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ABSTRACT 

The ability to monitor processes using control charts for contaminated 

environments is vital. Typical control charts may not serve the purpose because of 

violations in the underlined assumptions or the presence of outliers in such 

environments. Fixed sample size (FSS) based control charts are not only less 

efficient as compared to varying sample size (VSS) but are sometimes more 

expensive to administer. Therefore, this study has developed new control charts to 

improve the statistical process control for contaminated processes. The goals are to 

design univariate and multivariate control charts that are more sensitive, efficient, 

and robust in the presence of outliers and violation of the model's assumptions. The 

study enhances the Shewhart, the exponentially weighted moving average, and 

exponentially and homogenously double-weighted moving average charts, with 

outliers’ screening techniques to improve the sensitivity of the charts in the 

estimation and monitoring processes. Next, robust multivariate location estimators 

were applied to Hotelling T2 and multivariate cumulative sum (MCUSUM) charts, to 

retain their efficiency when underlying assumptions are violated in contaminated 

process environments. In addition, this research proposes a new adaptive 

homogenous weighted moving average features (HWMA) chart with VSS, for 

location monitoring. This study also employed Monte-Carlo simulations to evaluate 

the effectiveness of the proposed control charts, using the run length properties to 

measure the performance of the control charts. The results show that the enhanced 

control charts for outlier detection are more sensitive and efficient than their 

counterparts at detecting anomalies. The efficiency of the multivariate Shewhart and 

CUSUM charts is improved when the robust multivariate estimators were employed 

in contaminated settings. The results also indicate that the adaptive VSS-HWMA 

charts outperform their counterparts. In conclusion, the proposed control charts 

incorporating an outlier detection model and employing robust estimators could be 

used to monitor processes adequately for contaminated environments. 
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ABSTRAK 

Keupayaan untuk memantau proses menggunakan carta kawalan untuk 

persekitaran yang tercemar sangat penting. Carta kawalan yang biasa mungkin tidak 

dapat memenuhi tujuan ini kerana pelanggaran andaian atau pencilan yang terdapat 

di persekitaran tersebut. Carta kawalan berasaskan saiz sampel yang tetap (FSS) 

bukan hanya kurang cekap berbanding dengan saiz sampel yang berbeza-beza (VSS) 

malah lebih mahal menguruskannya. Oleh itu, kajian ini telah membangunkan carta 

kawalan baru untuk meningkatkan kawalan proses statistik. dalam proses yang 

tercemar. Matlamatnya adalah untuk merekabentuk carta kawalan univariat dan 

multivariat yang lebih sensitif, cekap, dan mantap di mana terdapat pencilan dan 

pelanggaran terhadap andaian model. Kajian ini menambahbaik carta kawalan 

Shewhart, purata bergerak berwajaran secara eksponen dan purata bergerak 

berwajaran berganda secara exponent dan homogen, dengan teknik penyaringan 

pencilan untuk meningkatkan kepekaan carta dalam proses anggaran dan 

pemantauan. Seterusnya, penganggar lokasi multivariat yang kukuh digunakan 

kepada carta Hotelling T2 dan jumlah terkumpul multivariat (MCUSUM), untuk 

mengekalkan kecekapan carta kawalan yang melanggar andaian model dalam 

keadaan yang tercemar. Sebagai tambahan, penyelidikan ini mencadangkan carta 

kawalan adaptif berwajaran homogen dengan ciri bergerak purata (HWMA) yang 

baharu dengan VSS, untuk pemantauan lokasi. Kajian ini juga menggunakan 

simulasi Monte-Carlo untuk menilai keberkesanan carta kawalan yang dicadangkan, 

menggunakan sifat panjang larian untuk mengukur prestasi carta kawalan. Hasil 

kajian menunjukkan bahawa carta kawalan yang dipertingkatkan untuk pengesanan 

pencilan lebih sensitif dan cekap daripada carta kawalan lain dalam mengesan 

anomali. Kecekapan carta Shewhart multivariat dan CUSUM ditingkatkan apabila 

penganggar multivariat yang kukuh digunakan dalam keadaan yang tercemar. 

Keputusan juga menunjukkan bahawa carta adaptif VSS-HWMA mengatasi carta 

kawalan lain. Kesimpulannya, carta kawalan yang dicadangkan yang 

menggabungkan model pengesanan pencilan dan menggunakan penganggar yang 

kukuh dapat digunakan untuk memantau proses dengan secukupnya untuk 

persekitaran yang tercemar.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Study  

In statistical process control (SPC), the control chart is the most powerful and 

widely used tool of quality control. Its applicability in almost all sectors and different 

types of processes distinguishes it from its other six counterparts namely: scatter 

diagram, check sheets, Pareto diagram, cause and effect diagram, flowcharts, and 

histograms. Control chart monitors and controls processes (in different sectors: 

industrial, health, production, refineries, manufacturing, etc.) from any unwanted 

changes that might affect the process targets and specifications. The underlying 

assumption of control charts is the normality of the process under study. The 

assumptions dictate the process be moderately normal, with little deviation from the 

process location and dispersion. When these assumptions are not met, or there is 

severe deviation from the process targets, the efficiency and performance of the 

charts are brought to questioning. Presence of outliers in the preliminary samples 

employed for estimating the process parameters also affect the chart’s performance, 

negatively. 

Processes are expected to change time in and time out. These changes (causes 

of variation) are of two types: natural changes (random causes of variation) and un-

natural changes (assignable causes of variation). The former, as the name suggests, 

occurs naturally, is not harmful and is inevitable in any process. While the latter 

displaces the process from its target, harmful, and should be corrected. Control charts 

monitor and control these assignable causes of variation in processes. Depending on 

the magnitude of the variations they monitor, control charts are classified into two 

(2) categories: the memory-less charts and the memory charts. The memory-less 

charts are suitable and appropriate for monitoring large magnitudes of variations in 
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processes. They are called memory-less because they use only the present value of 

the process in their structures. An example of the memory-less chart is the Shewhart 

control chart (Shewhart, 1931) and all other charts emerging from modifying the 

Shewhart chart. On the other hand, the memory charts, as the name implies, keep and 

use the past information of the process in addition to its present value in constructing 

the charts statistics. Such charts are efficient for monitoring small and moderate 

variations. The major examples of the memory charts are exponentially weighted 

moving average (EWMA) (Roberts, 1958), and cumulative sum (CUSUM) (Page, 

1954), and the modifications and improvements of the EWMA and CUSUM charts.. 

Depending on the number of variables they monitor, control charts are further 

classified into univariate and multivariate charts. The univariate charts monitor only 

one variable of interest while the multivariate charts monitor three or more variables 

of interest with a single charting structure. Examples of the former are Shewhart, 

EWMA, and CUSUM. While their extensions to multivariate are the Hotelling  𝑇2 

(Hotelling, 1947), multivariate EWMA (MEWMA) (Sharad S Prabhu and Runger, 

1997), multivariate CUSUM (MCUSUM) (Crosier, 1988) charts, respectively. 

Furthermore, some monitored variable of interest comes in individual observation 

while others are with subgroups (i.e. the sample size is more than 1). Examples 

include Shewhart chart with rational subgroups by (Nelson, 1988), EWMA chart 

with estimated parameters by (Jones, 2018) and Robust CUSUM control charting 

(Zafar Nazir et al., 2013). In the case of subgroups, the chart uses an appropriate 

estimate from the sample size in place of the individual observation. 

Another dimension to classifying control charts is the type of sample size the 

chart adopts. Traditional control charts are designed with a fixed sample size (FSS) 

such that fixed sample size is chosen for all observations in the process being 

monitored (Shewhart, 1931; Page, 1954; Roberts, 1958). On the other hand, adaptive 

charting schemes suggest varying sample size (VSS) in the charts structures to 

improve the capability of such charts (Costa, 1994, 1999; Reynolds and Arnold, 

2001; Amiri et al., 2014; Muhammad et al., 2018; Chong et al., 2019). Unlike the 

FSS charts, the VSS charts change the sample size of the next observation in the 

process based on conditions set for the current chart statistics. In addition to the usual 
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control limits, VSS charts include warning limits to their design. The VSS charts 

start with a smaller sample size for monitoring, if the statistics plot beyond the 

warning limits, larger sample size is sought to get more insight into the process. This 

process continues until the statistics plot is within the warning limit, and then a 

smaller sample is sought for the next observation. Furthermore, control charts are 

classified by the parameters they monitor in processes. On this basis, there are two 

major classifications. The location process monitoring and the dispersion process 

monitoring.  Like this thesis, many charts are designed to monitor the location 

parameter, some monitor the dispersion parameter, and some charts monitor both the 

location and dispersion parameters simultaneously in a single chart. 

All the categories earlier mentioned; memory and memory-less, univariate 

and multivariate, FSS and VSS charts are constructed in two stages; the retrospective 

stage (phase-I) and the prospective stage (phase-II). In phase-I, the process 

specifications are set. These specifications are the control limits. The control limits; 

the lower control limit (LCL), center line (CL), and the upper control limit (UCL), 

are structured based on the process parameters. A chart is regarded to be in-control 

(IC) in as much it plots within the lower and upper control limits. The moment the 

chart plots beyond the LCL and UCL, it is declared out-of-control (OoC). In the 

absence of these parameters, they are estimated from some preliminary samples in 

phase-I, afterward, the control limits are constructed. Having set the controls limits, 

and the process is running with the specified limits, then comes the function of the 

prospective stage. In phase-II, the charts monitor and report any assignable cause of 

variation that might distort the process to practitioners for immediate intervention. 

1.2 Problem Statement  

Control charts should not only identify the unnatural causes of variation in a 

process but also potential outliers present in the preliminary samples employed for 

estimating the process parameters. Furthermore, control charts should be robust 

enough to retain their efficiencies and sensitivities in the presence of contamination 

and violation of the underlying assumptions. In reality, the normality assumptions of 
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control charts are often violated, the parameter estimators are not sensitive and robust 

to detect outliers in the preliminary samples, leading to the poor performance of such 

control charts. The problems of this research are: i) screening outliers off the 

preliminary samples employed for estimating the unknown parameters in univariate 

control charts, ii) monitoring multivariate processes under contaminated 

environments, iii) employing adaptive control charting schemes for location 

monitoring. 

1.3 Research Questions 

Motivated by the problem statement, the following questions will be 

addressed in this research work. 

(a) How to develop outliers’ detection-based univariate charts for process 

monitoring, both memory and memory-less? 

(b) How to design robust multivariate control charts for location monitoring in 

contaminated environments, for both memory and memory-less charts? 

(c) How to design an adaptive control charting scheme for location monitoring 

location with a homogenously weighted moving average (HWMA) chart? 

(d) How can the proposed outliers’ detection-based, robust multivariate and 

adaptive control charts be applied in real life? 
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1.4 Research Objectives 

This research aims at achieving the following objectives: 

(a) Develop outliers’ detection based univariate (single and doubled) control 

charts, for both memory and memory-less types, that are more sensitive and 

efficient 

(b) Develop robust multivariate Shewhart and cumulative sum control charts for 

monitoring contaminated environments. 

(c) Design adaptive homogenously weighted moving average chart with varying 

sample size for location monitoring. 

(d) Apply all proposed charting structures to real-life data set extracted from the 

glass, semiconductor, and carbon fibre manufacturing industries. 

1.5 Significance of the Study 

Developing outliers’ detection-based control charts is very essential in SPC. 

This is because outliers have a major influence in any statistical analysis, as they 

increase the error variance, reduce the power of statistical tests and cause bias 

estimates, leading to wrong inferences and conclusions. Hence, the proposed 

outliers’ detection-based charting schemes will enhance the charts’ efficiency and 

sensitivity. In addendum, the proposed robust multivariate control charts for 

contaminated processes will restore the efficiency and performance of the charts as 

much as when the processes were not contaminated. This is significant as many of 

the real-life scenarios do not comply with the underlying assumptions of the charts. 

Furthermore, the proposed adaptive charting schemes will enhance the sensitivity of 

the HWMA chart for location monitoring. With varying sample sizes, practitioners 

from different sectors can flexibly monitor the process with either small or large 

samples. This feature will give a better performance and economical gain over the 

traditional HWMA chart with a fixed sample size. Finally, the application of all 

proposed charts to real-life data set extracted from different sectors plays a vital role 

for SPC practitioners. 
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1.6 Scope of the Study 

The proposed control charts in this research focus mainly on monitoring 

location parameters in processes. The scope of the proposed charts is limited to 

monitoring the location parameter in univariate and multivariate set up, memory- and 

memory-less charts. As regards the theoretical aspect, the necessary mathematical 

theories, and derivation leading to the design of the proposed control charts are 

presented, in addition to the performance measures of the charts. While the 

computational aspects entail the Monte-Carlo simulation procedures to compute the 

performance measures described in the theoretical aspect. These are achieved by 

developing some algorithms in R programming language. The computational aspects 

also include the presentation of results, comparison of the proposed chart with the 

existing ones in the literature, and graphical depiction of the results. However, the 

practical aspects involve applying the procedures of the proposed charts on real-life 

data set extracted from different sectors such as health, semiconductor 

manufacturing, and petrochemical refineries.  

Although, this research studies some contaminated environments, the study is 

limited to monitoring the location parameters under normal environments. While 

switching from univariate to multivariate, memory and memory-less charts, some of 

these are not covered in the study, as they are already available in the literature.    

1.7 Structure of the Thesis 

The thesis consists of six chapters, A synopsis of each chapter is set out 

below: 
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Chapter 1 contains the general introduction of the thesis.  This entails the 

background of the study, problem statement, research questions, research objectives, 

significance, scope and limitation of the study, and the thesis structures. 

Chapter 2 gives an extensive literature review of SPC relating to the scope of 

the study. It reviews the pioneering and modified works on univariate control 

charting schemes, the Shewhart, EWMA, and CUSUM. Chapter 2 also reviews the 

multivariate control chart schemes for process monitoring, both the memory and 

memory-less charts. 

Chapter 3 focuses on the methodologies of the existing and the proposed 

control charts as related to the realization of each of the thesis’s objectives. This 

entails the univariate Shewhart and EWMA charts, double EWMA and HWMA 

charts, multivariate Shewhart and CUSUM charts, and the HWMA charts for 

monitoring the location and coefficient of variation parameters. Chapter 3 also 

explains the design algorithm of the proposed charts adopted to measure the charts’ 

performances.   

The results and findings of the proposed control charts are depicted in chapter 

4. Chapter 4 discusses the implication of these results and compares the proposed 

charts’ performance with their counterparts in the literature, numerically and 

graphically.  

Chapter 5 demonstrates the application of each of the proposed charts on real-

life data set extracted from the glass manufacturing industry, carbon fibre industry, 

and semiconductor manufacturing industry (photolithography).  

Finally, chapter 6 concludes the study by summarizing the main contributions 

of the thesis and suggests future research directions and recommendations. 
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