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ABSTRACT 

The purpose of this research is to design an enhanced human knee cartilage 

evaluation framework to detect cartilage thinning in the early Osteoarthritis (OA) 

disease. The existing research drawbacks include the absence of contrast enhancement 

model merely on region of interest, the low efficiency and tedious labelling processes 

in interactive segmentation model, and the lacking of a quantitative assessment in the 

segmentation model. In this research, we propose a quantitative assessment framework 

which consists of three phases: Phase 1 focuses on developing an explicit contrast 

enhancement model for knee images; Phase 2 focuses on developing a reduced 

interactive cartilage segmentation tool; Phase 3 focuses on formulating a cartilage 

quantitative measurement. The knee images tested in this research are provided by 

Osteoarthritis Initiative, given that the sample sizes used were 120, 30 and 20 slices in 

Phase 1, Phase 2 and Phase 3, respectively. The proposed Prominent Region of Interest 

Contrast Enhancement (PROICE) method outperformed in diverging the dynamic 

range of intensity distributed by the region of interest, resulting in noticeable 

distinctiveness between cartilages and unwanted background tissues. Compared with 

other existing enhancement methods, PROICE achieved the highest peak signal-to-

noise ratio score of 23.80 ± 1.16dB, structural similarity index of 0.86 ± 0.02, low 

absolute mean error score of 3.88 ± 2.92 , and adequate enhancement measure 

of  17.47 ± 0.74 . It was then extended to Enhanced Approximate Non-Cartilage 

Labels (EANCAL) for the extraction of portions that contained critical information 

through an entropy filter. This research contributed to reduce human attention level in 

manual annotations, eventually increased the segmentation efficiency. The modified 

segmentation framework showed a significant reduction in the mean processing time 

to 45 ± 4s,  which was averaged of 80.25% and 82.25% shorter than manual 

segmentation for healthy knee cartilage segmentation and diseased knee cartilage 

segmentation respectively, that performed by two trained operators. In addition, 

EANCAL obtained an adequate inter-operator reliability score in healthy femoral 

cartilage (FC) and tibial cartilage (TC) (𝐹𝐶: 0.920 ± 0.046; 𝑇𝐶: 0.912 ± 0.044) . 

Meanwhile, EANCAL remained competitive compared to the ANCAL method yet 

with fewer human attention level required, recorded with the highest intra-operator 

reproducibility score of  0.820 ± 0.074  for operator 1; and 0.833 ± 0.056  for 

operator 2. The cartilage segmentations were then evaluated with Regional Cartilage 

Normal thickness approximation (RCN-ta). The quantitative assessment model was 

validated with FDA-cleared DICOM software, revealed an acceptable error range of 

0.135 − 0.214 mm. The inter-class correlation score and Pearson correlation obtained 

were 𝐼𝐶𝐶 > 0.94 and 𝑟 > 0.90, respectively. In a nutshell, the PROICE-enhanced 

images successfully overcome the background seed allocation issue and improved the 

segmentation model efficiency and segmentation reproducibility, thus yielding a 

promising cartilage quantitative assessment framework, which potentially assist the 

clinicians in diagnosis and treatment decision-making process. 
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ABSTRAK 

Tujuan penyelidikan ini adalah untuk merancang penilaian tulang rawan lutut 

manusia untuk membolehkan pengesanan penipisan osteoartritis lutut awal (OA). 

Masalah-masalah yang telah dihadapi dalam bidang penyelidikan merangkumi 

ketiadaan model peningkatan kontras gambar yang menitikberatkan kawasan minat, 

kecekapan model yang rendah di samping dengan proses pelabelan yang bosan, dan 

kekurangan perumusan ukuran kuantitatif dalam model segmentasi.  Dalam 

penyelidikan ini, kami mencadangkan kerangka penilaian kuantitatif yang terdiri 

daripada tiga fasa: Fasa 1 berfokus pada pengembangan model peningkatan kontras 

eksplisit untuk gambar lutut; Fasa 2 memfokuskan pada pengembangan alat 

segmentasi tulang rawan interaktif yang ditambahbaikan; Fasa 3 menumpukan pada 

merumuskan pengukuran kuantitatif tulang rawan. Gambar lutut yang diuji dalam 

penyelidikan ini dibekalkan oleh badan Osteoarthritis Initiative. Saiz sampel yang 

digunakan adalah 120, 30 dan 20 keping bagi Fasa 1, Fasa 2 dan Fasa 3. Kaedah 

penambahbaikan kawasan minat yang dicadangkan (PROICE) mengungguli jurang 

intensiti dinamik yang disebarkan oleh wilayah tertentu untuk menghasilkan 

perbezaan yang jelas antara tulang rawan dan tisu latar belakang. Berbanding dengan 

peningkatan lain yang ada, PROICE mencapai skor peak signal-to-noise ratio tertinggi 

23.80 ±  1.16 dB , indeks kesamaan struktur  0.86 ±  0.02 , skor ralat min mutlak 

rendah 3.88 ± 2.92  dan ukuran peningkatan yang mencukupi 17.47 ±  0.74 . 

PROICE diperluaskan ke EANCAL yang membolehkan pengekstrakan bahagian yang 

mengandungi maklumat tinggi dengan saringan entropi. Penyelidikan ini 

menyumbang dalam mengurangkan tahap perhatian manusia dalam anotasi manual, 

akhirnya meningkatkan kecekapan segmentasi. Kerangka segmentasi yang 

ditambahbaikan menunjukkan penurunan yang signifikan pada masa pemprosesan min 

sebanyak 80.25% dan 82.25% dari segmentasi manual untuk segmentasi tulang rawan 

lutut yang sihat dan segmentasi tulang rawan lutut penyakit berbanding dengan 

segmentasi manual selama 45 ±  4s , seperti yang dicatat oleh pemerhati 1 dan 

pemerhati 2. Di samping itu, EANCAL memperoleh skor kebolehpercayaan antara 

pemerhati yang mencukupi pada tulang rawan femoral yang sihat (FC) dan tulang 

rawan tibial (TC) (FC: 0.920 ±  0.046 ;    TC: 0.912 ±  0.044). Sementara itu, 

EANCAL tetap berdaya saing dengan kaedah ANCAL namun dengan tahap perhatian 

manusia yang kurang, mencatatkan skor kebolehulangan intra-pemerhati yang 

tertinggi 0.820 ±  0.074 untuk pemerhati 1; dan 0.833 ±  0.056 untuk pemerhati 2. 

Segmentasi tulang rawan dinilai dengan pendekatan ketebalan normal tulang rawan 

(RCN-ta). Model penilaian kuantitatif disahkan dengan perisian DICOM yang 

diiktirafkan oleh FDA, mencatatkan julat ralat yang 0.135-0.214 mm. Skor korelasi 

antara kelas dan korelasi Pearson yang diperoleh adalah 𝐼𝐶𝐶 >  0.94 dan 𝑟 >  0.90. 

Ringkasnya, gambar yang disempurnakan dengan PROICE berjaya mengatasi masalah 

peruntukan benih latar belakang dan meningkatkan kecekapan model segmentasi, di 

samping dengan kebolehulangan segmentasi, menghasilkan kerangka penilaian 

kuantitatif tulang rawan yang baik dan berpotensi membantu doktor dalam proses 

membuat keputusan diagnosis dan rawatan. 
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INTRODUCTION 

1.1 Introduction to Osteoarthritis  

Osteoarthritis (OA) is a major public health issue globally. OA is the most seen 

arthritis and cause of disability. Barbour, Helmick, Boring and Brady (2017) stated 

that about 54.4 million adults in the US had arthritis after diagnosed by doctors  which 

was a huge leap from 46 million patients recorded in 2003 (Rosenfeld, 2010). 

Meanwhile, 10% to 20% of the elderly population were estimated to have OA. 

According to the COPCORD survey, knee pain is one of the most received rheumatic 

complaints in Malaysia, with 64.8% of joint complaints while more than half were 

diagnosed to have clinical symptoms (Veerapen, Wigley and Valkenburg, 2007).  

OA is a type of arthritis that is caused by gradual loss of cartilage for one or 

more joints. It could be categorised clinically by its pain, enlargement, deformation of 

cartilage, and limitation of motion (Dunlop et al., 2003), which normally influences 

the elderly. The risk factors are obesity, elevated BMI, and aging problem (Rosenfeld, 

2010). However, Wallace et al. (2017) mentioned that these factors were insufficient 

to reason the exponential growth in prevalence of knee OA. These authors 

hypothesised that the decrement in physical activity could be one of the contributing 

factors. The underloaded joints with lower protein glycan content and weaker muscles 

could fail to stabilise the joints at their positions. On the contrary, another study 

showed that both T1 rho and T2 mapping sequences could reflect the impact that 

caused by different physiological activities on knee cartilage. He reasoned that fluid 

shifts, collagen fibre deformation, spatial heterogeneity, tissue stiffness, and 

differences in material characteristics have a close relationship with cartilage loading 

properties (Chen et al., 2017).  
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 The fully worn knee articular cartilage is irreversible and could bring great pain 

to the patients. Patients, especially aging women, prone to be affected by OA and 

gradually endure cartilage loss without any apparent symptoms at the early stage.   As 

the condition worsens, the cartilages become thinner and some parts of the bone that 

are responsible (Bijlsma, Berenbaum and Lafeber, 2011) to protect underneath the 

cartilage starts to get exposed. Some patients tried to get medication after experiencing 

severe knee pain and realising the disease, but it was often too late as the cartilage has 

been fully damaged or late disease stage. The collision between femur and tibia bones 

could result in unbearable pain that forces the patients to rely on pain-relieving drugs. 

Eventually, chronic OA patients will suffer from loss of mobility and function which 

severely degrades their daily life (Brooks, 2002). However, early OA can be detected 

at an early stage through radiography and MR imaging, thus the early therapies can 

inhibit the disease progression  (Befrui et al., 2018).  

 Meanwhile, there are several treatments available for the disease, including 

non-pharmacological treatment, pharmacological treatment, and hyaluronic acid 

injection. For weight-bearing joints, the non-pharmacological method, for instance, 

losing weight, exercise (Christensen, Bartels, Astrup and Bliddal, 2007) and physical 

therapy are more concerned (Deyle et al., 2000). To reduce the pain and knee joint 

inflammation, patients will obtain medication from their doctors (Lawson et al., 2004). 

The pharmacological treatments aim to reduce knee inflammation while reducing the 

pain with Non-Steroidal Anti-Inflammatory Drugs (NSAIDS) in combination with 

other existing medications such as proton pump inhibitors (Steinmeyer et al., 2018). 

Some patients might receive hyaluronic acid injection to keep the tissues moist and 

well lubricated. To permanently overcome the knee pain, some patients will choose to 

undergo knee cartilage replacement surgery to have their cartilage replaced with 

artificial cartilage (Bachmeier et al., 2001).  
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1.2 Background of Research 

 Instead of 2D radiography and ultrasonography, magnetic resonance imaging 

(MRI) shows robustness in detecting lesions and monitoring the pharmacological 

effect or therapeutic effect (Schaefer et al., 2017). From a safety perspective, 

radiography technologies expose the patients to radiation and can cause a long-term 

health hazard. The 2D radiography and ultrasonography hinder an overall assessment 

of the knee cartilage defects, while MRI allows visualisation for a complete structure 

of knee cartilage non-invasively (González and Escalante-Ramírez, 2013). The 

available sequences (Crema et al., 2011) for the MRI in viewing knee anatomy are 

standard spin-echo (SE) and gradient-recalled echo (GRE), fast SE, three-dimensional 

SE and GRE. MRI definition of OA contains more features compared to the 2D 

radiographic definition, hence it is more sensitive towards detection of early OA with 

a more valid definition than 2D radiography (Schiphof et al., 2014).  

MRI scans are often contaminated with noises, unwanted artifacts and poor 

background illuminance (Teh et al., 2018; Gan, Swee, et al., 2014). Moreover, the 

human knee is one of the most anatomically complex parts of the human body. 

Excellent contrast enhancement is vital to overcome the issues, for instance, indistinct 

tissue contrast and low-brightness appearance, to boost the visual perception of Region 

of Interest (ROI) in knee MR images (Gandhamal et al., 2017). 

However, most of the existing contrast enhancement methods fail to retain the 

important information in the medical images. Conventional histogram equalization 

brightens the medical images globally  (Huang et al., 2013) that distorted the overall 

image quality. Later, there were more mean or median preserving and sub-histogram 

separation contrast improvement methods (Kim, 1997; Park, Cho and Choi, 2008) 

being proposed to overcome the drawbacks of the conventional method. Nonetheless, 

these commonly-used methods were not designed explicitly for medical imaging 

purposes and could potentially wash out the boundaries (Gan et al., 2014). Thus, 

unsuitable methods could increase the difficulty in identifying the cartilages from other 

knee soft tissues and synovial fluid.  
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Meanwhile, the recently proposed methods in enhancing medical images, such 

as Gamma Correction Adaptive Extreme-Level Eliminating with Weighting 

Distribution (Teh et al., 2018), Reversible Data Hiding method (Gao et al., 2021), 

novel krill herd-based method (Kandhway et al., 2020), multi-modal medical image 

fusion-based method (Maqsood and Javed, 2020) and Bi-Bezier Curve enhancement 

method (Gan, Swee, et al., 2014), show greater relevancy in contributing adequate 

improvement to lift the medical images’ brightness gently while maintaining the 

structural features.   

The procedure is normally followed by the segmentation stage that has a 

significant influence on the accuracy of cartilage quantitative assessment in the 

following stage (Faisal et al., 2018). In recent years, knee cartilage segmentation 

models that have been developed are mostly manual segmentation model, semi-

automatic segmentation model and automatic segmentation model. As the 

morphological changes in the knee occur at a very slow rate, the segmentation methods 

required must be highly reproducible (Eckstein et al., 2006). As the cartilage exhibited 

huge anatomical variation, thin, irregular cartilage structure and pathological 

characteristics, the models demand expert supervision and validation. However, 

human experts may make a different conclusion regarding the severity and presence 

of the disease, therefore it requires knowledge and experience to make a valid OA 

diagnosis (Mahapatra, 2013). Moreover, the manual knee cartilage segmentation is 

conducted by a trained operator which can take a few hours to segment a single whole 

knee (Fripp et al., 2010).  

Several studies have been added these years on developing fully automatic 

knee segmentation models by training the deep learning convolutional neural network 

(Su et al., 2017; Liu et al., 2018). However, the segmentation with promising accuracy 

requires a substantial amount of labelled data, training data and validation data (Liu et 

al., 2018). Therefore, interactive segmentation model becomes an alternative that 

involves human intervention in providing crucial information of the image to the 

computer, then the computer will replace the manual delineation to conduct the 

segmentation (Kim et al., 2020; Yin et al., 2010).  
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During normal aging, 0.3% to 0.5% of cartilage lost per year is estimated and 

can be hardly detected (Gray et al., 2004). Clinical trials for osteoarthritis therapy 

highly rely on structural change (Schaefer et al., 2017) to identify the statistically 

significant transformation in disease progression of degeneration or durability of repair 

tissue. Morphological imaging biomarker in identifying the cartilage thickness is 

critically important to detect the early OA. However, the cartilage thickness is 

computed with topography (Rogowska et al., 2003) and measured by a hand-held 

ultrasonic probe where the measurement accuracy can be adversely affected by several 

control factors (Steppacher et al., 2019; Schmitz et al., 2017).  

As MRI benefits in offering full knee visualisation as compared to other 

radiography methods, there are 3-dimensional cartilage volume quantitative 

assessments  (Schaefer et al., 2017; Kauffmann et al., 2003) being proposed to allow 

longitudinal disease follow-ups. However, the volume assessment models demand 

strict validation with synthetic model or water displacement method with 

disarticulated cartilages. 

1.3 Problem Statement 

The central problem of the existing studies is the lack of focused study on 

identifying the non-cartilage labels (knee bones, fat pad, muscles, ligaments and 

nearby fluids). The pathological changes in knee cartilage are inconsistent thus 

bringing down the available segmentation methods in extracting the cartilaginous 

portion. Several studies also suggested to conduct pre-segmentation or registration to 

a more rigid bone structure prior to apply the deformable models onto the cartilages 

(Fripp et al., 2010; Yin et al., 2010; Wang et al., 2016).  A non-cartilage labels 

approximation model was proposed to allocate the background seeds automatically  

(Gan et al., 2014) to efficiently reduce the labelling work that required intensive expert 

supervision. As a basis of this study, the researcher defined the overall problem of the 

non-cartilage labels approximation model to be threefold. 
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Problem 1: Failure in background seed placement, typically in bone regions and 

synovial cavity. 

The automated background seed placement model mimics the human visual 

system (Gan et al., 2014). Generally, the ROI shall result in a higher quantification 

level. However, the low-contrast nature in knee MRIs causes ambiguity in the 

quantification stage. The regions of high homogeneity with cartilages would be mis-

quantified at high level, and hence fail in seed placement in these regions. Therefore, 

it requires a series of image enhancement techniques to improve the inferior visual 

appearance not only to help the physicians in abnormality detection and diagnosis 

decision making processes (Rundo et al., 2019) but also to improve the segmentation 

(Desai and Hacihaliloglu, 2019; Kandhway et al., 2020) or classification accuracy rate 

in the following stage. The biggest concern in knee image is the indistinctiveness 

between the cartilage and the connecting regions. However, the improvement in tissue 

distinctiveness was not focused in these studies. 

Problem 2: Interactive input to draw cartilage labels could be tedious and time-

consuming if substantial datasets are involved. 

  The existing interactive segmentation models require heavy attention from the 

operator and prior knowledge to conduct image registration and shape model 

allocation. As such, the researchers raised the concern in reducing the human attention 

level in the labelling stage (Gan et al., 2014).  Nonetheless, the existing interactive 

segmentation models require extensive user input in allocating the labels (Gan et al., 

2014) or multi-atlas registration (Lee et al., 2016) by human operator. The laborious 

processes could be tedious when enormous datasets are examined. Therefore, the 

segmentation model demands a reduction in terms of user inputs to improve the 

efficiency of the model while securing a good segmentation accuracy.  
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Problem 3: Lack of a knee quantitative assessment in the knee MRI segmentation 

model. 

The direct thickness computations on MRI cartilage segmentation slices could 

detect the thinning region of both femoral and tibial cartilages. Most of the direct 

measurements are conducted through A-mode ultrasound (Steppacher et al., 2019), 

cartilage thickness (Desai and Hacihaliloglu, 2019; Faisal et al., 2018) from 

ultrasounds, and joint space measurements (Cao et al., 2015). However, the normal 

cartilage thickness evaluation model for segmented cartilage is found lacking in the 

past studies.  

1.4 Research Objectives 

Given the absence of promising and effective treatments available in late OA 

disease, signalling the demand for a knee cartilage evaluation model in detecting early 

cartilage thinning. The framework of the proposed model includes the solutions to 

overcome the stated problems. Several objectives have been identified as follows: 

1. To propose a prominent region of interest contrast enhancement technique to 

enhance the articular cartilage contrast to become more distinctive from other 

soft tissues and synovial fluid.  

2. To formulate a minimal interactive enhanced approximate non-cartilage labels 

model to extract knee tibiofemoral cartilages from the knee MR images. 

3. To propose a regional cartilage thickness approximation technique to compute 

human knee cartilage thickness in normal distance between bone surface and 

cartilage layer. 
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1.5 Research Scope 

The research was conducted in three phases: Phase 1 to enhance the knee MRI; 

Phase 2 involved background labels approximation and interactive segmentation stage 

to yield tibiofemoral cartilages; Phase 3 involved knee cartilage quantitative 

assessment. Details of the research scope were stated as follow: 

1. Use of only dual-echo steady-state (DESS) with water excitation (we) MR 

image of human knee cartilage provided by Osteoarthritis Initiative (OAI). All 

the OAI DESSwe MR images used in the study were in sagittal view and 

captured under magnetic strength of 3 Tesla. The image packages include the 

images of participants from baseline datasets.  

2. Classification of MR image into healthy and diseased classes referring to 

Kellgren-Lawrence grades, as shown in Table 1.1. The classified images 

underwent a second-time classification by two experienced radiologists. 

 

Table 1.1 Kellgren-Lawrence grading system for OA disease. (Kellgren 

and Lawrence, 1957) 

Grade Descriptions 

0 No radiological findings of osteoarthritis 

1 Doubtful narrowing of joint space and possible osteophytic lipping 

2 Definite osteophytes and possible narrowing of joint space 

3 Moderate multiple osteophytes, define narrowing of joint space, 

small pseudocystic areas with sclerotic walls and possible 

deformity of bone contour 

4 Large osteophytes, marked narrowing of joint space, severe 

sclerosis and definite deformity of bone contour 

 

3. Age of participants ranges from 45 to 79 years old. Major exclusion criteria 

include inflammatory arthritis, bilateral end-stage knee OA, and 

contraindication to 3T MRI. The sample sizes used in this research are 

tabulated in Table 1.2. 
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Table 1.2 Sample sizes for validating the models in three phases. 

Phase Male Female Total Sample Size 

1 38 82 120 

2 12 18 30 

3 9 11 20 

 

4. MATLAB 2019a was used to develop the algorithms for all the image 

processing procedures introduced in the study. SPSS was utilized to analyse 

the data. 

5. The most affected region, specifically the medial compartment of the knee was 

referred to in the study, referring to Figure 1.1. The medial compartment 

supports 60 − 80%  of the weight-bearing load while experiencing normal 

ambulation in healthy knees (Vincent et al., 2013). 

 

 

Figure 1.1 Human knee anatomy. (Gold et al., 2019) 

 

6. Knee cartilage segmentations were performed in 2-dimensions (2D). 3-

dimensions (3D) reconstructions of cartilages were not included in the 

proposed study due to the lack of a validation model, such as the synthetic knee 

model (Kauffmann et al., 2003) or disarticulated cartilage (Millington et al., 

2007; Graichen et al., 2003). 

7. This research does not consider the advanced clinical longitudinal follow-ups 

in tracking the disease progression. 
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1.6 Significance of Research 

The proposed research focused on developing a complete OA disease 

progression evaluation framework, starting from knee image enhancement, computer-

aided segmentation network and finally cartilage thickness computation. 

Most of the existing contrast enhancement methods aim to have full contrast 

stretching which influences the overall brightness and the crucial details. The proposed 

contrast enhancement method focused on strengthening the sub-distribution exhibited 

by the ROI. The regions with homogenous intensities and texture characteristics, such 

as fat, synovial fluid and muscles, would be further diverged and causes the cartilage 

texture to be different from the other portions. The contrast enhancement model 

contributed to reduce the ambiguity in identifying the cartilaginous pixels and 

potentially assist the physicians in decision making and disease diagnosis. 

Moreover, a highly reproducible interactive segmentation model can greatly 

reduce the time required by manual segmentation which normally takes several hours. 

The previous Approximate Non-Cartilage Labels required manual labelling in 

cartilage annotations. Furthermore, the model often failed in placing adequate 

background seed due to pre-set threshold value of 100. The enhanced model replaced 

the manual label delineation with more user-friendly inputs and resolved the seed 

placement issue with an improved quantification technique and an automated threshold 

estimation mechanism. 

The medial tibiofemoral cartilages are the most affected area in OA. Therefore, 

the femoral cartilage and tibial cartilage segmented from the previous stage were 

further analysed morphologically through normal thickness computation.  Utilising 

linear equations on the Cartesian plane, the normal lines were emitted from one side 

of the cartilage surface to intersect with the edge points of the opposing side. The 

average cartilage thicknesses were computed at three weight-bearing regions at each 

cartilage and the accuracy of the evaluation model was validated with FDA-cleared 

ONIS DICOM software.  



 

11 

1.7 Thesis Organisation 

This thesis introduces an improved semi-automated knee cartilage 

segmentation model and added with the cartilage thickness computation capability. 

The total chapters included in this thesis are six chapters. 

Chapter 1 introduces the general overview of the study, generates research 

objectives according to the found problem statements and identifies the research scope 

that defines the study’s boundary. At the end of the chapter, the significances of the 

proposed study are elaborated. 

 Chapter 2 reviews the existing contrast enhancement algorithms, cartilage 

segmentation methods and cartilage quantitative assessments. Through the review, the 

conceptual development, the strength and weakness of relevant methods are discussed. 

 Chapter 3 describes the proposed evaluation model methodology. The chapter 

also includes the development of the ROI sub-distribution contrast enhancement 

method.  

Chapter 4 includes two sections. The first section describes the development 

of a minimal interactive segmentation model in extracting the cartilages from the knee 

MR images. Meanwhile, the second section illustrates the design on normal thickness 

computation from the segmentation result. 

 Chapter 5 presents the results and discussions about the overall performance of 

the proposed framework. In the first section, the proposed contrast enhancement 

method is compared with other existing methods, including both commonly-used 

methods and medical purpose contrast enhancement methods. In the second section, 

the Matthew Correlation Coefficient, Dice’s coefficient, sensitivity and specificity of 

the segmentation model are evaluated. Later, the designed cartilage quantitative 

assessment is validated with ONIS software and the overall performance of the 

framework is studied. 
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 Chapter 6 concludes the contributions of the proposed study and suggests 

meaningful recommendations on improving the cartilage evaluation model for future 

work. 
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