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ABSTRACT 

Arsenic is a common contaminant in gold mine soil and tailings. Moreover, 

the contamination of water with arsenic is a serious health issue. Microbes present an 

opportunity to remove arsenic from wastewater via adsorption process, which is 

distinguished by its low cost and easy technique in comparison with conventional 

techniques include oxidation, coagulation-flocculation, and membrane techniques. 

However, the development of existing bio-treatment approaches depends on isolation 

of arsenic-resistant microbes from arsenic contaminated samples. In this study, a 

culture-independent approach using Illumina sequencing technology was used to 

profile the microbial community in situ. This was coupled with a culture-dependent 

technique to analyse the microbial population in arsenic-laden tailing dam sludge 

based on the culture-independent sequencing approach. Based on the culture-

independent sequencing approach, 4 phyla and 8 genera were identified in a sample 

from the arsenic-rich goldmine. Firmicutes (92.23%) was the dominant phylum, 

followed by Proteobacteria (3.21%), Actinobacteria (2.41%), and Bacteroidetes 

(1.49%). The identified genera included Staphylococcus (89%), Pseudomonas 

(1.25%), Corynebacterium (0.82%), Prevotella (0.54%), Pseudonocardia (0.39%), 

Megamonas (0.38%) and Sphingomonas (0.36%). The culture dependent method 

exposed significant similarities with culture independent methods at the phylum level 

with Firmicutes, Proteobacteria and Actinobacteria, being common, and Firmicutes 

was the dominant phylum whereas, at the genus level, only Pseudomonas was 

presented by both methods. Considering the advantage of the different structures of 

these bacterial cell walls in adsorption, attempts were made to use individual dried 

biomass of Bacillus thuringiensis strain WS3 (IDB) and mixed dried biomass of 

three species B. thuringiensis strain WS3, Pseudomonas stutzeri strain WS9 and 

Micrococcus yunnanensis strain WS11 (MDB) to achieve highest As (III) and As (V) 

removal under different conditions. Successively, MDB were found to be efficient in 

the removal of As (III) and As (V) up to 95 % and 98 %, respectively. The maximum 

adsorption capacity of As (III) and As (V) increased from 95 mg/g and 145 mg/g for 

IDB to 217 mg/g and 333 mg/g for MDB as obtained from the Langmuir isotherm. 

The pattern of adsorption fitted well with the Langmuir isotherm model and kinetic 

data followed a pseudo-second-order model for both IDB and MDB. The 

thermodynamic parameters ∆G°, ∆H° and ∆S° revealed that the adsorptions of both 

As (III) and As (V) were spontaneous, feasible and endothermic in nature. FESEM-

EDX analysis established diverse cell morphological changes with significant 

amounts of arsenic adsorbed onto biomass compared to original biomass. Results 

from FTIR have shown the involvement of mainly hydroxyl, thiol, amide and amino 

functional groups in the arsenic adsorption. Batch experimental data were taken into 

account to create an artificial neural network (ANN) model that mimicked the human 

brain function. 5-7-1 neurons were in the input, hidden and output layers 

respectively. The batch data was reserved for training (75%), testing (10%) and 

validation process (15%). The predicted output of the proposed model showed a 

good agreement with the batch experiments with reasonable accuracy. This study has 

demonstrated the potential for using mixed dried non-living biomass as a new 

biosorbent for arsenic removal.    
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ABSTRAK 

Arsenik adalah pencemar biasa di tanah dan amang lombong emas. Selain itu, 

pencemaran air dengan arsenik merupakan masalah kesihatan yang serius. Mikrob 

menyediakan peluang menyingkirkan arsenik dari air sisa melalui proses penjerapan, 

yang dibezakan oleh kos rendah dan teknik mudahnya berbanding dengan teknik 

konvensional termasuk teknik pengoksidaan, koagulasi-flokulasi, dan membran. Walau 

bagaimanapun, perkembangan pendekatan bio-rawatan yang sedia ada bergantung 

kepada pemencilan mikrob rintang arsenik daripada sampel yang tercemar arsenik. 

Dalam kajian ini, pendekatan bebas kultur menggunakan teknologi penjujukan Illumina 

digunakan untuk memprofilkan komuniti mikrob in situ. Pendekatan ini digandingkan 

dengan teknik bergantung kultur, iaitu pemencilan menggunakan dua media 

pertumbuhan berbeza, LB dan CDM untuk menganalisis populasi mikrob dalam enap 

cemar empangan amang muatan arsenik berdasarkan pendekatan penjujukan bebas 

kultur. Berdasarkan pendekatan penjujukan bebas kultur, 4 fila dan 8 genus dikenal pasti 

dalam sampel dari lombong emas yang kaya dengan arsenik. Firmicutes (92.23%) 

merupakan filum dominan, diikuti oleh Proteobakteria (3.21%), Aktinobakteria (2.41%), 

dan Bakteroidetes (1.49%). Genus yang dikenal pasti termasuk Staphylococcus (89%), 

Pseudomonas (1.25%), Corynebacterium (0.82%), Prevotella (0.54%), Pseudonocardia 

(0.39%), Megamonas (0.38%) dan Sphingomonas (0.36%). Kaedah bergantung kultur 

mendedahkan bahawa terdapat persamaan yang signifikan dengan kaedah bebas kultur 

pada tahap filum dengan Firmikutes, Proteobakteria dan Aktinobakteria sebagai yang 

biasa, dan Firmikutes sebagai filum dominan manakala pada tahap genus, hanya 

Pseudomonas yang ditunjukkan oleh kedua-dua kaedah. Mempertimbangkan kelebihan 

struktur yang berbeza pada dinding sel bakteria-bakteria ini dalam penjerapan, percubaan 

dibuat untuk menggunakan biojisim kering Bacillus thuringiensis strain WS3 (IDB) dan 

campuran biojisim kering tiga spesies iaitu Bacillus thuringiensis strain WS3, 

Pseudomonas stutzeri strain WS9 dan Micrococcus yunnanensis strain WS11 (MDB) 

untuk mencapai penyingkiran tertinggi As (III) dan As (V) pada keadaan yang berbeza. 

Seterusnya, MDB didapati berkesan dalam penyingkiran As (III) dan As (V) masing-

masing sebanyak 95% dan 98%. Kapasiti penjerapan maksimum As (III) dan As (V) 

meningkat daripada 95 mg/g dan 145 mg/g bagi IDB kepada 217 mg/g dan 333 mg/g 

untuk MDB seperti yang diperoleh daripada isoterm Langmuir. Corak penjerapan 

menepati dengan baik model isoterm Langmuir dan data kinetik mengikut model tertib 

pseudo-kedua bagi IDB dan MDB. Parameter termodinamik ΔG°, ΔH° dan ΔS° 

mendedahkan bahawa penjerapan kedua-dua As (III) dan As (V) adalah spontan, boleh 

dilaksanakan dan endotermik. Analisis FESEM-EDX menunjukkan perubahan morfologi 

sel pelbagai dengan jumlah arsenik yang signifikan diserap ke biojisim berbanding 

dengan biojisim asal. Keputusan FTIR menunjukkan perubahan spektral utama pada 

kawasan jalur 400 cm-1 hingga 4000 cm-1 menunjukkan penglibatan kumpulan-kumpulan 

berfungsi terutamanya hidroksil, tiol, amida dan amino dalam penjerapan arsenik. Data 

eksperimen berkelompok diambil kira untuk membina model rangkaian neural buatan 

(ANN) yang meniru fungsi otak manusia. Neuron 5-7-1 masing-masing berada dalam 

lapisan input, lapisan tersembunyi dan lapisan output. Data berkelompok disimpan untuk 

latihan (75%), ujian (10%) dan proses pengesahan (15%). Output ramalan model yang 

dicadangkan menunjukkan persetujuan yang baik dengan eksperimen berkelompok 

dengan ketepatan yang munasabah. Kajian ini menunjukkan potensi untuk menggunakan 

biojisim kering tidak hidup sebagai biopanjerap baharu untuk penyingkiran arsenik.  



 

viii 

TABLE OF CONTENTS 

 TITLE PAGE 

 

DECLARATION iii 

DEDICATION iv 

ACKNOWLEDGEMENT v 

ABSTRACT vi 

ABSTRAK vii 

TABLE OF CONTENTS viii 

LIST OF TABLES xv 

LIST OF FIGURES xvi 

LIST OF ABBREVIATIONS xx 

LIST OF SYMBOLS xxi 

LIST OF APPENDICES xxii 

 INTRODUCTION 1 

1.1 Background of the Study 1 

1.2 Problem Statement 4 

1.3 Contributions to Knowledge 5 

1.4 Objectives 6 

1.5 Scope of Study 7 

1.6 Significance of the Study 8 

 LITERATURE REVIEW 9 

2.1 Arsenic Sources 9 

2.2 Arsenic Contamination 9 

2.3 Arsenic 12 

2.4 Arsenic in Gold Processing 13 

2.4.1 Arsenic Maximum Contaminant Level 15 

2.4.2 Health Impacts of Arsenic Contaminated 16 



 

ix 

2.5 Arsenic Removal Technologies from Aqueous 

Solutions 17 

2.5.1 Theory of Arsenic Treatment 17 

2.5.2 Precipitation/Encapsulation 18 

2.5.3 Membrane Technologies 19 

2.5.4 Adsorption 19 

2.5.4.1 Bio-adsorbents 20 

2.5.4.2 Bacterial Bio-adsorbent 21 

2.5.5 Mechanism of Bioadsorption 23 

2.5.5.1 Complexation 23 

2.5.5.2 Chelation 24 

2.5.5.3 Coordination 24 

2.5.5.4 Ion Exchange 25 

2.5.5.5 Precipitation 25 

2.5.6 Comparison of Arsenic Removal 25 

2.5.6.1 Comparison of Main Technologies 

for Arsenic Removal 25 

2.5.6.2 Comparison of Various Adsorbents 26 

2.6 Metagenomics 26 

2.7 Microbiology of Arsenic Mobilization 27 

2.7.1 Intracellular Interaction 28 

2.7.2 Extracellular Interaction 29 

2.8 Adsorption Isotherms Models 29 

2.8.1 Langmuir Isotherm 30 

2.8.2 The Freundlich Isotherm Model 31 

2.8.3 The Temkin Isotherm Model 31 

2.9 Adsorption Reaction Kinetic Models 32 

2.9.1 Pseudo-First-Order or Lagergren’s Rate 

Equation 32 

2.9.2 Pseudo-Second-Order Rate 33 

2.9.3 Intraparticle Diffusion Rate Model (Weber-

Morris Equation) 34 

2.10 Artificial Neural Network (ANN) Model 34 



 

x 

2.10.1 Types of (ANN) Model 34 

2.10.2 Key Components ANN Models 35 

 RESEARCH METHODOLOGY 37 

3.1 Overview 37 

3.2 Chemicals and Reagents Used 39 

3.3 Preparation of Growth Media 39 

3.3.1 Luria Bertani Medium 39 

3.3.2 Chemically Defined Medium 39 

3.3.3 Tryptic Soy Agar 40 

3.4 Preparation of Standards and Reagents 40 

3.4.1 Stock Solution of Arsenic 40 

3.4.2 Preparation of 1% (w/v) Agarose Gel 41 

3.5 As (III) and As (V) Analysis 41 

3.6 Sample Collection 42 

3.7 Culture Independent Method (Metagenomics) 43 

3.7.1 Metagenome Extraction and Library 

Construction 43 

3.7.2 Bioinformatics Analysis 43 

3.8 Culture Dependent Method 43 

3.8.1 Isolation of Indigenous Arsenic Resistant 

Microbes 43 

3.8.2 Gram Staining and Cell Morphology 44 

3.8.3 Identification of Bacteria via 16S rRNA 45 

3.8.4 Phylogenetic Tree 45 

3.8.5 Silver Nitrate Test 45 

3.8.6 Accumulation of As (III) and As (V) by 

Isolates 46 

3.9 Regeneration of Biomass by Acid Washing 47 

3.9.1 Selection of Microorganisms 47 

3.9.2 Growth Profile of Arsenic-Resistant Bacteria 47 

3.9.3 Preparation of Dried Bacterial Biomass of 

WS3, WS9 and WS11 47 

3.9.4 Batch Studies 48 



 

xi 

3.9.4.1 Effect of Hydrochloric Acid 

Concentration 48 

3.9.4.2 Effect of Contact Time 48 

3.9.4.3 Effect of Bacterial Biomass Dosage 
(mg) 48 

3.9.4.4 Effect of Volume (mL) of 

Hydrochloric Acid Solution 49 

3.10 Adsorption of Arsenic 49 

3.10.1 Adsorption of Arsenic Before and After Acid 

Washing by Dried Biomass of (WS3, WS9 and 

WS11) 49 

3.10.2 Adsorption of Arsenite and Arsenate using 

Individual and Mixed Dried Biomass of (WS3, 

WS9 and WS11) 50 

3.10.3 Batch Setup 50 

3.10.3.1 The Effect of Contact Time 51 

3.10.3.2 The Effect of Initial As (III) 

Concentration 51 

3.10.3.3 Effect of pH 52 

3.10.3.4 The Effect of Temperature 52 

3.10.3.5 The Effect of Adsorbent Dosage 52 

3.10.4 Adsorption Isotherm, Kinetic and 

Thermodynamic Studies 53 

3.10.5 Characterisation of Adsorption of Arsenite and 

Arsenate 53 

3.10.6 Mathematical Modeling of As (III) and As (V) 

Removal Process by IDB and MDB 54 

3.10.6.1 Artificial Neural Network (ANN) 
Model 54 

3.10.6.2 Correlation Coefficient (R2) 55 

3.10.6.3 Mean (M) 55 

3.10.6.4 Mean Square Error and Root Mean 

Square Error 56 



 

xii 

 ISOLATION OF INDIGENOUS ARSENIC 

RESISTANT BACTERIA USING CULTURE INDEPENDENT 

AND DEPENDENT APPROACHES 57 

4.1 Introduction 57 

4.2 Analysis of the Sample 57 

4.3 Metagenomics Study 57 

4.3.1 Bacterial community Structure by Culture 

Independent Method 57 

4.3.2 Shannon-Wiener Curve 60 

4.3.3 Rarefaction Curve 60 

4.4 The Diversity of Bacteria using Culture Dependent 

Approach 61 

4.5 Conclusion 68 

 ARSENIC ADSORPTION BY INDIGENOUS 

BACTERIA AND ITS OPTIMIZATION 69 

5.1 Introduction 69 

5.2 Bio-treatment of Arsenic by Living Indigenous 

Arsenic Resistant Microbes 69 

5.3 Regeneration of Indigenous Arsenic Resistant 

Bacteria Biomass 71 

5.3.1 Selection of Microorganisms 71 

5.3.2 Growth Profile 71 

5.3.3 Gram Staining 72 

5.3.4 Silver Nitrate Test 73 

5.3.5 Batch Study 76 

5.3.5.1 Effect of Hydrochloric Acid 
Concentration 76 

5.3.5.2 Effect of Contact Time 77 

5.3.5.3 Effect of Bacterial Biomass Dosage 

(mg) 77 

5.3.5.4 Effect of Hydrochloric Acid 
Solution Volume (mL) 78 

5.4 Removal of Arsenite and Arsenate Before and After 

Acid Washing by Bacterial Biomass 79 

5.5 Adsorption of As (III) and As (V) by Individual and 

Mixed Dried Bacterial Biomass 83 



 

xiii 

5.6 Conclusion 85 

 REMOVAL OF AS (III) AND AS (V) USING 

INDIVIDUAL DRIED BIOMASS OF WS3 87 

6.1 Introduction 87 

6.2 Optimization Condition 87 

6.2.1 The Effect of Different Contact Times 87 

6.2.2 The Effect of Different Arsenic 

Concentrations 88 

6.2.3 The Effect of Different pH 89 

6.2.4 The Effect of Different Temperatures 91 

6.2.5 The Effect of Different Adsorbent Dosages 92 

6.3 The Biomass Adsorption Capacity 93 

6.4 Langmuir and Freundlich Isotherm Models 94 

6.5 Kinetic Modeling Study 97 

6.6 Thermodynamic Study 100 

6.7 FESEM-EDX Analysis of B. thuringiensis Strain 

WS3 Biomass Before and After As (III) and As (V) 

Removal 103 

6.8 Characterization of Biomass by Fourier-Transform 

Infrared Spectroscopy (FTIR) 105 

6.9 Conclusion 106 

 REMOVAL OF AS (III) AND AS (V) USING 

MIXED DRIED BIOMASS OF INDIGENOUS ARSENIC 

RESISTANT BACTERIA (WS3, WS9 AND WS11) 107 

7.1 Introduction 107 

7.2 Optimization Condition for Removal As (III) and As 

(V) 107 

7.2.1 The Effect of Different Contact Time 107 

7.2.2 The Effect of Different Arsenic Concentration 108 

7.2.3 The Effect of pH 109 

7.2.4 The Effect of Temperature 111 

7.2.5 Effect of Adsorbent Dosage 112 

7.3 The Biomass Adsorption Capacity 113 

7.4 Isotherm Studies 114 



 

xiv 

7.4.1 Langmuir Isotherm Model 115 

7.5 Kinetic Study 118 

7.6 Thermodynamic Study 121 

7.7 Characterization of MDB using FESEM-EDX 124 

7.8 FTIR Analysis of MDB 126 

7.9 Conclusion 128 

 PREDICTION OF ADSORPTION EFFICIENCY 

USING ARTIFICIAL NEURAL NETWORK (ANN) MODEL 129 

8.1 Introduction 129 

8.2 Artificial Neural Network (ANN) Modeling of As 

(III) and As (V) Ions Adsorption by IDB and MDB 129 

8.2.1 Prediction of As (III) and As (V) Adsorption at 

Different Contact Time 138 

8.2.2 Prediction of As (III) and As (V) Adsorption at 

Different Initial Arsenic Concentration 138 

8.2.3 Prediction of As (III) and As (V) Adsorption at 

Different pH 141 

8.2.4 Prediction of As (III) and As (V) Adsorption at 

Different Temperature 141 

8.2.5 Prediction of As (III) and As (V) Adsorption at 

Different Adsorbents Dosage 144 

8.3 Conclusion 146 

 CONCLUSION AND FUTURE WORK 147 

9.1 Conclusion 147 

9.2 Future Work 149 

REFERENCES 151 

Appendix 183 

LIST OF PUBLICATIONS 221 
 

 

 

  



 

xv 

LIST OF TABLES 

TABLE NO. TITLE PAGE 

Table 2.1 Chronic exposure to arsenic to human health 17 

Table 2.2 Precipitants and associated responses used for arsenic 

removal 18 

Table 2.3 Removal of arsenic by membrane-based methods. 19 

Table 2.4 Arsenic removal biosorbents from water solutions. 21 

Table 2.5  Arsenic removal (mg/g) using bacterial biomasses 22 

Table 4.1 Length distribution of valid sequences 58 

Table 4.2 Colony morphology and Gram characteristic of isolates 64 

Table 5.1 As (III) and (V) adsorption with individual and mixed 

dried biomass. The values in the same column with 

various letters differ significantly at P<0.05. 85 

Table 6.1 Adsorption isotherm and kinetics constants 100 

Table 6.2 Thermodynamic parameters for the adsorption of As (III) 

and As (V) using IDB. 102 

Table 7.1 Comparison of the adsorption capacity of As (III) and As (V) 

between IDB and MDB adsorbents 114 

Table 7.2 Adsorption isotherm and kinetics constants 121 

Table 7.3 Thermodynamic parameters for the adsorption of As (III) 

and As (V) using MDB. 123 

Table 8.1 Parameter settings for ANN modelling 131 

Table 8.2 Comparison between experimental and predicted output of 

adsorption of As (III) (ppm) using IDB 135 

Table 8.3 Comparison between experimental and predicted output of 

adsorption of As (V) (ppm) using IDB 136 

Table 8.4 Comparison between actual and model output of adsorption of 

As (III) and As (V) (ppm) using MDB 137 

 

  



 

xvi 

LIST OF FIGURES 

FIGURE NO. TITLE PAGE 

Figure 2.1 The geographic occurrence of groundwater arsenic 

pollution and locations of dots indicate locations of 

arsenic-contaminated waters (Barringer and Reilly, 2013). 11 

Figure 2.2 Arsenic element found in water in various compounds. Eh 

is oxidation/reduction potential and pH is acid/base 

potential (Wang and Mulligan, 2006). 13 

 Figure 2.3  Gold process flow chart 15 

Figure 2.4 Different mechanisms of arsenic ions bio-adsorption. 

Adapted and modified from (Hansda and Kumar, 2015) 23 

Figure 2.5 Predicted ANN architecture for five various parameters. 36 

Figure 3.1 Experimental design of arsenic adsorption using individual 

and mixed dried biomass of indigenous bacteria 

(experimentally and theoretically) 38 

Figure 3.2 Map showing the location of Selinsing Gold Mine, Kuala 

Lipis, Pahang. 42 

Figure 4.1 Pie plot of microbial community: A, Phylum; B, Genus. 

Note: Microorganisms whose percent was less than 1% 

has been included in Others 59 

Figure 4.2 Shannon Wiener curves of samples 60 

Figure 4.3 Rarefaction curves 61 

Figure 4.4 Growth of indigenous arsenic resistant bacteria on LB and 

CDM media 63 

Figure 4.5 Gel electrophoresis of amplified 16S rRNA 1.5 kb. 1: 10 

kb DNA ladder, 2: WS1, 3: WS2, 4: WS3, 5: WS4, 6: 

WS5, 7: WS6, 8: WS7, 9: WS8, 10: WS9, 11: WS10, and 

12: WS11. 65 

Figure 4.6 Neighbour-joining tree of culturable bacteria isolated from 

tailing dam sludge. Bootstrap values indicated at the nodes 67 

Figure 5.1 Removal percentages of As (III) and As (V) by the 

indigenous arsenic resistant microbes with an initial 

concentration of 20 ppm 70 

Figure 5.2 Growth profile of arsenic-resistant bacteria (WS3, WS9, 

and WS11) 72 



 

xvii 

Figure 5.3 Gram staining and cell morphology viewed under 100x 

magnifications with oil immersion in light microscope. 73 

Figure 5.4 Silver nitrate test; A: Control plate of 0.1×TSA agar 

incorporated with 1 mM As (III) or As (V), B: WS3 and 

C: WS11: Reducing bacteria, showed formation of yellow 

precipitates after flooded with 0.1 M AgNO3, D: WS9: 

Oxidizing bacteria showed formation of brownish 

precipitates after flooded with 0.1 M AgNO3 75 

Figure 5.5 Arsenic desorption from biomass using different 

concentrations of acid 76 

Figure 5.6 Arsenic desorption of biomass at various time (h) 77 

Figure 5.7 Arsenic desorption of biomass using different adsorbent 

dosage (mg) 78 

Figure 5.8 Arsenic desorption of biomass using the different volume 

of acid (mL) 79 

Figure 5.9 Removal of As (III) before and after acid washing 80 

Figure 5.10 Removal of As (V) before and after acid washing 82 

Figure 5.11 Adsorption of As (III) and As (V) using individual and 

mixed dried biomass of WS3, WS9 and WS11 84 

Figure 6.1 Adsorption of As (III) and As (V) (%) at different contact 

time (h) using IDB with initial concentrations of As (III) 

7.5 ppm and As (V) 9 ppm 88 

Figure 6.2 Adsorption of As (III) and As (V) (%) at different initial 

arsenic concentration using IDB 89 

Figure 6.3 Adsorption of As (III) and As (V) (%) at different pH 

using IDB 90 

Figure 6.4 Adsorption of As (III) and As (V) (%) at different 

temperature (°C) using IDB 91 

Figure 6.5 Adsorption of As (III) and As (V) (%) at different 

adsorbent dosage (mg) of IDB 93 

Figure 6.6 Adsorption As (III) fitting Langmuir linear equation 

model (A), As (III) fitting Freundlich linear equation 

model (B), As (V) fitting Langmuir linear equation model 

(C), As (V) fitting Freundlich linear equation model (D) 97 

Figure 6.7 Adsorption As (III) fitting pseudo-first-order reaction (A), 

As (III) fitting pseudo-second-order reaction (B), As (V) 

fitting pseudo-first-order reaction (C), As (V) fitting 

pseudo-second-order reaction (D) 99 



 

xviii 

Figure 6.8 Thermodynamic linearity for the adsorption of As (III), As 

(V) by IDB 102 

Figure 6.9 FESEM-EDX of individual dried biomass of WS3; (A) 

biomass before adsorption with (D) Spectrum of EDX 

analysis, (B) biomass after As (III) adsorption with (E) 

Spectrum of EDX analysis and (C) biomass after As (V) 

adsorption with (F) Spectrum of EDX analysis 104 

Figure 6.10 FTIR spectrum analysis before and after adsorption of As 

(III) and As (V) using IDB 106 

Figure 7.1 Adsorption of As (III) and As (V) (%) at different contact 

time (h) using MDB with initial concentrations of As (III) 

7.5 ppm and As (V) 9 ppm 108 

Figure 7.2 Adsorption of As (III) and As (V) (%) at different initial 

arsenic concentration (ppm) using MDB 109 

Figure 7.3 Adsorption of As (III) and As (V) (%) at different pH 

using MDB 111 

Figure 7.4 Adsorption of As (III) and As (V) (%) at different 

temperature (°C) using MDB 112 

Figure 7.5 Adsorption of As (III) and As (V) (%) at different 

adsorbent dosage (mg) of MDB 113 

Figure 7.6 Isotherm studies of As (III) and As (V) adsorption using 

MDB 117 

Figure 7.7 Kinetic studies of As (III) and As (V) adsorption from 

equation solution using MDB 120 

Figure 7.8 Thermodynamic linearity for the adsorption of As (III) 

(A), As (V) (B) by MDB 123 

Figure 7.9 FESEM-EDX of MDB. (A) MDB before arsenic 

adsorption (control), (B) MDB after As (III) adsorption, 

(C) MDB after As (V) adsorption, (D) spectrum of EDX 

analysis of (A), (E) spectrum of EDX analysis of (B) and 

(F) spectrum of EDX analysis of (C). 125 

Figure 7.10 FTIR spectrum analysis before and after adsorption of As 

(III) and As (V) using MDB 127 

Figure 8.1 Networks for 5-7-1 type of ANN architecture. 130 

Figure 8.2 Correlation of predicted and actual arsenic removal for 

training, testing and validation 132 

Figure 8.3 Correlation of predicted and actual arsenic (III) 

Adsorption (ppm) training data 133 



 

xix 

Figure 8.4 Correlation of predicted and actual arsenic (III) 

Adsorption (ppm) testing data 134 

Figure 8.5 Experimental data and ANN outputs of As (III) and As 

(V) removal (ppm) using IDB (A, B) and MDB (C, D) as a 

function of contact time (h) 139 

Figure 8.6 Experimental data and ANN outputs of As (III) and As 

(V) removal (ppm) using IBD (A, B) and MDB (C, D) as a 

function of arsenic concentration (ppm) 140 

Figure 8.7 Experimental data and ANN outputs of As (III) and As 

(V) removal (ppm) using IBD (A, B) and MDB (C, D) as a 

function of pH 142 

Figure 8.8 Experimental data and ANN outputs of As (III) and As 

(V) removal (ppm) using IBD (A, B) and MDB (C, D) as a 

function of temperature (°C) 143 

Figure 8.9 Experimental data and ANN outputs of As (III) and As 

(V) removal (ppm) using IBD (A, B) and MDB (C, D) as a 

function of adsorbent dosage (mg) 145 

  



 

xx 

LIST OF ABBREVIATIONS 

 

As (III) - Arsenite  

As (V)  - Arsenate 

IDB  Individual Dried Biomass 

MDB  Mixed Dried Biomass 

LB - Luria-Bertani medium 

CDM - Chemically defined medium 

IDM - Individual dried biomass 

MDB - Mixed dried biomass 

sp. - species  

FESEM-

EDX  

- Field Emission Scanning Electron Microscope –              

Energy Display x-ray 

FTIR - Fourier-transform infrared spectroscopy 

WHO  - World Health Organization  

Ppm - Part per million 

Ppb - Part per billion 

AgNO3 - Silver Nitrate 

BLAST - Basic Local Alignment Search Tool 

NCBI - National Centre of Biotechnology Information 

HCl - Hydrochloric acid 

PCR - Polymerase Chain Reaction 

pKa - Acid dissociation constant 

R2 - Coefficient of determination 

Rpm - Rotation per minute 

rRNA - Ribosomal ribonucleic acid 

v/v - Volume per volume 

ANN - Artificial Neural Network 

  



 

xxi 

LIST OF SYMBOLS 

 Μ - Micro 

% - Percentage 

°C - Degree Celcius 

K - Kelvin 

H - Hour 

mL - Millilitre 

mM - Millimolar 

μM - Micromolar 

G - Gram 

mg  - Milligram 

V - Volume 

M - Mass 

   

   

   

   

   

   

   

   

   

   

   

   

  



 

xxii 

LIST OF APPENDICES 

APPENDIX TITLE PAGE 

Appendix A Tailing dam site for the collection of samples 183 

Appendix B Standard curve of As (III) 184 

Appendix C Standard curve of As (V) 185 

Appendix D Growth profile of WS3 186 

Appendix E Growth profile of WS9 187 

Appendix F Growth profile of WS11 188 

Appendix G Effect of different HCl acid concentration (0.2 to 0.8 M) on 

desorption of arsenic 189 

Appendix H Effect of different HCl acid concentration (1 to 1.4 M) on 

desorption of arsenic 190 

Appendix I Effect of different contact time (h) on desorption of arsenic 191 

Appendix J Effect of different biomass dosage (mg) on desorption of 

arsenic 192 

Appendix K Effect of different volume of acid solution on desorption of 

arsenic 193 

Appendix L Removal of As (III) before and after acid washing 194 

Appendix M Removal of As (V) before and after acid washing 195 

Appendix N Comparison between individual dried biomass of WS3, 

WS9 and WS11 196 

Appendix O Comparison between mixed dried biomass of WS3, WS9 

and WS11 197 

Appendix P Effect of different contact time (h) on As (III) and As (V) 

removal using IDB 198 

Appendix Q Effect of different concentration (10 – 50 µm) on As (III) 

and As (V) removal using IDB 199 

Appendix R Effect of different concentration (60– 100 µM) on As (III) 

and As (V) removal using IDB 200 

Appendix S Appendix A Effect of different pH on As (III) and As (V) 

removal using IDB 201 



 

xxiii 

Appendix T Appendix A Effect of different temperature (°C) on As (III) 

and As (V) removal using IDB 202 

Appendix U Appendix A Effect of different biomass dosage (mg) on As 

(III) and As (V) removal using IDB 203 

Appendix V Langmuir calculation for As (III) using IDB 204 

Appendix W Langmuir calculation for As (V) using IDB 204 

Appendix X Friendlich calculation for As (III) using IDB 205 

Appendix Y Appendix d Friendlich calculation for As (V) using IDB 205 

Appendix Z Pseudo first and pseudo second rate calculation for As (III) 

using IDB 206 

Appendix AA Appendix d Pseudo first pseudo second rate calculation for 

As (V) using IDB 206 

Appendix BB  RL for As (III) and As (V) using IDB 207 

Appendix CC RL for As (III) and As (V) using MDB 207 

Appendix DD Effect of different contact time (h) on As (III) and As (V) 

removal using MDB 208 

Appendix EE Effect of different concentration (10 – 50 µm) on As (III) 

and As (V) removal using MDB 209 

Appendix FF Appendix A Effect of different concentration (60 – 100 

µm) on As (III) and As (V) removal using MDB 210 

Appendix GG Effect of different pH on As (III) and As (V) removal 

using MDB 211 

Appendix HH A Effect of different temperature (°C) on As (III) and As 

(V) removal using MDB 212 

Appendix II A Effect of different biomass dosage (mg) on As (III) and 

As (V) removal using MDB 213 

Appendix JJ Isotherm calculation of adsorption As (III) using MDB 214 

Appendix KK Isotherm calculation of adsorption As (V) using MDB 214 

Appendix LL Kinetics calculation of adsorption As (III) using MDB 215 

Appendix MM Kinetics calculation of adsorption As (V) using MDB 215 

Appendix NN Matrix for training data 216 

Appendix OO Appendix B Matrix for testing data 218 



 

1 

  

 

 

INTRODUCTION 

1.1 Background of the Study 

Metagenomics (culture-independent) is a relatively new, yet a rapidly 

developing technology to analyse and characterize microbial communities in the 

environment. Microorganisms are an important aspect of ecological processes; 

helping for biogeochemical cycling for important elements such as sulfur, nitrogen, 

phosphorous, and carbon, decay of organic substance and xenobiotics and formation 

of soil structure. Thus, bacteria play a significant role in regulating the 

biogeochemical cycles and affect life on Earth (McHardy and Rigoutsos, 2007; 

Smith et al., 2015). Studies on bacterial dynamics and their interaction with the 

abiotic and biotic elements are essential to understanding their involvement in energy 

generation, mining, bio-treatment, and biotechnology (Rastogi and Sani, 2011; 

Santoyo et al., 2017). A well-ordered microbial community with a firm level of 

diversity is stable (Wu et al., 2018; Yannarell and Triplett, 2005). However, when 

presented with some kind of stress, the diversity of the community might change, 

thus collapsing its stability. Therefore, microbial diversity used to study the effect of 

perturbations in the environment. In the regular environment, microorganisms occur 

in great numbers despite the fact that there are millions of bacterial species that have 

not been identified. Therefore, pure seawater might contain 106 bacteria per millilitre 

and one gram of soil or sediment might contain approximately l010 bacteria as 

calculated via fluorescence microscopy after staining with a dye (Fakruddin and 

Mannan, 2013; Torsvik et al., 1990). 

Recently, new non-cultural approaches have been developed that can be used 

extensively in a microbial consortium for comprehensive analysis of various 

communities (Lugli et al., 2019; Mahajan et al., 2018). Metagenomics or genomic 

microorganism studies refer to a non-cultural approach in which the genomes of a 
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mixed microbe population are collectively studied. Population genomics, 

environmental genomics and Community genomics are frequently used as 

metagenomics synonyms (Neelakanta and Sultana, 2013). Since the use of the 

metagenomics method in this research, several other studies have used this technique 

to study microbial communities in different environments such as acid-mine drainage 

(Tyson et al., 2004), marine water and sediments (DeLong et al., 2006; Yooseph et 

al., 2010) and arsenic-contaminated soils (Layton et al., 2014; Luo et al., 2014).  

Detailed insight into microbial communities in arsenic contaminated water in 

the natural environment is challenging owing to their extreme conditions and 

uncultivated status (Das et al., 2017). However, a large variety of metagenomies of 

microbial communities in arsenic contaminated water have been reported include: 

Helicobacter pylori (0.01%), Campylobacter jejuni (0.01%), Staphylococcus aureus 

(0.02%), Shigella flexneri and Shigella dysenteriae (0.03%), Cronobacter sakazakii 

(0.03%), Clostridium difficile (0.03%), Salmonella enterica (0.07%), Vibrio cholerae 

(0.08%) and Vibrio parahaemolyticus (0.08%) (Layton, et al., 2014). Furthermore, a 

great diversity of arsenic-resistant microbes have been stated, including Bacillus sp. 

and Aneurinibacillus aneurinilyticus (Dey et al., 2016); Acinetobacter calcoaceticus, 

A. baumannii, A. junii, A. venetianus, A. soli, and Microbacterium oleivorans 

(Goswami et al., 2015); Enterobacter sp. and Klebsiella pneumoniae (Abbas et al., 

2014); Bacillus smithii, B. cereus, Pseudomonas maltophilia, Vibrio 

parahaemolyticus, Pseudomonas sp, Micrococcus varians, M. luteus, and M. roseus 

(Shakya et al., 2012); Geobacillus kaustophilus (Cuebas et al., 2011), Bacillus sp., 

Enterobacter sp., Stenotrophomonas sp., and Rhizobium (Tiwari et al., 2016); P. 

strain As-11(Jebelli et al., 2017); B. cereus strain SZ2 (Bahari et al., 2013),  and 

Microbacterium sp. strain SZ (Bahari et al., 2017). Furthermore, there are microbes 

that can adapt to diverse environmental conditions on earth and decay chemical 

components produced by living things (Fakruddin and Mannan, 2013). 

Arsenic is generally distributed in Earth's crust. It is leaked by common 

phenomena such as mineral weathering or volcanic ash and human activities such as 

gold mining and various resources (Cullen and Reimer, 1989; Smedley and 

Kinniburgh, 2002; Tamaki and Frankenberger, 1992). Arsenic can be found in the 
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environment as arsenious acids (H3AsO3
2+, H3AsO4, H3AsO3). Moreover, As (V) is 

like a soft acid and can form a complex with sulfides. On the other hand, As (III) is a 

firm acid which makes a compound with nitrogen and oxides (Mohan and Pittman, 

2007). However, there are large numbers of arsenic contaminated areas with high 

concentrations of arsenic around the world, especially in Argentina, Chile, Mexico, 

China, Hungary, West Bengal (India), Bangladesh, Vietnam, and the USA (Herath et 

al., 2016).  There are generally 15 gold mines in Malaysia with large gold mines in 

Pahang (Penjom, Raub and Selinsing gold mines), Kelantan and Terengganu. 

Therefore, it is very likely that arsenic concentrations in these areas are high. 

Microbes have co-habited with different metals from initial history. Thus, 

microorganisms have been effectively used to remove heavy metal such as Arsenic 

(As) from wastewater in a variety of patterns. Consequently, from a functional 

concept, metals divided into three groups: (i) non-toxic and essential such as Mg and 

Ca, (ii) harmful at high concentrations and essential in low concentration such as Zn, 

Mo, Cu, Ni, Co, Fe, and Mn, and (iii) toxic even in low concentration such as Cd, Hg 

and As. In addition, interaction with metals relies on specific metal and its chemical 

speciation (Valls and De Lorenzo, 2002). The basic mechanism of adsorption by 

biomass can be described as passive metal ions immobilization. Briefly, it essentially 

relies on the physicochemical interaction between metals and different functional 

groups of the cell wall. Microorganisms have been effectively used to remove arsenic 

from wastewater (Bahari, et al., 2013; Haris et al., 2018; Kao et al., 2013; Prasad et 

al., 2013). Likewise, the cell wall of bacteria generally comprises proteins, lipids and 

polysaccharides, which contain functional groups, such as amine groups, phosphate, 

hydroxyl and carboxylate, and these functional groups offer binding sites for metals 

(Mohan and Pittman, 2007). 

Artificial Neural Network (ANN) is classified as an artificial intelligence 

modelling technique because of its ability to recognize patterns and relationships in 

historical data and then to deduce new data (Aleboyeh et al., 2008). The ANN uses a 

specified algorithm to analyse data cases or similarity patterns and then divides them 

into a defined class number. In addition, the ANN learns to accurately predict the 

output parameter value when data with adequate input parameters are given 
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(Yetilmezsoy and Demirel, 2008). Process models and model-based process 

monitoring are the main applications of ANN in the water treatment industry (Shetty 

and Chellam, 2003). Therefore, adsorption results can be predicted using the 

artificial neural network (ANN), as ANN can efficiently map inputs and outputs in 

complex situations (Aleboyeh, et al., 2008; Annadurai et al., 2007; Chu, 2003; Saha 

et al., 2010; Texier et al., 2002; Yetilmezsoy and Demirel, 2008). 

1.2 Problem Statement 

Globally, arsenic contamination in groundwater is presently a major problem, 

particularly in areas where people depend on groundwater. Poisonous arsenic has 

resulted in health disasters for over 100 million people universally, mainly in China, 

India, Bangladesh, Taiwan, Thailand, Chili and Romania (Miyatake and Hayashi, 

2009; Shahid et al., 2018; Singh et al., 2007; Tabassum et al., 2019). The 

Environmental Protection Agency of the United States declared that all forms of 

arsenic pose a serious health risk (Sarkar et al., 2007). Accordingly, the 

recommended concentration of arsenic in drinking water has since been modified 

from 50 ppb (0.05 mg/L) to 10 ppb (0.01 mg/L) by the World Health Organization 

(WHO), while the standard concentration of arsenic in industrial effluents is 

restricted to 0.1 mg/L (0.1 ppm) (Wu et al., 2010). Whereas, the Malaysian 

Environment Department reported in 1985 that drinking water quality standard for 

maximum arsenic concentration is 0.01 mg /L (Huang et al., 2015). 

Chronic arsenic poisoning causes skin lesions with hyperkeratosis, 

depigmentation, and hyperpigmentation (Sun, 2004; Yoshida et al., 2004), vascular 

diseases, such as cardiovascular, arteriosclerosis and hypertension (Rahman et al., 

1999; Wang et al., 2002; Yu et al., 2002) and non-specific signs of the effect on the 

digestive system, such as dyspepsia, diarrhoea and abdominalgia (Sun et al., 2001) 

and also has extensive and complex effects on developing infants, such as poor 

memory, mental slowing,  cognitive delays and reduced intelligent quotient (IQ) 

(Chattopadhyay et al., 2002). Therefore, arsenic contamination of water has become 

a serious problem for the community (Hao et al., 2018; Nidheesh and Singh, 2017; 
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Zhang et al., 2018). Currently, there is no medical treatment for arsenicosis and the 

only guaranteed way of preventing chronic arsenic poisoning is to stop the ingestion 

of arsenic (Sun et al., 2006). 

Several researchers identified biotreatment of arsenic ions from contaminated 

water by living organisms as a viable solution for the removal of these contaminants 

(Ike et al., 2008; Lu et al., 2018; Pandey and Bhatt, 2015),  whereas the effective 

biotreatment depends on our ability to study microbes that are indigenous to polluted 

sites regardless of the approach taken (Stefani et al., 2015). Therefore, in this study, 

culture independent was combined with culture-dependent methods to isolate 

indigenous microbes using soil samples harvested from tailing dam sludge because it 

contains the highest concentration of arsenic in the gold mining environment. 

Consequently, the removing of arsenic from contaminated water is necessary for 

confirming the safety of drinking water and protect public health (Nickson et al., 

2000; Zaini et al., 2011). Some of the conventional solutions to remove As (III) and 

As (V) from wastewater are filtration, flotation, flocculation with sulfide or ferric 

hydroxide and ion exchange. However, these techniques require pre-treatment, the 

oxidation of As (III) to As (V) and involve a high cost (Valls and De Lorenzo, 2002).  

1.3 Contributions to Knowledge 

This is the first study on biodiversity of microbes for Malaysian gold mining 

environment that use independent and dependent approaches. Moreover, 

employment of culture based approach with metagenomics analysis helps to isolate 

indigenous arsenic resistant microbes and their potential use in bioremediation of 

arsenic contaminated sites. Furthermore, individual and mixed culture dried biomass 

of indigenous arsenic resistant microbial (WS3, WS9, WS11) have been used after 

regeneration by acid washing to enhance the removing of As (III) and As (V). Mixed 

dried biomass of WS3, WS9 and WS11 was found to be efficient in removing As 

(III) and As (V) due to the benefits of the distinct structures of these bacterial cell 

walls in adsorption.  
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The experimental data was then taken into account to develop an artificial 

neural network (ANN) model; the ANN model mimicked the function of the human 

brain, to predict the removal of As (III) and As (V) from aqueous solution by 

adsorption process. Moreover, mixed dried biomass of three indigenous arsenic 

resistant bacteria (WS3, WS9, and WS11) is distinguished by its low cost and high 

capacities for bio-treatment of arsenic from wastewater. Consequently, the 

adsorptions of As (III) and As (V) ions using the above microbial mix have not been 

reported elsewhere. Hence it was considered the best choice to use these microbes 

for adsorption of these two ions. The novelty of this work is to use new indigenous 

arsenic resistant microbes for the removal of As (III) and As (V) and the results are 

compared with a model to find the validity of the experimental results. 

1.4 Objectives 

1) To investigate the microbial communities’ in soil contaminated by arsenic 

using culture independent strategy (metagenomics approach) and isolate and 

characterize the indigenous arsenic resistant bacteria (culture dependent approach), 

according to the metagenomics profile obtained and assess the reusability of the 

bacterial biomass by acid washing (regeneration study). 

2) To study the adsorption of As (III) and As (V) using individual and mix dried 

bacterial biomass, by varying the various process parameters e.g initial contact time, 

arsenic concentration, pH, temperature and adsorbent dose. 

3) To evaluate the mechanism of As (III) and As (V) adsorption using various 

adsorption isotherms, kinetic and thermodynamic models and characterized the 

indigenous arsenic resistant bacteria biomass before and after adsorption. 

4) To predict and compare the removal efficiency of As (III) and As (V) from 

aqueous solution by individual and mixed dried biomass of indigenous arsenic 

resistant bacteria using artificial neural network (ANN) model. 
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1.5 Scope of Study 

In this study, we combined metagenomics with culture-dependent methods to 

isolate indigenous microbes from high arsenic contaminated soil samples harvested 

from a tailing dam sludge in one gold mine in Pahang (Selinsing Gold Mine) using 

two different culturing media (LB and CDM with 2mM As (III) or 5 mM As (V). 

Furthermore, this study was proposed a suitable conventional pre-treatment 

technology of indigenous arsenic resistant bacterial biomass to increase arsenic 

removal efficiency from wastewater and regenerate the biomass. Moreover, this 

study is determined the efficacy of individual and mixed dried biomass of three 

strains WS3, WS9 and WS11 in the removal of As (III) and As (V). The present 

study aimed to evaluate the isolated indigenous biomass in order to remove As (III) 

and As (V) through experimental and theoretical (mathematical modelling) studies. 

In the present study, the ANN model mimicked the function of the human 

brain, which has billions of neurons. These neurons are connected to each other 

through pathways that transmit electronic signals. These connections enable the 

neurons to send or receive electrical impulses, which in turn are responsible for the 

brain function. Likewise, ANN has the capability of mapping inputs and outputs 

professionally. The ANN consists of an input layer, a hidden middle layer, and an 

output layer. The hidden and output layers are composed of computational nodes 

called neurons, and one-layer neurons are connected to the neurons of the preceding 

layer by means of weights, which regulate the connection between two neurons. The 

neurons use differentiated activation functions to generate output by transferring 

weighted input from the previous layer (Prasenjit et al., 2012). The inputs included 

contact time, arsenic concentration, pH, temperature and adsorbent dosage. On the 

contrary, the output of the model was the predicted removal of arsenic (ppm). 

MATLAB2017b function was utilized to create the model. The process of the model 

was categorized into three steps, which were training, testing, and validation. In 

addition, the model was also verified with experimental data to evaluate the outcome 

vector using statistics indicators such as mean square error and correlation 

coefficient. In addition, Isotherm, kinetic and thermodynamic studies were applied to 

analyse the mechanisms of arsenic adsorption. The biomass of indigenous arsenic 
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resistant bacteria was characterized before and after arsenic adsorption by using 

FESEM–EDAX and FTIR analyses. 

1.6 Significance of the Study 

Currently, the metagenomics method is regarded as the most efficient, 

reliable, rapid and accurate way to reveal the entire microbial composition of a 

community under complex environment conditions. Also, culture dependent method 

is used to complement the microbial biodiversity and this extends our knowledge of 

microbial diversity in a gold mining environment. A deep and direct insight into the 

soil biodiversity and microbial community and its functions can be investigated by 

using culture independent and dependent methods. In addition, employment of 

culture based approach with metagenomics analysis helps to know the biodiversity of 

microbes from Malaysian gold mining environment and isolate indigenous arsenic 

resistant microbes and their potential use in bioremediation of arsenic contaminated 

sites.  

Until now a few reports have been put forward studying water, sediment, 

contaminated environments with relatively different concentrations of arsenic by 

both methods (Luo, et al., 2014). Therefore, an alternative technique to remove 

arsenic from wastewater is in demand. Considerable efforts have been devoted to 

overcoming this serious issue by using individual and mixed dried biomass of 

indigenous arsenic resistant microbial as an adsorbent to remove arsenic. The 

biomass is distinguished by its low cost and high capacities. Furthermore, a majority 

of previous research focused primarily on laboratory and experimental works and 

they suffer from a lack of modeling in order to accurately predict the experimental 

behaviour of As (III) and As (V) removal by biomass. Moreover, the experimental 

results were compared with a model to find the validity of the experimental 

adsorption results.  
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