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ABSTRACT

Composite structure creates lightweight with a high strength-to-weight ratio 
material. This structure allows design flexibility in fibre orientation and the number of 
plies. Leveraging the design and performance of glass-fibre reinforced polymer 
(GFRP) pipes is essential to increase their competitiveness against metallic structures. 
However, GFRP has a wide range of failure modes and is less intuitive in the design 
phase than isotropic materials. A lack of practical design and analysis in composite 
materials directly compromises operational safety, especially when subjected to 
extreme internal loading conditions. The primary objective of this study was to 
determine the energy absorption performance of GFRP cylindrical structures under 
hoop tensile loading through experimental and numerical methods. The split disc test 
was conducted to determine the hoop tensile stress of various-sized GFRP pipe rings. 
The numerical results were compared to the experimental ones to validate the finite 
element method (FEM) model in terms of force-displacement curves, and deformation 
mode. The comparison showed an acceptable correlation in numerical analysis. The 
validated FEM model was then used to conduct a series of parametric studies. These 
studies showed that increasing the core thickness and winding angle significantly 
affects energy absorption performance under hoop tensile loading. A 171% increase 
in specific energy absorption (SEA) capacity can be seen when the core thickness was 
increased from 5.23 mm to 15 mm. A superior performance was obtained by involving 
a greater amount of material in energy absorption process. On the one hand, a 61% 
increase in SEA was observed when increasing the winding angles from ±54.5° to 
±75° due to the parallel high angle with the force direction. On the other hand, 
increasing the layer counts from 14 to 25 layers yielded a 0.7% decrease in SEA. 
Increasing the number of layers reduces the ply thickness-to-resin ratio, leading to 
stiffer structure with increasing microcracks. Above all, the current research makes a 
critical contribution by developing a validated FEM model as a design tool for 
evaluating the performance of GFRP by varying controllable parameters prior to 
fabrication. This contribution would significantly reduce manufacturing time and 
material waste while optimizing design efficiency.
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ABSTRAK

Struktur rencam menghasilkan bahan ringan dengan nisbah kekuatan kepada 
berat yang tinggi. Struktur ini membenarkan kebolehlenturan rekabentuk dalam 
orientasi gentian dan bilangan lapisan. Memanfaatkan reka bentuk dan prestasi paip 
polimer bertetulang gentian kaca (GFRP) adalah penting untuk meningkatkan daya 
saingnya terhadap struktur logam. Namun, GFRP mempunyai pelbagai mod kegagalan 
dan kurang intuitif dalam fasa rekabentuk berbanding bahan isotropik. Kekurangan 
rekabentuk dan analisis praktikal dalam bahan komposit secara langsung menjejaskan 
keselamatan operasi, terutamanya apabila tertakluk kepada keadaan pembebanan 
dalaman yang melampau. Objektif utama kajian ini adalah untuk menentukan prestasi 
penyerapan tenaga bagi struktur silinder GFRP di bawah pembebanan tegangan lilitan 
melalui kaedah eksperimen dan berangka. Ujian cakera pemisah telah dijalankan untuk 
menentukan tegasan tegangan lilitan bagi gegelang paip GFRP pelbagai saiz. Hasil 
keputusan analisis berangka telah dibandingkan dengan hasil eksperimen untuk 
mengesahkan model kaedah unsur terhingga (FEM) dari segi lengkung daya-anjakan 
dan mod ubah bentuk. Perbandingan tersebut menunjukkan keputusan hasil analisis 
berangka boleh diterima. Model FEM yang disahkan kemudiannya digunakan untuk 
menjalankan satu siri kajian berparametrik. Kajian ini menunjukkan bahawa 
peningkatan ketebalan teras dan sudut belitan sangat mempengaruhi prestasi 
penyerapan tenaga di bawah pembebanan tegangan lilitan. Peningkatan 171% dalam 
keupayaan penyerapan tenaga tentu (SEA) boleh dilihat apabila ketebalan teras 
ditingkatkan daripada 5.23 mm kepada 15 mm. Prestasi unggul diperoleh dengan 
melibatkan lebih banyak bahan dalam proses penyerapan tenaga. Manakala 
peningkatan 61% dalam SEA diperhatikan apabila meningkatkan sudut belitan 
daripada ±54.5° kepada ±75° disebabkan sudut tinggi selari dengan arah daya. 
Sebaliknya, meningkatkan kiraan lapisan daripada 14 kepada 25 lapisan menghasilkan 
penurunan 0.7% dalam SEA. Meningkatkan bilangan lapisan mengurangkan nisbah 
ketebalan lapisan kepada resin, menjadikan struktur lebih kaku dengan penambahan 
retakan mikro. Di atas segalanya, penyelidikan semasa memberikan sumbangan 
kritikal dengan membangunkan model FEM yang disahkan sebagai alat rekabentuk 
untuk menilai prestasi GFRP dengan mengubah parameter-parameter kawalan 
sebelum pembikinan. Sumbangan ini akan mengurangkan masa pengilangan dan sisa 
bahan dengan ketara sambil mengoptimumkan kecekapan rekabentuk.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

As the global energy sector transitions away from fossil fuels toward more 

environmentally friendly energy production, the industry is making strenuous efforts 

to reduce its operational carbon dioxide (CO2) footprint. Many major operators are 

taking this a step further by accounting for the CO2 footprint of their products 

throughout their life cycle, intending to achieve "net-zero" carbon emissions. The 

glass-fibre reinforced polymer (GFRP) would be the material of choice to contribute 

to this critical work as it is lightweight, reducing the need for energy-consuming 

transportation and installation processes. Due to their superior properties, such as 

excellent corrosion resistance compared to traditional carbon steel pipes, GFRP 

composite pipes are widely used in various applications, obviating the need for costly 

mitigation measures such as corrosion inhibitors and cathodic protection [1, 2]. Since 

the 1950s, demand for GFRP composite pipes in manufacturing and a wide variety of 

applications has increased, as illustrated Figure 1.1 [3-5].
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Figure 1.1 Dissemination of GFRP composite pipes [5]

Internal corrosion of traditional piping materials such as carbon steel can clog 

firewater sprinklers, jeopardizing the system's safe operation. GFRP popularity is 

primarily due to the outstanding advantage of low weight to high specific strength. 

Due to the reinforcements and polymer matrices, GFRP composite materials are 

widely used in lightweight structural components [6-11]. Additionally, GFRPs in 

composite pipes are becoming more appealing, owing to their higher moduli, reduced 

weight, and lower installation costs. [12, 13]. As a result, these pipes are used in 

various engineering applications, including aerospace, automotive, marine, 

agriculture, and wind turbines. [14-16].

Properties such as high specific strength, sufficient fatigue strength, and 

superior corrosion resistance are required to transport hot mediums [17-19]. It is 

critical in these circumstances to leverage additional knowledge about the design and 

performance of GFRP composite pipes to achieve enhanced properties. To improve
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quality, concurrent engineering on material, design, and fabrication must be addressed 

[20]. As a result, a better understanding of the fabrication processes and their state-of- 

the-art technology is critical. These benefits, however, come at a higher material cost. 

The lower installation and maintenance costs associated with replacing metallic piping 

systems in marine and offshore assets can compensate for the higher material costs 

[21, 22].

1.2 Problem Statement

The increased adoption of composite materials spurs significant research, 

particularly in composite mechanics and failure prediction under various loading 

conditions. Most metallic structures require repair and maintenance during their 

service life due to deterioration, particularly without proper control and mitigation 

regimes. This issue causes a series of unnecessary asset shutdowns, compromising the 

integrity of other equipment and increasing operating costs. Using advanced composite 

materials to replace costly steel components has been heavily disputed to ensure their 

suitability and durability in subsea conditions.

Despite the numerous advantages of GFRP, the disadvantages need to be 

addressed appropriately. One of the most prominent disadvantages is hoop stress 

resistance [23]. The optimal solution for isotropic materials would be to increase the 

pipe thickness. However, increasing the pipe thickness alone might not be optimal for 

orthotropic materials since it will drastically defeat the weight advantage of the 

composite materials. Despite their excellent in-plane properties, composite structures' 

failure is still an area of long-standing confusion, especially in the marine and offshore 

industries. This unresolved problem is often a complicated process and requires a 

significant amount of time to examine and understand. Composite materials have a 

wide range of failure modes and are less intuitive in the design phase than isotropic 

materials. Lack of practical design and analysis in composite materials will directly 

compromise operational safety, especially when subjected to extreme internal loading 

conditions. Therefore, it is essential to optimize the laminate design to increase the 

hoop strength and the direction of most of the loads for piping systems to meet the
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desired performance. The design parameters include winding angle, core thickness, 

and the number of layers.

Energy absorption potential is an essential composite parameter because there 

is a relationship between energy absorption and failure mechanisms. It is also helpful 

to think about how the composite constituent variable affects the energy absorption 

capacity of the composite structure. With a thorough understanding of the damage 

mechanisms and powerful simulation tools, designs with accurate failure prediction 

for higher resistance can be achieved without 'over-design,' which will drastically 

defeat the weight advantage of composite materials while maintaining the product's 

safety and integrity. The material model can then reduce the number of required 

experimental tests, resulting in a lower total design cost. The constitutive relations can 

then be inputted into a non-linear Finite Element Software to simulate the composite 

response numerically. Various strength metrics must be examined because of this. 

Therefore, a parametric study must be conducted using the validated finite element 

method (FEM) of the composite cylindrical structures. An extensive simulation with 

different pipe properties would provide an in-depth understanding of GFRP pipes 

under different failure modes, leading to an optimized design for a specific application.

Numerous studies [24-27] have been conducted to determine the mechanical 

properties of GFRP composite pipes. Although numerous papers have been published 

on the effect of GFRP pipe parameters on the performance of composite pipes, very 

minimal single study has addressed the effect of winding angles, layer number, and 

core thickness on the Hoop Tensile strength (HTS) of E-glass/Epoxy composite rings 

in a study.

1.3 Research Questions

(a) How accurate is a FEM in representing the experimental result?

4



(b) How would the varying parameters increase the energy absorption 

performances of the GFRP pipe?

1.4 Research Objectives

The objectives of the research are:

(a) To evaluate the energy absorbance of the hoop tensile test.

(b) To study the influence of geometrical parameters capacity on the hoop tensile

loading.

(c) To analyze the failure mechanism under hoop tensile loading.

1.5 Scope of The Study

The study focuses on evaluating the energy absorption behaviour of GFRP 

composite pipes subjected to hoop tensile loading. The scopes of this study are as 

follows.

(a) The composite materials are:

a. Fibre System: Unidirectional Continuous E-Glass

b. Matrix System: Epoxy

c. Hardener System: Aromatic Amine

d. Manufacturing Method: Filament Winding method (FWM) with a 

Helical Angle of ± 54.5

(b) The test conducted is Split-Disk loading test in accordance with American

Society for Testing and Materials (ASTM) D2290-19a.
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(c) The numerical model development employed a commercial LS-DYNA using 

the material properties from the manufacturer's datasheet and literature.

(d) The damage model of the material is based on existing damage-based 

formulations.

(e) The numerical model was validated using the results obtained from the hoop 

tensile test in the form of a load-displacement curve.

(f) A series of parametric studies is carried out to evaluate the influence of 

controllable parameters on the cylindrical structure.

1.6 Significance of Research

The outcome of this research would be beneficial for Research and 

Development (R & D) for industrial application. Unlike the isotropic nature of steel 

and metals, composite material properties are essential for fast-growing industries, 

such as the marine, oil, and gas industries [28]. The current material characterization 

of GFRP for industrial applications typically involves physical and destructive tests 

with no specific requirement for Finite Element application to reduce physical tests, 

product development, and project qualification [29, 30]. The outcome of this study is 

in the form of a validated model, acted as a preliminary study to examine the 

performances of GFRP with varying parameters. From this preliminary study, only 

selected design parameters are expected to be proceeded to the fabrication stage, 

reducing costs and minimizing waste significantly. The result of tested fabricated 

samples validated the model to improve its efficiency. The same model can be used to 

troubleshoot damage occurrences in the field application. This action would remove 

the need for the damaged pipe to be transferred back to manufacturing plants/testing 

laboratories for further evaluation. Besides, the model provides the basis for pipe 

support designs for GFRP pipes. The current design adaptations are mainly from the 

steel piping design. Optimization of GFRP piping support could provide better energy 

absorption performances over the design life.
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1.7 Thesis Outline

Chapter 2 includes a comprehensive review of the literature relevant to the 

thesis's objectives and scope. The chapter began by summarizing the fundamental 

concept of GFRP's energy absorption properties. Following this review, a 

comprehensive examination of prior and ongoing research on GFRP pipes is discussed. 

This section discusses the analysis and experimental testing of such materials and the 

finite element modeling of GFRP pipes.

Chapter 3 describes the split-disk test per ASTM D2290 as an experimental 

method for determining the hoop tensile strength. Additionally, the development and 

validation of the finite element model used to simulate GFRP pipes subjected to hoop 

tensile loading were discussed. The methodology used to develop the model and to 

simulate quasi-static loading conditions is introduced.

Chapter 4 discusses the experimental results, theoretical model, and prior 

research that were used to validate the hoop tensile loading FEM. Following this, the 

experimental load-deflection response and deformation profiles of the GFRP pipes are 

compared to the numerical model predictions. The validated finite element model 

developed in this chapter served as the foundation for parametric studies on the GFRP 

pipe hoop tensile loading response.

Chapter 5 summarises the thesis's main conclusions and their practical 

implications.
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