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ABSTRACT

Microwave heating is a volumetric heating and free-fouling process which can
save billions of dollars caused by periodic cleaning procedures of heat exchangers in the
current dairy industry. The current milk microwave pasteurization method results in
non-uniformity in the temperature distribution, which compromises the pasteurization
quality. This thesis aims to improve the uniformity of microwave heating using a
low-power coaxial slot antenna for the application of milk pasteurization. Initially, the
relative complex permittivity of cows’ raw milk is measured using a Keysight 85070E
dielectric probe over a temperature, T ranging from 25 ◦C to 75 ◦C with an interval
of 5 ◦C and a frequency ranging from 0.2 GHz to 6 GHz. The measurement results of
relative complex permittivity are modeled using a modified Debye relaxation model
and their values are used in the simulation for radiator design. A coaxial slot radiator
is designed and optimized using the COMSOL Multiphysics simulator by considering
the radiator sunk into the 100 mL of cows’ milk for pasteurization. The radiator’s
performance is optimized by adjusting the slot length and slot position on the monopole
radiator. At radio frequency of 2.45 GHz, the slot length of 2.4 mm and slot position
at 4.7 mm from the end tip of the radiator provide optimized impedance matching, Z𝑖𝑛
of 51.54 − 𝑗0.3Ω, which is close to ideal impedance, Z𝑖𝑛 of 50Ω. The monopole slot
radiator is fabricated using a semi-rigid RG405U cable with a SubMiniature version
A (SMA) connector. The antenna is fed with 2.45 GHz magnetron based microwave
generator, which is implemented and calibrated. The reflection coefficient, |S11 | of
the radiator with generator system in 100 mL of cows’ raw milk, is measured across
a temperature ranging from 25 ◦C to 85 ◦C using a portable radio frequency (RF)
reflectometer and a lab heater. The measurements of |S11 | show readings higher than
−45 dB at 25◦C and higher than−25 dB at 85 ◦C. The temperature distribution generated
from the radiator in 100 mL of cows’ raw milk at processing powers of 100 W, 125 W,
and 150 W are simulated using COMSOL and measured using an infra-red (IR) thermal
imaging camera and two thermocouple sensors mounted on a 3D-printed holder. The
measured temperature distributions show a significant improvement in temperature
uniformity with a maximum temperature difference,ΔT of 3.4 ◦C, 2.3 ◦C, and 2.2 ◦C for
power usage of 100 W, 125 W, and 150 W respectively. With a maximum temperature
difference, ΔT of 24.1 ± 1 ◦C, milk microwave batch pasteurization improved by up to
89.2% compared to previous non-uniformities. The collected cows’ raw milk samples
are then placed in pre-sterilized containers and processed inside biosafety cabinet II
for pasteurization quality assessment based on aerobic plate count (APC) tests and to
investigate the heating effects on milk’s nutrition at power usage of 100 W according to
the physiochemical properties tests using the Master Eco ultrasonic milk analyzer. The
APC tests show the technique’s ability to eliminate milk micro-organisms with a 5-log
reduction of the microbial population after 7 min, 6 min, and 5 min at microwave powers
usage of 100 W, 125 W, and 150 W respectively. The measured milk’s physiochemical
properties show similar heating effects on protein, solid-non-fat, and fat and fewer
effects on density, dry matter (DM), and lactose compared with previous studies on
conventional milk microwave batch pasteurization.
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ABSTRAK

Pemanasan gelombang mikro adalah proses pemanasan isipadu dan bebas
daripada pencemaran serta menjimatkan kos berbilion-bilion dolar untuk pembersihan
penukar haba secara berkala dalam industri tenusu semasa. Walau bagaimanapun,
pempasteuran gelombang mikro susu semasa mempunyai isu ketidakseragaman dalam
taburan suhu yang akan menjejaskan kualiti pempasteuran. Tesis ini bertujuan
untuk menambahbaik keseragaman pemanasan gelombang mikro untuk aplikasi
pempasteuran susu dengan menggunakan antena slot sepaksi berkuasa rendah sebagai
sumber pemanasan untuk pempasteuran susu tersebut. Pada mulanya, kebolehtelapan
kompleks relatif susu mentah lembu telah diukur dengan menggunakan prob dielektrik
Keysight 85070E, yang melingkupi julat suhu antara 25 ◦C hingga 75 ◦C dengan
selang 5 ◦C dan julat frekuensi antara 0.2 GHz hingga 6 GHz. Hasil pengukuran
ketelusan kompleks relatif dimodelkan dengan menggunakan model santaian Debye
yang dimodifikasi dan nilainya digunakan dalam simulasi untuk reka bentuk radiator.
Radiator slot sepaksi telah direka bentuk dan dioptimumkan menggunakan penyelaku
COMSOL Multiphysics dengan mempertimbangkan rendaman radiator tersebut ke
dalam 100 mL susu lembu untuk tujuan pempasteuran. Prestasi radiator tersebut
dioptimumkan dengan menyesuaikan panjang slot dan kedudukan slot pada radiator
eka-kutub. Panjang slot 2.4 mm dan kedudukan slot pada 4.7 mm dari hujung
radiator memberikan nilai pemadanan impedans Z𝑖𝑛 bersamaan 51.54 − 𝑗0.3Ω pada
2.45 GHz, di mana menghampiri nilai impedans unggul Z𝑖𝑛 iaitu 50Ω. Antena slot eka-
kutub tersebut difabrikasi dengan menggunakan kabel RG405U separuh tegar dengan
penyambung SubMiniature version A (SMA). Antena tersebut disambungkan dengan
penjana gelombang mikro berasaskan magnetron yang diaplikasi dan dikalibrasi pada
2.45 GHz. Pekali pantulan, |S11 | radiator dengan sistem penjana dalam 100 mL susu
mentah lembu diukur pada julat suhu antara 25 ◦C hingga 85 ◦C dengan menggunakan
reflektometer frekuensi radio (RF) mudah alih dan pemanas makmal. Pengukuran |S11 |
menunjukkan bacaan lebih tinggi daripada−45 dB pada 25 ◦C dan lebih tinggi daripada
−25 dB pada 85 ◦C. Taburan suhu yang dihasilkan daripada radiator dalam 100 mL susu
lembu pada kuasa pemprosesan 100 W, 125 W, dan 150 W telah disimulasi dengan
menggunakan penyelaku COMSOL dan diukur menggunakan kamera pengimejan
terma inframerah (IR) dan dua penderia termogandingan yang dipasang pada pemegang
tercetak 3D. Taburan suhu yang diukur menunjukkan bahawa penambahbaikan yang
bererti dalam keseragaman taburan suhu dengan sisihan suhu maksimum, ΔT 3.4 ◦C,
2.3 ◦C, dan 2.2 ◦C untuk penggunaan kuasa masing-masing pada 100 W, 125 W, dan
150 W. Peningkatan sebanyak 89.2% prestasi keseragaman taburan suhu dicapai
berbanding kaedah lama pempasteuran gelombang mikro susu yang mempunyai sisihan
suhu maksimum, ΔT 24.1 ± 1 ◦C. Sampel lembu susu mentah yang dikumpulkan
kemudian diletakkan di dalam bekas yang disteril dan diproses di dalam kabinet
biokeselamatan II untuk tujuan penilaian kualiti pempasteuran berdasarkan kepada
ujian kiraan plat aerobik (APC) dan kajian kesan pemanasan terhadap susu pada
penggunaan kuasa 100 W berdasarkan ujian fisiokimia menggunakan penganalisis susu
ultrasonik Master Eco. Ujian APC menunjukkan bahawa teknik kajian ini mampu
mengurangkan mikroorganisma dalam susu dengan pengurangan populasi mikrob 5-
log selepas 7 min, 6 min, dan 5 min untuk penggunaan kuasa gelombang mikro masing-
masing pada 100 W, 125 W, dan 150 W. Sifat fisiokimia susu yang diukur menunjukkan
kesan pemanasan yang hampir sama terhadap kandungan protein, pepejal-bukan-lemak,
dan lemak dam susu. Tetapi, hanya menunjukkan sedikit kesan pada ketumpatan, bahan
kering (DM), dan laktosa dalam susu selepas menjalankan pempasteuran berbanding
dengan kajian pempasteuran susu gelombang mikro konvensional yang terdahulu.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Milk provides a wealth of nutrition benefits, such as protein, fat, and lactose.

It also contains antibodies, which protect humans against infections [1]. A category

of milk consumers prefer to drink raw milk rather than pasteurized milk for several

health benefits claims as they perceived. These benefits are related to the nutrition and

digestibility that would prevent allergies and heart disease [2,3]. It is due to claims that

heating may destroy the nutritional values of the milk. However, raw milk serves as

an excellent growth medium for several microorganisms, including pathogenic bacteria

that cause illnesses to most people who serve contaminated raw milk and its related

products [4]. The risks imposed by consuming raw milk and its products can be

reduced by heating. Hence, pasteurization is a thermal process that aims to eliminate

the milk-borne pathogens, maintain nutrition and taste, and extend the product shelf

life [5].

Consequently, the United States Food and Drug Administration (FDA) made

pasteurization mandatory in the dairy industry [6]. A heat exchanger is equipment

used to heat the milk based on the conduction heating concept. It is the standard

pasteurization equipment used in the industrial sector due to its uniform thermal

distribution [7]. Nevertheless, conduction heating causes overheating of milk

molecules, resulting in milk residuals at the conducting surfaces. However, the fouling

in the heat exchanger causes degradation in pasteurization quality and requires high

maintenance cost [8]. The continuous demand for solving such problems enables

emerging technologies to be involved. Microwave heating is one of the promising

solutions which is used and adapted in certain countries. Microwave heating is

rapid, which yields increased production and is inexpensive to maintain the operation.

The principal feature of microwave heating is volumetric heating, where the heating
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mechanism relies on the interaction between material and applies microwave signals,

which avoids the overheating of milk particles at the internal surfaces of heat exchanger

pipes as in the conventional heating [9]. Currently, a microwave heating system is not

applied as milk pasteurization in the dairy industry; due to the lack of uniformity in

the thermal distribution of microwave heating, which lowers the product safety and

quality [10]. This thesis presents a low-power applicator called coaxial slot antenna as

a new microwave heating method for milk pasteurization based on a batch processing

approach. Hence, the proposed coaxial slot radiator aims to overcome the non-

uniformity in the thermal distribution in milk’s current microwave batch pasteurization.

Accordingly, it includes measurements and modeling of the temperature and frequency-

dependent dielectric properties of cows’ raw milk to be used to simulate microwave

pasteurization. In addition, the microbial quality of the pasteurization process is

assessed based on monitoring the aerobic plate count (APC) tests. At the same time,

its impact on milk nutrition is investigated based on measuring the physiochemical

properties.

1.2 Problem Statement

Milk includes high water activity and complex biochemical composition.

Therefore, it serves as an excellent culture medium for the growth and multiplication

of several kinds of microorganisms, including pathogenic bacteria [11]. It gets

contaminated by several factors, such as cow herself, air, milking equipment, cleanliness

of breading, containers, soil, feed, faeces, and grass [3, 12, 13]. Several milk-borne

pathogens have been isolated from raw milk samples across different countries and

decades, as reviewed in Table E.1. Therefore, pasteurization is a mandatory process,

which requires heating raw milk to an inactivation temperature, 𝑇inact for a certain

amount of time to render it for human consumption (to ensure that the milk or its

products are free of pathogens) without compromising its nutritional values [11]. In the

current dairy industry, milk pasteurization processes are achieved using either plate or

tubular heat exchangers. In such equipment, milk is heated based on conduction heating,

where the pipes are the source of heating, which consequently causes accumulating

of milk residuals inside the pipes as a result of overheating [14] after some operating

hours [15], as shown in Figure 1.1. Fouling causes a lack of uniform temperature

distribution, which decreases the quality and safety of milk products. Therefore,
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periodic cleaning of the heat exchanger (at least once per day) is a mandatory process to

maintain heat transfer efficiency and product quality [16]. However, fouling mitigation

practices cost approximately $26.85 billion annually [17, 18].

Figure 1.1: A cross-sectional view of heat exchanger shows severe deposits [19]

In contrast, microwave heating is a promising heating technology that can

be effectively applied as an alternative to radically overcome fouling problems in

conventional industrial pasteurization systems [10]. Microwave heating is volumetric

heating and free-fouling process as the milk is heated based on the interaction between

applied microwave signal and its molecules, while the container remains cold [20,21].

Besides, the heating efficiency of microwave is higher than conventional heating,

thereby maximizing product safety and maintaining quality [22,23]. Existing research

on milk microwave heating, however, [10], reveals significant non-uniformities in

temperature distribution. Hence, the thermal variations in microwave heating lead

to incomplete kill of harmful bacteria, which ends up with inferior quality products as

addressed by several researchers [24–26].

In milk pasteurization, microwave heating is classified into two types; batch

and continuous-flow heating methods. The batch method requires manually placing
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the food in the processing cavity, such as an oven chamber. In contrast, the continuous-

flow process requires milk to be bumped into the tube from the inlet side of the

cavity, pass through the radiation, and exit from the outlet side of the chamber as a

processed product [22,27]. It is recommended to use multiple cascaded ovens with three

magnetrons (for each) with a minimum net power of 2 kW to ensure uniform heating

at the exit location, where such power is considered high, in order to achieve uniform

temperature distribution in a continuous-flow microwave heating. Furthermore, it was

discovered that increasing the flow rate of milk in the tube reduces the rate of microbial

destruction, resulting in pasteurization failure [28, 29].

In contrast, in milk microwave batch pasteurization, different methods have

been conducted to optimize the temperature uniformity, such as the mode stirrer, which

is applied in both types of the processing [30], and the usage of a rotating turntable,

which applies to several materials and has been extensively adopted in current domestic

microwave ovens [31]. None of these solutions could solve the non-uniformity heating

issue for milk pasteurization efficiently [32, 33]. A study on cow’s milk microwave

batch pasteurization using a modified domestic microwave oven was conducted [34]. It

shows that even though there are different container types, different volumes of samples,

and different applied microwave power were used, the results show no variations in the

temperature uniformities with a mean maximum temperature difference, ΔT of 24.1±1
◦C. Therefore, this thesis aims to solve the non-uniformities of milk pasteurization

using a low-power coaxial slot radiator as an isothermal heating radiator.

Dielectric properties are the main parameter and variable in the microwave

heating mechanism, where the dielectric properties primarily represent the microwave

power absorption. Therefore, proper dielectric measurements and modeling of the

specimen under heat are essential in order to provide accurate data for microwave

heating simulation for approximate determination of thermal-energy coupling,

temperature rise, and distribution within the samples [35]. The dielectric properties of

milk depend on several factors, namely operating frequency, temperature, milk density,

thermal conductivity, and specific heat capacity [36]. Several studies were carried out

to measure the dielectric properties of different milk [1,36–40]. Two of them concerned

cow’s milk [1, 40]. However, [40] measured the dielectric properties of cow’s milk at
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a range of the pasteurization temperature from 25 ◦C until 75 ◦C with a step size of

10 ◦C for only two selected frequencies and modeled the measured dielectrics using

an empirical polynomial regression rather than a Debye relaxation model. Likewise,

for [1], where the measurements were achieved at a temperature of 5 ◦C and from 10 ◦C

to 70 ◦C at single frequency, 𝑓 = 2.45 GHz. In this thesis, the dielectric measurements

are carried out at a range of pasteurization temperatures from 25 ◦C to 75 ◦C with a

5 ◦C interval and frequencies from 0.2 GHz to 6 GHz. Once the measured data is

obtained, the data is fitted and represented using the Debye-relaxation model.

In addition, the incidence of pathogenic bacteria, so-called microbial load, in

milk is an indicator for the microbial quality and safety of pasteurized milk [41, 42].

The pasteurization process is intended to eliminate the most heat-resistant pathogenic

bacteria present in the raw milk [43], that is Coxiella burnetii, which will never be

existed in all raw milk samples. Instead, measuring the logarithmic reduction in the

population of microorganisms based on the aerobic plate count (APC) test (in a unit of

colony-forming per milliliter CFU/mL) indicates successful pasteurization. The United

States Food and Drug Administration (FDA) found that any thermal process that can

achieve a 5-log reduction in the APC test can eliminate the most heat resistive pathogen

of concern in food [44]. Besides, according to Grade "A" milk based on the Pasteurized

Milk Ordinance (PMO), bacterial limits for pasteurized milk should not exceed 20×103

CFU/mL [6]. Therefore, the APC tests were conducted to investigate the quality of the

pasteurization, the inactivation times, and inactivation kinetics of microorganisms in

cows’ raw milk.

Finally, milk undergoes several changes during thermal treatment, which

results in the degradation of some nutritional content [45]. Both conventional

conduction heating and microwave heating show effects on some of the milk’s nutrition

in terms of the physiochemical properties; dry matter (DM), solid-not-fat (SNF),

total protein, lactose, fat, and other properties such as pH, density, and freezing

point which are necessary to test the milk adulteration [46]. Therefore, milk’s

physiochemical properties were tested to analyse and compare the effect of previous

studies on microwave milk pasteurization with the proposed microwave cow’s milk

batch pasteurization.

5



1.3 Research Objectives

The objectives of this study:

(i) To measure the relative complex permittivity of the cows’ raw milk and express

the relative complex permittivity using the Debye relaxation model (required

parameter in the coaxial slot antenna design).

(ii) To design, optimize, and fabricate the coaxial slot antenna as a heating applicator

and implement a microwave signal generator system based on the magnetron

source required to feed the applicator.

(iii) To study the temperature distribution of the proposed microwave heating

for cow’s milk at the pasteurization temperature based on simulation and

experimental measurements using both Infra-red (IR) thermal imaging camera

and thermocouple sensors, then compare the temperature uniformity with

previous studies on conventional milk microwave batch pasteurization.

(iv) To pasteurize cows’ raw milk using proposed heating and assess the quality

of microbial reduction of the pasteurization process based on the aerobic plate

count (APC) tests.

(v) To analyze the effect of the pasteurization process on milk’s nutrition by testing

its physiochemical properties, namely pH, solid-not-fat (SNF), density, dry

matter (DM), fat, protein, lactose, salt, and freezing point using an ultrasonic

milk analyzer.

1.4 Scope of Work

This work aims to measure and model the relative complex permittivity of cows’

raw milk using batch (vat) pasteurization. The measured relative complex permittivity

is then used to simulate antenna performance during heating. Then, the microwave

heating system is fabricated based on a coaxial slot radiator as a heating applicator.

Then it was followed by assessing milk pasteurization quality using aerobic plate count

tests (APC) and the corresponding impacts on physiochemical properties. The scope

of this thesis is briefly presented as:
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(i) Measure and model the dielectric properties of cows’ raw milk under batch

pasteurization. The measurements cover the frequency range of 0.2 GHz to

6 GHz and the temperature range of 25 °C to 75 °C with 5 °C interval. A

combination of Debye, Cole-Davidson, and You’s formulation was applied to

model the temperature-dependent dielectric properties at the three dominated

relaxation processes, and all statistical coefficients and parameters were

provided accordingly. MATLAB programming is used for modeling the

dielectric properties.

(ii) The dielectric constant and loss factor measurements were used to simulate

microwave heating for optimum antenna design. COMSOL Multiphysics

software was used to study the coaxial slot antenna’s design, optimization, and

performance. An RG405-U Semi-rigid RF coaxial cable is used in the design

simulation and fabrication of antenna at 2.45 GHz for three processing powers,

namely 100 W, 125 W, and 150 W. The heat transfer equation, which includes

the coupled electromagnetic heating, is applied to obtain the temperature

distribution through milk pasteurization.

(iii) The antenna design and optimization were carried out based on a single

slot, where the effect of the variation in the slot length and location was

achieved based on the minimum reflection coefficient, |𝑆11 | and optimum input

impedance, 𝑍𝑖𝑛 matching.

(iv) The microwave coaxial antenna-based pasteurization system (MAPS) includes

a coaxial slot antenna connected to a microwave signal generator. An industrial

water-cooling magnetron was used to generate signals at 𝑓 = 2.45 GHz. The

system is tuned, tested, and calibrated based on a three-stub waveguide tuner

(WR430), waveguide coupler (WR430), and |𝑆11 | parameter, respectively. The

system is calibrated based on cows’ raw milk collected from a local dairy farm

in Johor Bahru, Malaysia.

(v) The sample volume used is the 100 mL glass beaker, which was used in

the simulation’s modeling to study the design optimization of the heating

applicator and heating profile. It is also used in the experimental work, including

temperature distribution measurements, pasteurization quality assessment using

APC tests, and physiochemical properties investigation.
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(vi) The temperature distribution was determined in the simulation using COMSOL

software. The experimental measurements are monitored using a VarioCAM

thermal imaging camera manufactured by Infra Tech. for surface temperature

distribution. Two thermocouple sensors were used to monitor the depth

temperature distribution in the length cross-section of a 100 mL glass beaker.

(vii) The bacterial count test (APC) is carried out to study the microbial control of

the proposed microwave heating and assess pasteurization quality. Hence, the

MAPS system is installed on the level 2 biosafety cabinet. Three processing

powers were used for the APC test, namely 100 W, 125 W, and 150 W at

a processing period of 0 min up to 7 min with 1 min of period steps. The

APC test is conducted according to the Food and Drug Administration (FDA)

standard of microbial analysis. The decimal reduction time of microorganisms

or (D-value) is applied to calculate the pasteurization efficiency.

(viii) The physiochemical properties are carried out using Master Eco ultrasonic milk

analyzer (manufactured by Milkotester) for samples processed in 100 W of

MAPS processing power case. Pearson correlation matrix, rate of change Δ𝑉 ,

and principle component analysis (PCA) are used to interpret the findings and

correlation, where R programming is used to achieve these calculations.

1.5 Contribution of Research Work

The highlighted outcomes of this work are listed as:

(i) The measured relative complex permittivity from 0.2 GHz to 6 GHz presents

degradation in the dielectric constant as the temperature and frequency increase.

Whereas the values of dielectric loss factor, 𝜀′′
𝑟 are very high at frequencies

below 2.0 GHz, where the effects of ionic conductivity exhibited. The relative

complex permittivity is modeled based on Debye and modified Cole-Cole with

three relaxation processes. All its parameters were optimized and gave good

matching between predicted and measured data.

(ii) The simulation of effective antenna design gives higher impedance matching,

|𝑆11 | = - 31.48 dB with antenna input impedance, 𝑍𝑖𝑛 = 51.54 − 𝑗0.3Ω. The

measurements of the reflection coefficient of total system impedance matching
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which is further tuned at 𝑓𝑜 = 2.45GHz at a range of pasteurization temperature,

show decreasing in the reflection coefficient as the temperature increasing,

however, the |𝑆11 | at highest temperature, 85 ◦C gives −25 dB, which ensures

maximum power transfer to the applicator during all pasteurization process.

(iii) The measurements of the temperature distribution on cows’ raw milk samples

show significant improvement in the temperature uniformity, with mean

maximum temperature difference, ΔT of 2.6 ± 0.3 ◦C which is 89.2 % better

than the uniformity of previous milk microwave batch pasteurization.

(iv) The microbial reduction test based on the aerobic plate count (APC) show total

elimination of microorganisms after 7 min, 6 min, and 5 min of processing at

100 W, 125 W, and 150 W, respectively. All processed samples of cows’ raw

milk indicate the system’s ability to achieve a 5-log reduction in the population

of microorganisms, which ensures the microbial quality of the pasteurization

process.

(v) The effects of the proposed heating on milk’s nutrition show similar effects

on the cow’s raw contents of protein, solid-not-fat (SNF), and fat, as well as

fewer effects on density, dry matter (DM), and lactose, when cows’ raw milk

is processed at 100 W for 7 min comparing with previous studies on milk

microwave batch pasteurization.

1.6 Thesis Organization

Chapter 1 presents introduction and brief background of milk and the existing

conventional and microwave pasteurization systems,research objectives, scope of work,

the significance of the work, and the thesis organization.

Chapter 2 highlights the key issues and challenges concerning microwave

pasteurization. The first section reviews the importance of milk pasteurization, outlines

the current conventional pasteurization standards and equipment used, and describes

the types of microwave heating. The second section reviews the previous studies

that conducted experiments on milk microwave pasteurization and then quantifies

the microwave non-uniformity for the batch milk pasteurization studies using the

temperature difference, Δ𝑇 . The third section addresses the fundamentals of microwave
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heating; such as heating mechanisms, essential factors such as dielectric properties,

microbial inactivation via microwave energy, and the standard regulations concerning

the usage of microwave heating, such as the impacts on public and individual worker

health and the interference with other communication systems. The fourth section

discusses the significance of dielectric properties and modeling, as well as their

role in the development of microwave heating. After that, it is followed by an

evaluation of the previous research on the measurements and modeling of the cow’s

milk dielectric properties, particularly the relative complex permittivity. Following

that, the fundamental concepts of microwave heating simulation were discussed. By

reviewing prior studies based on conventional microwave oven-based pasteurization,

the last section highlights the influence of microwave pasteurization on nutritional milk

components, referred to as physiochemical characteristics.

Chapter 3 practically demonstrates the methodologies used to develop, study,

and validate a microwave pasteurization system using a coaxial slot radiator. The first

stage involves the measurements and modeling of the dielectric properties of cow’s milk.

The second stage presents the simulation methodology and optimization of the coaxial

slot antenna utilizing the measured values of the milk’s relative complex permittivities

taken from the first phase. The simulation aims to optimize the coaxial slot antenna,

calculate the radiation patterns, and simulate the effects of microwave energy on public

health. The third stage includes fabrication of the coaxial slot antenna, implementation

of microwave signal generator, study and improvement of impedance matching of

the complete microwave heating system, and measurements and calibration of the

generated microwave power. The main problem of microwave pasteurization is the

temperature non-uniformity which causes pasteurization failure for pasteurized milk

samples. Therefore, the fourth stage presents the measurement of the temperature

distribution of the proposed microwave heating on the cow’s milk samples of 100

mL, each using a thermal imaging camera and two thermocouples sensors. Milk

microwave pasteurization is like other types of heating; it results in variation in the

milk’s nutritional components. Hence, the fifth stage presents the methodology used

to measure the physiochemical properties of cow’s raw milk. The final stage describes

the statistical formulas and parameters used in different parts of the study.
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Chapter 4 presents the results of the dielectric properties measurements and

modeling, including the ionic conductivity, 𝜎 and depth of penetration, D. Then, it

follows by the results of the temperature distribution with a comparison to highlight

the optimization of the temperature uniformity as compared with previous works

of microwave pasteurization. The results of pasteurization assessments based on

aerobic plate count are presented. Then finally, the results of the impact of the

proposed microwave pasteurization on milk nutrition are presented and compared with

previous studies. Chapter 5 presents the conclusion of this research works, followed by

recommendations for future work in this topic.

11
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