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ABSTRACT

Shape memory polymers (SMP) are a class of smart materials that can be fixed 

in a temporary shape and regain its permanent shape upon stimulus. Bio-based polymer 

with shape memory effect can overcome environmental and economic issues. It can be 

used as actuator, sensor and for drug delivery system in medical area. Two stages curing 

reactive bio-based polyester network namely, poly(octanediol-co-dodecanedioate-co- 

citrate-co-itaconate) were synthesized. The produced samples were formulated as PCxIytz, 

where x represented molar ratio of citric acid, y represented molar ratio of itaconic acid, 

and z represented photo-curing duration which varies from 0 to 60 min. In the first 

curing stage, prepolymer of PCxIy was thermally crosslinked. At later time, a second 

curing was completed through photo initiated free-radical polymerization. From Fourier- 

transform infrared spectra of PCxIytz, the intensity of the absorption bands at 660 cm-1 

and 700 cm-1 were found decreased with increasing photocuring time. Swelling ratio of 

bio-based polyester was decreased from 2750 % to 250 % after exposed under UV light 

for 60 min. All of the synthesized bio-based polymers existed as a semi-crystalline 

polymer with melting-transition temperature and crystallization-transition temperature 

vary with photocuring time. Based on X-ray diffraction analysis, the polymer 

crystallinity of the bio-based polymer decreased with time of photocuring. The Young’s 

modulus of PCxIytz decreased with increasing photocuring time which may be due to 

increase in elasticity and softness upon second curing. Shape-recovery temperature of all 

of the PCxIytz was found around 37 °C. Two formulations of PCxIytz were successfully 

synthesized with excellent shape memory effect (SME). Therefore, this bio-based 

polymer with shape memory property can be potentially explored in bio-3D printing and 

medical industry as a printing and an adhesive material respectively.
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ABSTRAK

Polimer memori bentuk adalah kelas bahan pintar yang mampu dibentuk 

kepada bentuk sementara dan kembali kepada bentuk kekal apabila diberi rangsangan. 

Polimer berasaskan bio dengan kesan memori bentuk dapat mengatasi isu alam sekitar 

dan ekonomi. Ia boleh digunakan sebagai aktuator, penderia dan untuk sistem 

penghantaran ubat dalam bidang perubatan. Pempolimeran dwi peringkat rangkaian 

poliester reaktif berasaskan bahan- bio iaitu poli (oktandiol-ko-dodekandioat-ko-sitrat- 

ko-itakonat) telah berjaya disintesis. Sampel yang dihasilkan telah dinamakan sebagai 

PCxIytz, di mana x mewakili nisbah molar asid sitrik, y  mewakili nisbah molar asid 

itakonik, dan z mewakili masa pempolimeran foto yang berubah daripada 0 ke 60 min. 

Pada peringkat pempolimeran pertama, pre-polimer daripada PCxIy disilangkan secara 

haba. Seterusnya, proses pempolimeran kedua telah dilengkapkan melalui 

pempolimeran radikal bebas dengan pemula foto. Dari spektrum Fourier pengubahan 

inframerah PCxIytz, keamatan band penyerapan pada 660 cm-1 dan 700 cm-1 didapati 

menurun seiring dengan peningkatan waktu pengikatan silang. Nisbah pembengkakan 

poliester berasaskan bio telah menurun daripada 2750 % kepada 250 % selepas 

didedahkan kepada cahaya UV selama 60 min. Semua polimer berasaskan bio yang 

disintesis wujud sebagai polimer semi-kristal dengan suhu peralihan lebur dan suhu 

peralihan penghabluran yang berubah seiring tempoh pempolimeran foto. Berdasarkan 

analisis pembelauan sinar X, penghabluran polimer berasaskan bio menurun dengan 

masa foto pempolimeran. Modulus Young PCxIytz menurun dengan peningkatan masa 

pempolimeran foto yang mungkin disebabkan oleh peningkatan dalam keanjalan dan 

kelembutan bedasarkan proses pempolimeran kedua. Suhu bentuk-pemulihan bagi 

semua PCxIytz ditemui sekitar 37 °C. Dua formulasi PCxIytz telah berjaya disintesis 

dengan sifat memori bentuk yang sangat baik. Oleh itu, polimer berasaskan bio dengan 

sifat memori bentuk ini boleh diterokai dalam percetakan-bio 3D sebagai bahan 

percetakan serta sebagai bahan pelekat dalam industri perubatan.
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CHAPTER 1

INTRODUCTION

1.1 Background of study

In this recent, there is a paradigm shift in replacing the petroleum-based 

polymers with those derived from bio-masses. Development of bio-based polymer 

seems to be a cost effective and sustainable approach. The unstable price of crude oil 

is undeniably stated as the main reason for the fluctuation in manufacturing cost of 

petroleum based material. Ultimately, bio-based polymers sound sustainable, eco­

efficient, and environment friendly whereas petroleum-based materials are the major 

composition of landfill due to non-biodegradability.

Biomass, including crops, aquatic plants, wood, and animal waste is one of 

the most important renewable resource. In the past decade, a huge number of bio­

based polymers were successfully utilizing these renewable resources. Almost all of 

the bio-based polymers have no disposal issue at its end-of -life. The predicted 

market value of evaluation of worldwide bio-based polymer production capacity will 

increase from 6.6 million tons (€13 billion) from 2017 to 8.5 million tons in the next 

following five years (Figure 1.1) (Carus 2017). This is a great anticipation for the 

research and development of bio-based polymers.
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Bio-based polymers: Evolution of worldwide 
production capacities from 2011 to 2021
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Figure 1.1 Bio-based polymer: Evolution of worldwide production capacities 

from 2011 to 2021. (Carus 2017).

Interestingly, shape-memory properties of these bio-based polymers also have 

been revealed. Shape-memory polymers (SMP) are a class of smart materials that can 

be fixed in a temporary shape and regain its permanent shape upon heating (Xie 

2011). SMP were found in number of application ranged from aerospace, 

automotive, and most promisingly, in medical field. Typically, shape-memory 

properties of the thermosetting polymers (shape recovery percentage of thermoset 

polyurethane is 98 %) are better than that of thermoplastic (shape recovery 

percentage of thermoplastics polyurethane -  92.2 %) which may due to the presence 

of crosslinking network (Park, et al. 2014, Xie, et al. 2016).

By the using renewable resources, Guo and co-workers (2011) successfully 

synthesized a series of bio-based SMP namely, poly(propylene sebacate) (PPSe). In 

subsequent years, they also published works related to the characterization of 

PPS/inorganic filler composites (zinc diacrylate & boehmite nanoplatelets) (Guo, et 

al. 2014, Guo, et al. 2012). Besides, stimuli responsive drug releasing system based 

on bio-based polymer has been revealed (Serrano, et al. 2011). Although 

crosslinking network play important role in the shape-memory performance, 

reshape/remold of the permanent shape may still remain as significant limitation.
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In this project, a series of two-stages curing reactive polymer networks were 

synthesized using 1,8-octanediol, citric acid, itaconic acid, and 1,12-dodecanedioic 

acid. We hypothesize that the mechanical, thermal, chemical, structural, and shape- 

memory properties of the bio-based polymer can be simply tailored thru 

manipulating photo-curing duration as well as stoichiometric of citric acid to itaconic 

acid. Here, it is expected that two stages curing method may serve as an alternative to 

fabricate a bio-based shape-memory polymer in a complex structure. We believe that 

the outcome of this work may certainly attract as much attention as it perhaps 

deserved from the researchers, industry, and end-users.

1.2 Problem statement

Currently, replacing petroleum-based polymeric materials with those derived 

from bio-based feedstock may seem to be a more viable alternative (Carus 2017). In 

market, all petroleum-based materials are non-renewable. As compared to 

counterparts, bio-based materials are sustainable, eco-friendly, eco-efficient, and less 

harmful to environment. Furthermore, most of the landfills contains materials 

manufactured from non-renewable resources that are still increasing consistent with 

the growth of population. In such circumstances, there is quite a significant demand 

to promote exploration of a new generation of bio-based materials with 

degradability, leaving no disposal issue at its end-of-life.

Due to the presence of crosslinking network, bio-based thermosets have a 

better shape-memory effect as compare to the bio-based thermoplastics (Yang, et al. 

2004). In contrast, bio-based thermosets are less processable than its counterpart. 

Traditional polymer processing methods such as injection moulding as well as liquid 

moulding are limited to thermoplastics and relatively simple 3D shapes due to the 

requirement for demolding. Whereas much effort has been made on ever more 

complex SMP along with remouldability, processes for creating 3D complex shapes 

have remained challenging.
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Generally, thermal curing is the most common method to synthesize bio­

based crosslinked polymer. Synthesis of bio-based crosslinked polymer by using one 

cuing method (mostly are thermal curing) have been done by many research groups 

(Guo, et al. 2014, Miao, et al. 2012, Tsujimoto, et al. 2015, Gyawali, et al. 2010b). 

However, some of the researcher discovered that double polymer network enables 

altered crystallinity and mechanical properties of crosslinked polymer (Yacakci, et 

al. 2015, Meng, et al. 2015, Nair, et al. 2012). By cooperating with photo curing 

method, two-stage crosslinkable polymer network could be remould or reconfigure a 

new permanent shape from first stage- thermal curing.

In this project, a novel bio-based shape-memory polymer was synthesized. 

Two curing stages were conducted. 1,8-octanediol, citric acid, itaconic acid, and 

1,12-dodecanedioic acid were reacted to obtain prepolymer. Two different curing 

stages were conducted in the prepolymer. Following are some of the questions 

behind the effort in producing two stages reactive curing polymer network from bio­

based precursors:-

a) What is the effect of stoichiometric ratio of citric acid to itaconic acid 

on properties of bio-based polymers?

b) What is the effect different photo-curing time on the properties of bio­

based polymers?

c) How are the shape-memory properties of the bio-based polymers?

1.3 Objective of study

The objectives for this project have been embark as,

4



a. To analyze the effect of stoichiometric ratio of citric acid to itaconic acid 

on properties of bio-based polymers.

b. To study the effect of photocuring time on properties of bio-based 

polymers.

c. To evaluate shape memory properties of the bio-based polymers.

1.4 Scopes of study

The scopes of the project were cover synthesis, characterization as well as 

testing on the bio-based polymers produced. All monomers were melted and reacted 

to obtain prepolymers which was be cured under two different stages. Stoichiometric 

ratio of citric acid to itaconic acid and photo-curing duration were manipulated. The 

first curing stage is thermally crosslinked process and the second stage is photo­

induced free radical crosslink process. Samples produced were characterized by 

Fourier Transform Infrared Spectroscopy (FTIR). Polymer crystallinity were 

evaluated by using X-ray diffraction (XRD) method. Also, the transparency of 

polyester with different photo-curing time was studied by using ultraviolet-visible 

light spectrometer.

The photocuring time of curable polyester sample was manipulated between 

0 to 60 minutes. Gel content and swelling ratio of the polyester were determined by 

measuring the mass of insoluble portion in tetrahydrofuran (THF). Thermal 

properties of the polyester can be studied by differential scanning calorimetric 

(DSC). Besides, tensile testing was conducted to determine the elongation at break, 

tensile strength, and Young’s modulus of all samples.
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The performance of shape-memory effect was quantified through angle 

banding upon heating and thermomechanical cycle from dynamic mechanical 

analysis (DMA).

1.5 Significant of study

This study contributed to the improvement and innovation on synthesis of 

polymer process. I believe that this research encouraged the related researchers to be 

drawn to this novelty and innovated method of synthesis of bio-based polyester via 

thermal and photo curing process. Combination of two different curing method to 

lead the shape reconfiguration of thermoset polymer and to replace to traditional 

injection moulding method. This study could consider of the outcomes of the 

manufacturing industry demand and global environmental issues.
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