

turbine to harness energy from Malaysia’s sea despite its slow current and shallow 

depth. Research was accordingly conducted to develop an optimal turbine drag type 

for Malaysian waters, which have a typical annual average current speed of 0.5 m/s 

and depth of approximately 15-30 meters (Yaakob et al., 2008; RMN-Royal 

Malaysian Navy, 2005). Notably, this vertical axis turbine has two main drawbacks: 

low torque and a low tip speed ratio (TSR, X), which make it difficult to integrate with 

a generator. Nevertheless, this low-speed vertical axis current turbine (LS-VACT) - 

which makes novel modifications to the Savonius rotor (a rotor that extracts energy 

from low current speed, as Khan et al. (2009) and Yaakob et al. (2010) report) - appears 

to be a suitable technology for harnessing marine energy from low-speed currents.
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Notably, this innovative marine turbine has four blades with arms of a reduced size as 

well as higher torque, elements that ensure the efficient rotation of the loaded turbine.

To be sure, LS-VACT design and analysis require the accurate modelling of 

fluid dynamics, and especially of the mass and structural dynamic forces that impact 

the rotor blades. The deeper point is that the more accurately these forces can be 

modelled, the more efficiently these turbines can be designed. In this respect, the 

development of a new technique for determining a dynamic performance using a 

dynamic simulation program for assessing the dynamic characteristics of LS-VACT 

and its performance is of prime importance.

Simulation and simulation-based optimisation techniques are frequently used 

for many applications in the research of different systems such as airspace and 

automotive systems, to name but a couple. In the maritime field, simulation models 

have been used for different types of current turbines. Most existing simulations 

emphasize the study of static simulation using CFD and pay very little attention to 

dynamic simulation for dynamic performance assessment using hydrodynamic 

derivatives.

This research study accounts for the dynamics and performance of the LS- 

VACT with the aid of computer modelling simulation and validation testing. 

Ultimately, this research aims to obtain the dynamic characteristics of the turbine, 

including the added mass effect and the performance of the turbine, to inform the 

development of a sufficient system for harnessing marine energy. Techniques for 

dynamic study were gleaned by producing new experimental procedures for 

conducting model tests using PMM to obtain the hydrodynamic coefficients set to be 

incorporated into the dynamic simulation program to assess the efficiency of LS- 

VACT and, subsequently, to investigate the impact of added mass, which may 

significantly influence performance due to the blades’ oscillations at very low current 

speeds.
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1.2 Background of the Problem

In Malaysia and some other countries, sea, rivers and ocean energy may be the 

best resource of green marine renewable energy. The VACT offers opportunities for 

supplying power to islands, coast and remote and rural areas. However, in Malaysia, 

research on ocean-based power sources remain in the development stage - only limited 

research on this topic exists, and most publications are assessment studies. Responding 

to this gap in the archive, this study sought to develop a new technique for predicting 

power output and power and torque coefficients using hydrodynamic derivatives. 

Notably, the research also sought to determine the added mass effect to improve 

performance at low flow velocity. To account for the reduced height necessary in 

Malaysian waters while maintaining efficiency, the LS-VACT was matched with a 

suitable generator using a dynamic simulation MATLAB program. By incorporating 

the hydrodynamic coefficients obtained from PMM experiments into the simulation 

program, an optimal turbine system was developed for the slow current and shallow 

depth of Malaysian waters. To account for the low flow velocities of Malaysian waters, 

which are between 0.5 to 2.0 m/s or less, all validated simulations were performed and 

conducted with a constant flow stream velocity of 1 m/s (i.e. the design speed) and a 

current speed of 0.5 m/s.

As noted above, LS-VACT is based on a conventional Savonius turbine design. 

While the Savonius turbine was originally developed for wind energy, it seems 

essentially suitable for the low flow stream of the Malaysian Sea because this rotor has 

the ability to run and operate at very low current velocity (Yaakob et al., 2010). So the 

modified LS-VACT appears a suitable technology for harnessing marine energy from 

a low-speed current. A potential solution to this innovative marine turbine lies in 

increasing torque by having four suitable blades with arms of a reduced size to rotate 

the turbine efficiently. Due to the nature of the LS-VACT, the blades operate in an 

unsteady condition and experience dynamic loads and interactions during their 

rotation. This interaction is further complicated by the addition of unsteady velocity in 

either the fluid or the buckets. The relative speed and angle of the azimuth of the blade 

oscillate continuously with the rotational frequency of the turbine. The blades on the 

downstream pass interact with the wake generated on the upstream pass; therefore, the
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level of unsteady forces is higher on the downstream pass. All these factors 

significantly influence turbine performance. The non-uniformity of the incoming flow 

changes the relative velocity pattern of the blades in the upstream pass at a frequency 

higher than the rotational frequency of the blades. The unsteady incoming flow 

condition of the upstream pass directly affects the quality of the output power of the 

turbine, as the majority of the net torque is created in this pass.

Meanwhile, the principal weakness of the stream-tube, cascade and vortex 

simulations is that they require lookup tables of static lift and drag data to calculate the 

forces on a turbine, even when dynamic effect corrections are implemented. Static 

experimental test data are often obtained under ideal, uniform and rectilinear flow 

conditions. The VACT, on the other hand, operates with the blades in a circular 

rotation, with a constantly varying angle of attack or azimuth, and the downstream 

blades are affected by the wake from the upstream blades. Furthermore, up-to-date, 

experimentally verified tabular data for a particular dynamic situation may not be 

available. Therefore, it is beneficial to develop dynamic turbine performance 

simulations that organically generate torque and drag characteristics within the model 

with the ability to assess the added mass effect.

Computational Fluid Dynamics (CFD) simulations offer an advantage over 

simpler potential flow models in that they do not require lift and drag data to resolve 

the flow field and the current structure around the turbine. Furthermore, CFD can, in 

principle, provide a more accurate representation of ancillary turbine structures, 

including support shafts and struts (Dai et al., 2011). The main drawback with using 

CFD simulations to resolve flow structure is that they involve long computation 

periods and high-power computing, even in 2D models. Whereas dynamic simulation 

turbine performance models and double, multiple stream-tube models take only 

seconds to present a solution, the traditional vortex model requires a few minutes and 

CFD a full day (or more) to solve and run a single turbine operating point (Dai et al., 

2011) - the correlational and computation power of CFD simulations must be 

improved.
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Therefore, it is necessary to develop an effective procedure for investigating 

the performance characteristics and influence of the hydrodynamic forces and added 

mass on a turbine by utilizing hydrodynamic coefficients. This can be achieved by 

developing a dynamic simulation computer program capable of assessing the dynamic 

performance of the LS-VACT by incorporating the derivatives obtained using 

developed PMM model tests into simulations. This method is useful in accounting for 

the effect of dynamic characteristics on turbine performance to enhance design in its 

initial stages. Accordingly, the primary goal of this study was to develop a 

computational dynamic simulation tool with which to run experimental tests to deepen 

knowledge of the dynamics, influence of added mass, arm effect and flow stream 

velocities that impact LS-VACT operation and performance. Meanwhile, the 

secondary goal of this study was to conduct experimental tests to yield data to calibrate 

and validate the results of the dynamic performance simulation program. This dynamic 

computer simulation was developed using Simulink-MATLAB software and is based 

on the hydrodynamic derivatives and coefficients incorporated into the dynamic 

simulation code.

1.3 Problem Statement

Several counties like Malaysia have a sea with low-speed current and shallow 

water depth which are not suitable conditions to extract the current energy. Malaysia’s 

sea has an average speed about 1 m/s (low current speed) (Royal Malaysian Navy, 

2010; Hassan et al., 2012), which is twice less than the minimum speed (2 m/s) that 

can operate the conventional turbines (Hassan et al., 2012). Savonius as VACT drag 

type essentially might harvest the energy from current speed as stated by Yaakob et al. 

(2010); however, the VACT is very much depending on current speed and water depth 

(Hassan et al., 2012). The low-speed VACT drag type can also extract the power from 

the current energy like a Savonius rotor. However, this low-speed VACT will not be 

able to rotate at a constant speed at low current speed. The blades oscillate; added mass 

influence will be of significant effect to the turbine performance.
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To be sure, understanding the dynamic behaviour of a system is a necessary 

condition for applying it. Until now, the field has largely negated the impacts of added 

mass and damping on the performance of a turbine at a low speed. Assessing the 

dynamic characteristics using a technique based on the hydrodynamic coefficients and 

derivatives is a better approach to studying the added mass effect to yield insights on 

optimal turbine design for low current speeds. The goal of this research was thus to 

develop a technique or procedure for dynamic-model performance. Accordingly, this 

study’s primary research question was:

"How can the hydrodynamic performance and added mass effect of low-speed vertical 

axis current turbine be quantified or assessed in terms of its dynamics? "

1,4 Research Questions

The research questions as follows:

(a) How to best assess the dynamic performance characteristics of the LS- 

VACT?

(b) What is the influence of added mass and damping have on the performance 

of LS-VACT?

1.5 Research Objectives

Understanding the dynamic performance and behaviour of a system is a 

necessary condition for applying it. The goal of this research is to develop a new 

method to determine the dynamics of LSVACT, in order to gain better insight on the 

dynamic behaviour of the turbine and explore the influence of the main design 

parameters. In addressing the above issues, this research work will be carried out with 

the following objectives:
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(a) To develop a computer simulation program for dynamic performance 

simulations. This program accounts for the effect of added mass and damping 

on the performance of LS-VACT. This program incorporates a generator to 

present a complete turbine-electric system for the performance assessment of 

LS- VACT.

(b) To assess hydrodynamic coefficients, derivatives and dynamic characteristics 

to investigate the performance of LS-VACT by using the model 

experimentation technique developed and the PMM. One blade was attached 

to the mechanism of the carriage and towed along the towing tank to simulate 

current flow velocity.

(c) To determine the performance of the LS-VACT turbine experimentally to 

validate the simulation results using the straight-line experimental model tests. 

The simulation program was validated to conduct the parametric study to 

obtain the influence of arm's length and added mass at different arm lengths 

and different speeds.

(d) To predict the power take-off of the Low-Speed Vertical Axis Current Turbine 

by matching it to a suitable generator using the MATLAB software.

1.6 Research Scopes

Dynamic performance is meaningful for evaluations of the performance 

coefficient. Accordingly, this research sought to develop a method (i.e. a new 

procedure of model experimentation) and a tool for predicting efficiency (i.e. power 

and torque coefficients), torque and power output to present recommendations for 

improving LS-VACT performance. The tool should be fast and able to quantify the 

effects of different design parameters, such as arm length and the height of the bucket, 

added mass and damping effects and free stream velocity, on the performance of the 

turbine.

9



More specifically, this study focused on a vertical axis drag type turbine made 

up of four buckets connected to arms. These arms attach the buckets to the main shaft 

to increase torque by increasing leverage, thereby increasing the amount of power 

generated. The simulation program for the dynamic performance of the LS-VACT, 

developed using MATLAB software, uses the hydrodynamic forces, moments and the 

derivatives of one bucket on the turbine. This program thus simulates the rotations of 

the buckets and the turbine based on a bucket’s equation of motion with three degrees 

of freedom (3DOF). The hydrodynamic coefficients and derivatives of the bucket were 

derived using PMM at current speeds of 0.17, 0.32 and 0.64 m/s. This simulation 

program has been used for numerical simulation and parametric study about torque 

and mechanical power output, added mass and damping impact, arm length effect and 

power take-off. Load mass method tests at the constant current speeds mentioned were 

used to validate this simulation program. The performance characteristics of the LS­

VACT (i.e. torque and mechanical power output) were also measured to compare the 

results with the MATLAB simulation results. The tests were performed in a towing 

tank operated by the Marine Technology Centre (MTC) at the Universiti Teknologi 

Malaysia (UTM) with no surface or wave interaction and with constant carriage speeds 

of 0.17, 0.32 and 0.64 m/s to simulate incoming water flow (the water current was 

assumed to exhibit a uniform flow stream). The tank had a total length of 120 metres, 

a width of 4 metres, and a depth of 2.5 metres. Notably, this study was limited to 

obtaining the hydrodynamic derivatives, current forces and drag forces and 

coefficients from a single bucket experiment. The added mass coefficients are based 

on PMM tests, while the model follows a different trajectory from the rotational one. 

Therefore, the study operates on the assumption that these two types of motion will 

result in the same added mass. In addition, the interaction of the nearby buckets is 

neglected: the method assumes that each one is independent and thus that the results 

are based on single bucket PMM tests. This means that the effects from the interaction 

between the parts are neglected.
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1.7 Significance of Findings

This research proposes the development of a framework for establishing a 

procedure/technique for dynamic performance using oblique and PMM model tests, 

dynamic simulations and performance analysis of the LS-VACT which leads to a 

better understanding of the hydrodynamic forces, moments and inertia forces (added 

mass) acting on the turbine. The benefit of the extended framework is visible in 

providing guidelines on the interpretation of data for conditions other than those under 

which they were obtained. The dynamic simulation program will be incorporated into 

the performance simulation program for predicting the power take-off of the turbine. 

The outcome of the proposed research; a validated methodology for assessing added 

mass effect, powering and dynamic performance of the turbine by considering the 

hydrodynamic derivatives, forces, added mass and Inertia and simulating them. In 

addition, this research will demonstrate the benefits of the simulation programs 

developed in terms of reliability and times, saving when using them for determining 

the optimum size to match it with the generator by simulating the different dimension 

of the turbine and variable current speeds.

1.8 Thesis Outline

The research thesis outline has been constructed in the most suitable flow 

process to assess the operation and the performance of the LS-VACT and the effect of 

the arm’s length added mass and damping on its power. The thesis starts with the 

introduction and background of the problem and rationale. Then it's followed by 

chapter 2, which is the ' Literature Review and Theory ' and it deals an overview of the 

present research and theory existing for LS-VACT, specifically focusing on the 

dynamic load, performance and operation of Low-Speed Vertical Axis Current 

Turbine. After that becomes chapter-3, 'Methodology', and describes the methodology 

and theory adopted and used in this research. Besides, presents the framework to carry 

out this research. Then followed by, Chapter 4,' Dynamic Modeling and Simulation ', 

and it deals with the software development and describes the mathematical model, 

dynamic simulation programs and model settings, used in this thesis. Besides this

11



chapter 5, provides the dynamic analysis and simulation results in detail, discusses the 

results obtained from the simulation programs. Next, Chapter-5, ' Experiments, 

Experimental Process and Experiment Results ', it is describing model tests set up and 

conducting the static and dynamic experiments and experiments for validation and 

experiment results in detail. Chapter 6, ' Parametric Study ', describes the results 

obtained from conducting the parametric study using the validated numerical 

simulation program to evaluate the power of the turbine and the influence of the 

parameters on it. Chapter 7 ' discussion ' discusses the simulation and experiment 

results. Chapter 8 provides a summary of the research and highlights some of the 

important conclusions and recommendations for future work.
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