ENERGY ABSORPTION CAPABILITY OF MULTI-CELL THIN-WALLED TUBE UNDER LATERAL LOADING

MUHAMMAD IZZUDDIN BIN MOHD SOFI

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Philosophy

> School of Mechanical Engineering Faculty of Engineering Universiti Teknologi Malaysia

> > NOVEMBER 2019

DEDICATION

This thesis is dedicated to my father, who taught me that the best kind of knowledge to have is that which is learned for its own sake. It is also dedicated to my mother, who taught me that even the largest task can be accomplished if it is done one step at a time.

ACKNOWLEDGEMENT

First and foremost, I would like to express my sincere thanks and appreciation to my respectful supervisor, Assoc. Prof. Ir. Dr. Zaini Ahmad for his inspiration, invaluable supports and advice throughout the completion of this thesis. I am also very thankful to my co-supervisor Dr. Wong King Jye for his guidance, pieces of advice and motivation. Without their continued support and interest, this thesis would not have been the same as presented here.

To my CSMLab members especially Chow Zhen Pei, I would like to gratitude for his valuable suggestion and recommendation during our working time we spent together. To other lab members, I would like to express my gratefulness and appreciation to all of you for your friendly cooperation, insightful discussions and wise advises.

I would also like to thank my beloved parents and family for their understanding, patience, encouragement and enthusiasm that have made the completion of this thesis possible.

Finally, I would like to thank my friends and colleagues who always supported me in many ways and helped me a lot during my research in Universiti Teknologi Malaysia.

ABSTRACT

Energy absorption performance of a structure is a vital aspect in modern transportation design to minimize human injuries during collision. To minimize impact energy, it is necessary to dissipate the energy generated from the collision by absorbing it through deformation of crashworthy structure. Thin-walled structures are widely used as energy absorbing systems due to their capability to efficiently absorb kinetic energy through plastic deformation. However, there are several accidents reported that involve collision between vehicles with toll booths, utility poles and flyover pillar that are lack of protective device. Most of the crashworthiness studies emphasized on the multi-cell structure with load applied axially. Therefore, the investigation on the multicell circular thin-walled tubes under lateral loading still gained less attention among the researchers. The primary objective of this thesis is to evaluate the crush response and energy absorption performance of multi-cell thin-walled tubes under quasi-static lateral loading. The compression test was performed under quasi-static lateral loading to evaluate the energy absorption performance of circular thin-walled tubes. Finite element models were developed and validated by comparing the crushing profile and load-displacement curve response of. A multi-cell configuration study was performed to identify the most optimal multi-cell configuration. Furthermore, the response surface method (RSM) for the design of experiment (DOE) was employed to identify the correlation between the geometrical variables parameters and the energy absorption responses. In addition, an investigation of geometrical factor of multi-cell structure was conducted by employing the multi-objective optimization design approach in order to establish the design guidelines of optimal geometrical configuration. Compression test result shows that a multi-cell thin-walled tube has superior energy absorption performance compared to a single thin-walled circular tube under lateral loading. It is evident that the specific energy absorption (SEA) of multicell thin-walled tube produces 28% and 76% greater than the single thin-walled circular tubes, SC-small and SC-large configurations, respectively. The outcomes of the study show that the energy absorption performance of multi-cell structure is significantly dependent on the number of tube cells and contact joint of the tube. Based on the multi-objective optimization study, it is evident that the optimal configuration of multi-cell thin-walled tube can be achieved with a smaller diameter and thicker circular tube. The main contribution of this thesis is the development of design guideline for the most optimal geometrical parameter of multi-cell thin-walled tube under lateral loading.

ABSTRAK

Prestasi penyerapan tenaga struktur adalah aspek penting dalam mereka bentuk struktur pengangkutan moden, bagi mengurangkan kecederaan semasa perlanggaran. Untuk mengurangkan tenaga impak, adalah perlu untuk melesapkan tenaga yang dihasilkan dari perlanggaran dengan menyerap tenaga melalui perubahan bentuk struktur yang kekal. Struktur berdinding nipis digunakan secara meluas sebagai sistem menverap tenaga kerana keupavaannya untuk menverap tenaga kinetik melalui perubahan bentuk plastik. Walau bagaimanapun, terdapat beberapa laporan tentang kemalangan yang melibatkan kenderaan dengan struktur yang kurang perlindungan seperti plaza tol, tiang jalan raya dan juga tiang jejambat. Kebanyakan daripada kajian keupayaan perlanggaran menekankan kepada struktur berbilang sel dengan beban paksi. Oleh itu, penyiasatan ke atas tiub dinding nipis bulat berbilang sel di bawah beban sisi masih kurang mendapat perhatian di kalangan penyelidik. Objektif utama tesis ini adalah untuk menilai tindak balas penghancuran dan prestasi penyerapan tenaga tiub berdinding nipis berbilang sel di bawah beban sisi kuasi-statik. Ujian mampatan dilakukan di bawah beban sisi kuasi-statik untuk menilai prestasi penyerapan tenaga tiub berdinding nipis bulat. Selain itu, model unsur terhingga telah dibangunkan dan disahkan dengan melakukan perbandingan profil penghancuran dan lengkung tindak balas beban ujian mampatan. Malahan, kajian konfigurasi berbilang sel telah dilakukan untuk mengenal pasti konfigurasi berbilang sel yang paling optimum. Kaedah permukaan tindak balas (RSM) untuk reka bentuk eksperimen (DOE) telah digunakan bagi mengenal pasti hubungan di antara parameter pemboleh ubah geometri dan tindak balas penyerapan tenaga. Di samping itu, penyelidikan mengenai struktur geometri struktur pelbagai sel telah dijalankan dengan menggunakan pendekatan reka bentuk pengoptimuman multi-objektif bagi menghasilkan garis panduan reka bentuk konfigurasi geometri yang optimum. Hasil ujian mampatan menunjukkan bahawa, tiub berdinding nipis berbilang sel di bawah ujian bebanan sisi mempunyai prestasi penyerapan tenaga yang lebih baik berbanding dengan satu tiub berdinding nipis. Adalah jelas bahawa tiub berdinding nipis pelbagai sel mampu menghasilkan penyerapan tenaga tertentu (SEA) masing-masing sebanyak 28% dan 76% lebih besar daripada konfigurasi tiub berdinding nipis tunggal, SC-kecil dan SC-besar. Kesimpulan utama dari kajian konfigurasi berbilang sel menunjukkan prestasi penyerapan tenaga struktur berbilang sel bergantung kepada bilangan tiub sel dan juga gabungan sentuhan di antara tiub. Berdasarkan kajian pengoptimuman multiobjektif, ianya dapat dibuktikan bahawa konfigurasi optimum tiub berdinding nipis berbilang sel boleh dicapai dengan diameter yang lebih kecil dan tiub yang lebih tebal. Sumbangan utama tesis ini adalah pembangunan satu garis panduan reka bentuk untuk memperolehi parameter geometri yang paling optimum bagi tiub berdinding nipis berbilang sel di bawah beban sisi.

TABLE OF CONTENTS

TITLE

DEC	DECLARATION		
DED	DEDICATION		
ACK	ACKNOWLEDGEMENT		
ABS	TRACT	V	
ABS	TRAK	vi	
ТАВ	BLE OF CONTENTS	vii	
LIST	Γ OF TABLES	xi	
LIST	Γ OF FIGURES	xiii	
LIST	Γ OF ABBREVIATIONS	xvii	
LIST	Г OF SYMBOLS	xviii	
CHAPTER I	INTRODUCTION	1	
1.1	Research Background	1	
1.2	Problem Background	4	
1.3	Research Objectives	5	
1.4	Research Scopes	5	
1.5	Significance of Study	6	
1.6	Thesis Outline		
CHAPTER 2	LITERATURE REVIEW	9	
2.1	Introduction	9	
2.2	Energy Absorption Characteristic	10	
	2.2.1 Energy Absorption Capacity	10	
	2.2.2 Mean Force	11	
	2.2.3 Specific Energy Absorption (SEA)	12	
	2.2.4 Crush Load Efficiency	13	
	2.2.5 Energy Absorption Efficiency (e_E)	13	
2.3	Designing Energy Absorbers	14	

		2.3.1	Designing Energy Absorbing Structures		14	
		2.3.2	Material Selection of Energy Absorbers			
	2.4	Thin-	Walled Structures			
	2.5	Types	of Loadir	18		
		2.5.1	Axial Lo	oading	18	
		2.5.2	Lateral I	Loading	20	
			2.5.2.1	Single Circular Tube	21	
			2.5.2.2	Other Cross-Sectional Shapes	24	
			2.5.2.3	Nested Tube	25	
			2.5.2.4	Foam-Filled Tube	29	
		2.5.3	Oblique	Loading	31	
		2.5.4	Bending	Loading	32	
	2.6	Multi-	Cell Thin	-Walled Structure	33	
	2.7	Rate c	of Loading	fLoading		
	2.8	Finite	Element Modelling of Energy Absorbers			
		2.8.1	Finite El	ement (FE) Model	39	
	2.9	Optim	ization D	zation Design of Crashworthiness		
	2.10	Summ	nary of Lit	erature Review	44	
		DECE	CARCH M	IETHODOLOGY	45	
СНАРТЕ	.R 3	KESE				
СНАРТЕ	3.1	Introd	uction		45	
СНАРТЕ	3.1 3.2	Introd Exper	uction iment		45 47	
СНАРТЕ	3.1 3.2	Introd Exper 3.2.1	uction iment Tensile 7	Гest	45 47 47	
СНАРТЕ	3.1 3.2	RESEIntrodExper3.2.13.2.2	uction iment Tensile 7 Specime	Test n Preparation	45 47 47 50	
СНАРТЕ	3.1 3.2	RESE Introd Exper 3.2.1 3.2.2 3.2.3	uction iment Tensile 7 Specime Compres	Test n Preparation ssion Test	45 47 47 50 52	
СНАРТЕ	3.1 3.2 3.3	RESE Introd Exper 3.2.1 3.2.2 3.2.3 Nume	uction iment Tensile Specime Compres rical mode	Test n Preparation ssion Test el	45 47 47 50 52 53	
СНАРТЕ	3.1 3.2 3.3	RESE Introd Exper 3.2.1 3.2.2 3.2.3 Nume 3.3.1	uction iment Tensile Specime Compres rical mode Develop Multi-ce Tube	Test In Preparation ssion Test el ment of Finite Element Model for Il and Single Thin-Walled Circular	45 47 47 50 52 53 53	
СНАРТЕ	3.1 3.2 3.3	RESE Introd Exper 3.2.1 3.2.2 3.2.3 Nume 3.3.1 3.3.2	uction iment Tensile T Specime Compres rical mode Develop Multi-ce Tube Geometi	Fest on Preparation ssion Test el ment of Finite Element Model for Il and Single Thin-Walled Circular	45 47 47 50 52 53 53 53	
СНАРТЕ	3.1 3.2 3.3	RESE Introd Exper 3.2.1 3.2.2 3.2.3 Nume 3.3.1 3.3.2 3.3.3	uction iment Tensile T Specime Compres rical mode Develop Multi-ce Tube Geometri Material	Test In Preparation Ssion Test el ment of Finite Element Model for Il and Single Thin-Walled Circular	45 47 47 50 52 53 53 53 54 56	
СНАРТЕ	3.1 3.2 3.3	RESE Introd Exper 3.2.1 3.2.2 3.2.3 Nume 3.3.1 3.3.2 3.3.3 3.3.4	uction iment Tensile 7 Specime Compres rical mode Develop Multi-ce Tube Geometr Material Contact	Test In Preparation In Test In and Single Thin-Walled Circular In and Meshing In Model	45 47 47 50 52 53 53 53 54 56 57	

3.4	Validation of Finite Element (FE) Modal		59
	3.4.1	Single Circular Thin-Walled Tubes	60
	3.4.2	Multi-Cell Circular Thin-Walled Tube	64
3.5	Multi	cell Configuration	67
	3.5.1	Different configuration of multi-cell structure	67
	3.5.2	Different Number of Cell	70
3.6	Desig	n of Experiment (DOE)	71
	3.6.1	Sampling design	72
	3.6.2	Development of mathematical model	73
	3.6.3	Response Surface Methodology (RSM)	74
	3.6.4	Adequacy of The Developed Model	74
3.7	Param	netric Study	75
3.8	Multi-Objective Optimization		75
3.9	Summ	nary of Methodology	77
CHAPTER 4	RESU	JLTS AND DISCUSSIONS	79
4.1	Introduction		79
4.2	Load-Displacement Response and Deformation Mode of Thin-Walled Tubes		
	4.2.1	Comparison of The Energy Absorption Response Between Each Circular Tube Configuration	85
4.3	Effect Absor	of Multi-Cell Configuration on the Energy ption Responses	89
	4.3.1	Types of Multi-Cell Configuration	89
	4.3.2	Number of Cell Effect on Energy Absoprtion Response	97
4.4	Devel	opment of Response Surface (RS) Model	102
	4.4.1	Sampling Design Point	103
	4.4.2	Adequancy of Response Surface (RS) Model	105
	4.4.3	Validation	109
4.5	Param	netric Study	111
	4.5.1	Effect of Geometrical Factor on SEA	111
	4.5.2	Effect of Geometrical Factor on F _{peak}	114

4.6	Multi-Objective Optimization Design of Multi-Cell Thin-Walled Tube	117	
4.7	Summary	121	
CHAPTER 5	CONCLUSION AND RECOMMENDATIONS	123	
5.1	Conclusion	123	
5.2	Recommendations	125	
REFERENCES		127	
LIST OF PUBLI	LIST OF PUBLICATIONS		

LIST OF TABLES

TABLE NO.	TITLE	PAGE		
Table 1.1	Statistics of vehicles and road accident in Malaysia (source of Traffic Investigation and Enforcement Department, Polis Diraja Malaysia)			
Table 3.1	Detailed dimensions of tensile test specimens	48		
Table 3.2	Material properties of mild steel tube	50		
Table 3.3	Dimension and configuration of circular thin-walled tube structures	51		
Table 3.4	True stress versus plastic strain of mild steel in Finite Element Model	56		
Table 3.5	Comparison between experimental and numerical results of SC-small	62		
Table 3.6	Comparison between experimental and numerical results of SC-large	63		
Table 3.7	Comparison between theoretical and numerical F_{peak} values of SC-small and SC-large			
Table 3.8	Comparison between experimental and numerical result of multi-cell			
Table 3.9	Detailed dimension of multi-cell configuration			
Table 3.10	Design matrix of Box-Behnken Design			
Table 3.11	Design sampling point of multi-cell thin-walled tube			
Table 4.1	Energy absorption response of SC-small thin-walled circular tube	80		
Table 4.2	Energy absorption response of SC-large thin-walled circular tube	80		
Table 4.3	Energy absorption response of multi-cell thin-walled circular tube	81		
Table 4.4	Deformation mode of different multi-cell configuration structure	92		
Table 4.5	Deformation progress of different multi-cell configuration structure	96		
Table 4.6	Detail dimension of multi-cell configuration	98		

Table 4.7	The sampling point for Box-Behnken Design 104			
Table 4.8	Box-Behnken design with different variables of geometrical factor and the energy absorption responses	105		
Table 4.9	Analysis of variance (ANOVA) table for SEA response	107		
Table 4.10	Analysis of variance (ANOVA) table for F _{peak} response	108		
Table 4.11	Comparison between numerical model and predicted (RSM)	109		
Table 4.12	The criterion of multi-objective optimization	118		
Table 4.13	Multi-objective optimal solutions for multi-cell thin-walled tube 11			
Table 4.14	Comparison between numerical and predicted optimized responses	119		

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
Figure 1.1	Aluminium crash boxes of BMW 5 series (Aluminium Automotive Manual, European Aluminium Association)	3
Figure 1.2	A crash barrier protection system consisting of multi-cell thin-walled tube structures	4
Figure 2.1	The crushing load versus displacement curve of circular tube thin-walled structure under lateral loading [6]	11
Figure 2.2	Load-displacement curve of thin-walled tube under quasi- static axial loading [7]	12
Figure 2.3	Varieties of thin-walled cross-sectional shape as energy absorber (a) Circular (b) Triangular (c) Square (d) Rectangular (e) Pyramidal (f) Conical [16]	17
Figure 2.4	Different type of loading conditions (a) axial loading (b) oblique loading (c) lateral loading (d) bending loading	18
Figure 2.5	Axially loaded thin-walled tubes with various cross- sections [16]	19
Figure 2.6	Deformation mode of circular thin-walled aluminium tube under lateral loading [26]	22
Figure 2.7	Load-displacement response of single thin-walled circular tube [22]	22
Figure 2.8	Collapse mechanism of circular thin-walled tube developed by: (a) DeRuntz and Hodge, (b) Burton and Craig, (c) figure of forces acting on deformation segment.	23
Figure 2.9	Various shape under lateral loading (a) Oblong tube [37] (b) Hexagonal column [36] (c) Triangular tube [39] (d) Corrugated tube [40]	25
Figure 2.10	A nested tube system of (a) circular tubes and (b) elliptical shaped tubes subjected to quasi-static lateral loading by Morris et al. [41]	26
Figure 2.11	An optimise nested tube system with tubular bar insert between gap by Olabi et al. [42]	27
Figure 2.12	Deformation mode of nested tube with two equivalent inner tube under lateral loading [44]	28

Figure 2.13	Nested system with external constraint by Morris et al. [46]		
Figure 2.14	Foam-filled tube submitted to lateral loading [47]		
Figure 2.15	Different multi-cell configurations (a) circular columns [74] and (b) square columns [70]		
Figure 2.16	Comparisons between mean SEA of various geometries and multi-cell [70]		
Figure 2.17	The multi-cell circular tube under lateral loading condition [76]		
Figure 2.18	Finite element model of circular tube under quasi-static model [100]	41	
Figure 3.1	Flow Chart of Research Methodology	46	
Figure 3.2	Standard size of tensile test specimen according to ASTM E8M	47	
Figure 3.3	Universal Testing Machine INSTRON 8081	49	
Figure 3.4	True stress against true strain curve of mild steel material	49	
Figure 3.5	Welding part of Multi-cell thin-walled	51	
Figure 3.6	The compression test of Multi-cell and single thin-walled tube	53	
Figure 3.7	The boundary condition of (a) SC-small, (b) SC-large and (c) multi-cell thin-walled under lateral loading	55	
Figure 3.8	True stress-strain curve of permanent plastic deformation	57	
Figure 3.9	Velocity-time history for the moving plate used in the quasi-static simulation	58	
Figure 3.10	Quasi-static simulation of energy-displacement response	59	
Figure 3.11	Load-displacement curve of SC-small thin-walled tube	60	
Figure 3.12	Load-displacement curve of SC-large thin-walled tube	61	
Figure 3.13	Comparison of deformation mode for SC-small thin-walled circular tube (a) experiment and (b) FE model		
Figure 3.14	Comparison of deformation mode for SC-large thin-walled circular tube (a) experiment and (b) FE model	62	
Figure 3.15	Load-displacement of multi-cell circular thin-walled tube	65	
Figure 3.16	Comparison of deformation mode for multi-cell thin-walled circular tube (a) experiment and (b) FE model	66	

Figure 3.17	Flow chart of multi-cell configuration study	67	
Figure 3.18	Multi-cell with different configuration (5 cell)		
Figure 3.19	Multi-Cell with different configuration (6 cell)	69	
Figure 3.20	Multi-cell configuration with same height, h equal to 181.5 mm	70	
Figure 3.21	Flow chart of performing multi-objective optimization study	77	
Figure 4.1	Load-displacement curve of SC-small thin-walled circular tube	82	
Figure 4.2	Load-displacement of SC-large thin-walled circular tube	82	
Figure 4.3	Load-displacement of multi-cell thin-walled circular tube	83	
Figure 4.4	Deformation mode of SC-small thin-walled circular tube under quasi-static lateral loading	84	
Figure 4.5	Deformation mode of SC-large thin-walled circular tube under quasi-static lateral loading	84	
Figure 4.6	Deformation mode of multi-cell thin-walled circular tube under quasi-static lateral loading	85	
Figure 4.7	Result of SEA (J/kg) and TEA (J) of SC-small, SC-large, and multi-cell thin-walled circular tubes	86	
Figure 4.8	Energy efficiency indicator, <i>eE</i> (%) of SC-small, SC-large and multi-cell thin-walled circular tubes	87	
Figure 4.9	Comparison of load-displacement curves of each thin- walled circular tubes	88	
Figure 4.10	Multi-cell configuration with five tubes (a) MC5A (b) $MC5B$ (c) $MC5C$	90	
Figure 4.11	The effect of multi-cell configuration (5 cells) on the specific energy absorption (SEA) and total energy absorption (TEA)	90	
Figure 4.12	The effect of multi-cell configuration (5 cells) on initial peak load (F_{peak})	91	
Figure 4.13	Load-displacement curves of multi-cell tube configuration (MC5A, MC5B, and MC5C)	93	
Figure 4.14	Multi-cell configuration with six tubes (a) MC6A (b) MC6B (c) MC6C	94	

Figure 4.15	The effect of multi-cell configuration (6 cells) on specific energy absorption (SEA) and total energy absorption (TEA)				
Figure 4.16	The effect of multi-cell configuration (6 cells) on peak load (F_{peak})				
Figure 4.17	Load-displacement curves of 6 number of cell (MC5A, MC5B, and MC5C)				
Figure 4.18	Multi-cell configuration of M4A, M6A, and M8A	98			
Figure 4.19	Load-displacement curve of multi-cell thin-walled tube with different number of cells				
Figure 4.20	The effect of multi-cell configuration on SEA (kJ/kg) and TEA (kJ)	99			
Figure 4.21	Deformation mode of different multi-cell configuration structure (a) deformation mode at 40 mm displacement (b) deformation mode at 70 mm displacement	100			
Figure 4.22	The effect of multi-cell configuration on peak load, $F_{\text{peak}}\left(kN\right)$	101			
Figure 4.23	Energy efficiency, eE (%) of M4A, M6A, and M8A	102			
Figure 4.24	Predicted vs Actual value of SEA (J/kg)				
Figure 4.25	Predicted vs Actual value of F _{peak} (kN)				
Figure 4.26	Effect of tube diameter on SEA				
Figure 4.27	Effect of tube thickness on SEA				
Figure 4.28	Buckling effect at the middle joint section a) thickness, $t = 1.5$ mm, b) thickness, $t = 5.5$ mm				
Figure 4.29	Surface plot of geometrical factor effect (diameter and thickness) on SEA (J/kg)				
Figure 4.30	Effect of tube diameter on F _{peak}	115			
Figure 4.31	Effect of thickness of tube on F _{peak}				
Figure 4.32	Surface plot of geometrical factor effect (diameter and thickness) on F_{peak} (kN)	116			
Figure 4.33	Surface plot of geometrical factor effect (width and thickness) on $F_{peak}(kN)$	117			
Figure 4.34	Developed numerical model of optimal geometrical configuration 120				

LIST OF ABBREVIATIONS

ASTM	-	American Standard for Testing and Material
DOE	-	Design of Experiment
FE	-	Finite Element
OVAT	-	One Variable at A Time
ROPS	-	Rollover Protective Structure
RSM	-	Response Surface Methodology
RS	-	Response Surface
TIG	-	Tungsten Inert Gas
WEDM	-	Wire Cut Electrical Discharge Machine

LIST OF SYMBOLS

a	-	Total Length of Specimen
b _{ij}	-	Coefficient value
С	-	Width of Grip Section
CLE	-	Crush Length Efficiency
d	-	Displacement
D	-	Diameter
D/t	-	Ratio of Diameter to Thickness
E	-	Energy
e_E	-	Energy Absorption Efficiency
F	-	Maximum Load
F_{mean}	-	Mean Crushing Load
F_{peak}	-	Initial Peak Load
F(y)	-	Response of Model
L_{cr}	-	Critical Tube Length
L/D	-	Ratio of Length to Diameter
т	-	Total Mass of Energy Absorber
Mx	-	Rotation on <i>x</i> -axis
My	-	Rotation on y-axis
Mz	-	Rotation on z-axis
r	-	Radius
SEA	-	Specific Energy Absorption
t	-	Thickness
<i>t</i> _f		Time
TEA	-	Total Energy Absorption
Ux	-	Translation on <i>x</i> -axis
Uy	-	Translation on <i>y</i> -axis
Uz	-	Translation on <i>z</i> -axis
V	-	Velocity
W	-	Width
X_1	-	First Factor

X_2	-	Second Factor
X3	-	Third Factor
x^{l}	-	Lower Design Variable
x^{u}	-	Upper Design Variable

CHAPTER 1

INTRODUCTION

1.1 Research Background

The demand for various types of vehicles in society is increasing year by year due to the development of new technology and features in automobile and transportation industries. Vehicles have become an important part of modern society life that are used almost every day for transportation. Unfortunately, road accidents are somewhat inevitable that have been increasing and becoming a major worldwide hazard problem. Subsequently, any vehicular accident will either cause loss of life, severe injuries, or property losses. Annually, automobile accidents result in critical wounds or fatality of up to thousands of individuals globally. It shows that the worldwide phenomenon of transportation vehicles proliferation is an indirect consequence to the increase in vehicle accidents. In Malaysia, the rate of road accidents is increasing on par with increasing the number of road users. Statistics show that the rate of accidents in year of 2017 increased by 30 % compared to year of 2008 as tabulated in Table 1.1.

Therefore, it is obvious that a major action in safety of vehicles structures needs to be taken to reduce the serious effect of vehicle accident on human lives and health. Thus, over the past few decades plenty of efforts have been made by engineers and researchers to develop reliable energy absorber components and systems that can dissipate the impact energy during a collision. An energy absorber is a vital component in modern transportation design structure to reduce human death or injuries during collision. However, energy absorption systems are not capable of preventing any of road accidents from occurring owing to most of accidents happening caused by human errors.

Year	Total number of accidents	Death	Serious injuries
2008	373,071	6,527	8,868
2009	397,330	6,745	8,849
2010	414,421	6,872	7,781
2011	449,040	6,877	6,328
2012	462,423	6,917	5,868
2013	477,204	6,915	4,597
2014	476,196	6,674	4,432
2015	489,606	6,706	4,120
2016	521,466	7,152	4,506
2017	533,875	6,740	3,310

Table 1.1Statistics of vehicles and road accident in Malaysia (source of TrafficInvestigation and Enforcement Department, Polis Diraja Malaysia)

Meanwhile, the crashworthiness is defined as the quality or condition of the vehicles or energy absorber structures under impact collision [1]. The energy absorbers have good crashworthiness performance when the protected structure or passengers sustaining less damage after collision. In order to diminish likelihood of injuries and wounds, it is imperative to disperse energy directing towards the passengers onto the vehicle structure via energy absorber deformation during a crash. The crashworthiness performance of energy absorber is evaluated based on several energy absorption indicators. Hence, numerous studies have been performed to comprehend the behaviour of energy absorption response with several of crashworthiness structures.

Thin-walled tubes have extensively been utilized in crashworthiness application as energy absorber structures [2]. This structure has inclusively been utilized in crashworthiness applications for its capability to efficiently absorb kinetic energy through plastic deformation, thus improving energy dissipation and crashworthiness performances. Several reasons govern the predominant application of energy absorbers that are thin-walled tubes. One of the reasons is thin-walled tubes are easy to be fabricated and still maintain great energy absorption performance. Furthermore, thin-walled tubes made from various ductile materials have been used as crashworthy structure due to its abilities to convert kinetic energy into inelastic energy by permanent plastic deformation during the impact event. In addition, thin-walled tubes can be produced in several geometrical shapes and different configurations with minimum manufacturing cost. Depending on the material used, thin-walled tube is a lightweight structure that can be utilized in vehicles such as airplane and cars in reducing weight of vehicles.

Figure 1.1 Aluminium crash boxes of BMW 5 series (Aluminium Automotive Manual, European Aluminium Association)

The most noticeable application of thin-walled structure as an energy absorber is as crash boxes of vehicles as shown in Figure 1.1. During the frontal collision of vehicles, the crash boxes undergo plastic deformation before the impact load transferred to other vehicles components. Thus, the crash boxes minimize the load transmitting to other parts of protected structure or components. This energy absorber system will reduce the risk of injuries or death to passenger as well cost of damage repair. Moreover, thin-walled tube also has been widely utilised in other crashworthiness applications such as aircraft subfloor structures and Roll over Protective Structures (ROPS) of heavy vehicles, such as bulldozers and tractors [3-5]. Over past few decades, researchers carried out continuing efforts to enhance the energy absorption of structures through analytical, experimental and numerical methods [2]. In the selection of energy absorption structures, single cell structures are outperformed by multi-cell structures by their better energy absorption capacity. Generally, a multi-cell structure is a structural member created from combination of different angle and cells numbers with thin-walled tubes. Additional number of cell structure will contribute in strengthening of the energy absorber, thus enhancing the energy absorption capacity.

In addition, the concepts of multi-cell thin-walled tube structure are practical as an energy absorber for crash barrier system as shown in Figure 1.2. There are several accidents reported that involve collision between vehicles with toll booths, utility poles and flyover pillar that are lack of protective device on these structures [6]. The idea of this system is to retrofit a crash barrier, thus to prevent force from transmitting to the protected structure. Consequently, this barrier will minimize the damage level and cost as it will reduce risk of injury or death.

Figure 1.2 A crash barrier protection system consisting of multi-cell thin-walled tube structures

1.2 Problem Background

The safety of road users has always been the priority that needs the most attention. Road accidents involving collision between two or more vehicles are common throughout the year. Such tragic accident obviously contributes a great economic loss to society. Furthermore, road accident also can involve collision of vehicles with other structure such as toll booths, utility poles and flyover pillar. Due to lack of protection against the structure, it will cause serious injuries or fatality.

Owing to the advantages of thin-walled tubes in energy absorption application, numerous studies of thin-walled tubes had been carried out to identify their energy absorption performance based on several factors. Most of the crashworthiness studies emphasized on the multi-cell structure with load applied axially. Therefore, the investigation on the multi-cell circular thin-walled tubes under lateral loading still gained less attention among the researchers.

1.3 Research Objectives

The thesis consists of two main objectives which are listed as follows.

- (a) To evaluate the crush response and energy absorption performance of multicell thin-walled tubes under quasi-static lateral loading.
- (b) To evaluate the geometrical factor of multi-cell structures by employing the multi-objective optimization design approach.

1.4 Research Scopes

This research is concentrated on crush response and energy absorption of multicell thin-walled circular tubes under lateral loading. In order to achieve the aims, the finite element model of multi-cell thin-wall circular tubes was developed to identify the energy absorption performance. Both experimental and numerical studies are performed in this research. The scope of the work is highlighted as follows:

- i. Develop preliminary finite element (FE) models of the thin-walled circular tubes using finite element nonlinear code LS-DYNA to comprehend the crushing behaviour of these structures under quasi-static lateral loading.
- ii. Conducting standard tests to identify the material properties of circular tubes.
- iii. Conducting a series of quasi-static compression tests on the multi-cell and single thin-walled circular tubes and perform the energy absorption performance comparison between each thin-walled structure in order to examine the advantages of multi-cell structure.
- iv. Develop detailed finite element models of multi-cell and single thin-walled circular tubes for examining the impact characteristics and energy absorption performance.
- v. Validate the numerical models by comparing the crushing profile and loaddisplacement responses.
- vi. Perform an investigation on various multi-cell configuration structures based on validated FE model in order to identify the optimal multi-cell configuration.
- vii. Develop Response Surface (RS) models of multi-cell thin-walled tubes by using statistical software, Design-expert v6.
- viii. Perform a series of parametric study to identify the influence of geometrical parameter on the energy absorption performance.
- ix. Conduct multi-objective optimization algorithm to identify the optimum performance of multi-cell thin-walled circular tubes.

1.5 Significance of Study

The present study provides comprehensive research information on the energy absorption performance of multi-cell and single thin-walled circular tubes when subjected to quasi-static lateral loading condition. At the moment, there are limited information on multi-cell circular tubes structure subjected to the crushing load laterally. Hence, this study may indispensably contribute as design information and provide the advantages of multi-cell tubes structures as an energy absorber for crashworthiness applications. In addition to this, the multi-cell configuration study can assist in understanding the influence of multi-cell configuration on energy absorption responses. It has also established the effect of multi-cell structure's geometrical factor on energy absorption responses. Moreover, the primary outcome of this study is to generate a new optimal design for multi-cell structure. Therefore, the results can be utilized for developing a new design guidelines of multi-cell tubes to enhance the crashworthiness performance.

1.6 Thesis Outline

This thesis is divided into 6 chapters. Chapter 1 presents the overview of this study. This chapter highlights the discussion on the background study of research where detailed explanation on energy absorption structures and applications involved are described. A problem statement is clearly defined based on the current problem in crashworthiness application. In addition, the main objectives, scope of work and significance study are also treated in this study.

Subsequently, Chapter 2 provides a critical review on the recent works that are related to the objectives and scopes of this research. This chapter begins with the fundamental of energy absorption characteristics. Then the literature review continues with explanation of general principles in designing energy absorbers. Further discussions based on previous conducted research on types of loading with various energy absorber structures are also presented in this chapter. In addition, the advantages of multi-cell structure in crashworthiness applications are also explicitly explained. Finally, the finite element analysis and multi-objective optimization study of energy absorption systems are described.

In Chapter 3, the important methods and approaches used in this research are presented. This chapter focuses on four parts: experimental technique, finite element (FE) model, multi-objective optimization and parametric study. The experimental part discusses the techniques that are involved in performing tensile and compression tests, while FE model is briefly described the methods required in finite element modelling of circular thin-walled tubes structures. The next section deals with the design of experiment and multi-objective optimisation approach by using design expert software. Finally, this chapter discusses the parametric study that consists of geometrical and multi-cell configuration study. 3

Chapter 4 discusses the results of thin-walled structures obtained from quasistatic compression test. The energy absorption behaviour of each thin-walled tube was investigated to allow more understanding these thin-walled structures under lateral loading condition. In addition, the comparison between the energy absorption responses of each thin-walled structures was also discussed in this chapter. The validation of FE models of thin-walled structures also was described in this chapter where the developed FE models were validated by comparing the numerical results with experiment results. The validation is required to ensure the accuracy of the numerical model and FE models.

Chapter 5 introduces the multi-cell tubes with different configurations where energy absorption responses of each multi-cell configuration was analysed. Thus, first section of this chapter will provide the optimal multi-cell configuration as a design guideline for utilizing in crashworthiness application. The next section describes the Response Surface Methodology (RSM) for Design of Experiment (DOE) constructed along with finite element approach. The parametric study based on RS models was performed in order to investigate the relationship between various geometries parameters with specified energy absorption and initial peak load responses. Moreover, multi-objective optimization method of multi-cell thin-walled structures was employed to identify the optimum geometrical factor of the energy absorber.

Chapter 6 is a final chapter where a clear and concise summary of the thesis is presented. In addition, this final chapter also provides recommendation for future works for refining the research in this field.

REFERENCES

- 1. Lu G, Yu T. Energy absorption of structures and materials: Elsevier; 2003.
- Baroutaji A, Sajjia M, Olabi A-G. On the crashworthiness performance of thinwalled energy absorbers: Recent advances and future developments. Thin-Walled Structures. 2017;118:137-63.
- 3. Bisagni C. Crashworthiness of helicopter subfloor structures. International Journal of Impact Engineering. 2002;27(10):1067-82.
- Wang L, Yang L, Huang D, Zhang Z, Chen G. An impact dynamics analysis on a new crashworthy device against ship-bridge collision. International Journal of Impact Engineering. 2008;35(8):895-904.
- 5. Xue P, Qiao C, Yu T. Crashworthiness study of a keel beam structure. International journal of mechanical sciences. 2010;52(5):672-9.
- Sofi MIM, Ahmad Z, Jye WK. Lateral Crushing Of Single And Multi-Cell Thin-Walled Circular Tube Under A Quasi-Static Loading. Journal of Engineering Science and Technology. 2019;14(2):1019-30.
- Nagel G. Impact and Energy Absoprtion of Straight and Tapered Rectangular Tubes: Queensland University of Technology 2005.
- Ramakrishna S, Hamada H. Energy Absorption Characteristics of Crash Worthy Structural Composite Materials1998. 585-622 p.
- Shin KC, Lee JJ, Kim KH, Song MC, Huh JS. Axial crush and bending collapse of an aluminum/GFRP hybrid square tube and its energy absorption capability. Composite Structures. 2002;57(1):279-87.
- Abdewi EF, Sulaiman S, Hamouda AMS, Mahdi E. Quasi-static axial and lateral crushing of radial corrugated composite tubes. Thin-Walled Structures. 2008;46(3):320-32.
- 11. Hull D. A unified approach to progressive crushing of fibre-reinforced composite tubes. Composites Science and Technology. 1991;40(4):377-421.
- Elahi SA, Rouzegar J, Niknejad A, Assaee H. Theoretical study of absorbed energy by empty and foam-filled composite tubes under lateral compression. Thin-Walled Structures. 2017;114:1-10.

- Huang X, Lu G. Axisymmetric progressive crushing of circular tubes. International journal of crashworthiness. 2003;8(1):87-95.
- Jensen Ø, Langseth M, Hopperstad O. Experimental investigations on the behaviour of short to long square aluminium tubes subjected to axial loading. International Journal of Impact Engineering. 2004;30(8-9):973-1003.
- Zhang XW, Tian QD, Yu TX. Axial crushing of circular tubes with buckling initiators. Thin-Walled Structures. 2009;47(6):788-97.
- Alavi Nia A, Haddad Hamedani J. Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries. Thin-Walled Structures. 2010;48(12):946-54.
- 17. Tang Z, Liu S, Zhang Z. Analysis of energy absorption characteristics of cylindrical multi-cell columns. Thin-Walled Structures. 2013;62:75-84.
- Liu W, Lin Z, Ningling W, Deng X. Dynamic performances of thin-walled tubes with star-shaped cross section under axial impact2016. 25-37 p.
- Guillow SR, Lu G, Grzebieta RH. Quasi-static axial compression of thinwalled circular aluminium tubes. International Journal of Mechanical Sciences. 2001;43(9):2103-23.
- Abramowicz W, Jones N. Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically. International Journal of Impact Engineering. 1997;19(5):415-37.
- 21. Güden M, Kavi H. Quasi-static axial compression behavior of constraint hexagonal and square-packed empty and aluminum foam-filled aluminum multi-tubes. Thin-Walled Structures. 2006;44(7):739-50.
- 22. Baroutaji A, Gilchrist MD, Smyth D, Olabi AG. Crush analysis and multiobjective optimization design for circular tube under quasi-static lateral loading. Thin-Walled Structures. 2015;86:121-31.
- Reddy TY, Reid S. Phenomena associated with the crushing of metal tubes between rigid plates. International Journal of Solids and Structures. 1980;16(6):545-62.
- Reid S, Reddy TY. Effect of strain hardening on the lateral compression of tubes between rigid plates. International Journal of Solids and Structures. 1978;14(3):213-25.
- DeRuntz JA, Hodge P. Crushing of a tube between rigid plates. Journal of Applied Mechanics. 1963;30(3):391-5.

- 26. Gupta NK, Sekhon GS, Gupta PK. Study of lateral compression of round metallic tubes. Thin-Walled Structures. 2005;43(6):895-922.
- 27. Fan Z, Shen J, Lu G, Ruan D. Dynamic lateral crushing of empty and sandwich tubes. International Journal of Impact Engineering. 2013;53:3-16.
- 28. Reid S, Drew S, Carney III J. Energy absorbing capacities of braced metal tubes. International Journal of Mechanical Sciences. 1983;25(9-10):649-67.
- 29. Reddy TY, Reid S. Lateral compression of tubes and tube-systems with side constraints. International Journal of Mechanical Sciences. 1979;21(3):187-99.
- Reid S. Laterally compressed metal tubes as impact energy absorbers. Structural crashworthiness. 1983:1-43.
- Wu L, Carney III JF. Experimental analyses of collapse behaviors of braced elliptical tubes under lateral compression. International Journal of Mechanical Sciences. 1998;40(8):761-77.
- Wu L, Carney III JF. Initial collapse of braced elliptical tubes under lateral compression. International Journal of Mechanical Sciences. 1997;39(9):1023-36.
- Baroutaji A, Olabi AG. Analysis of the effect of the elliptical ratio in tubular energy absorbers under quasi-static conditions. Materials with Complex Behaviour II: Springer; 2012. p. 323-36.
- 34. Tran T, Ton T. Lateral crushing behaviour and theoretical prediction of thinwalled rectangular and square tubes. Composite Structures. 2016;154:374-84.
- 35. Gupta N, Sekhon G, Gupta P. A study of lateral collapse of square and rectangular metallic tubes. Thin-walled structures. 2001;39(9):745-72.
- Niknejad A, Rahmani DM. Experimental and theoretical study of the lateral compression process on the empty and foam-filled hexagonal columns. Materials & Design. 2014;53:250-61.
- Baroutaji A, Morris E, Olabi AG. Quasi-static response and multi-objective crashworthiness optimization of oblong tube under lateral loading. Thin-Walled Structures. 2014;82:262-77.
- Fan H, Hong W, Sun F, Xu Y, Jin F. Lateral compression behaviors of thinwalled equilateral triangular tubes. International Journal of Steel Structures. 2015;15(4):785-95.

- Wang P, Zheng Q, Fan H, Sun F, Jin F, Qu Z. Quasi-static crushing behaviors and plastic analysis of thin-walled triangular tubes. Journal of Constructional Steel Research. 2015;106:35-43.
- Eyvazian A, Akbarzadeh I, Shakeri M. Experimental study of corrugated tubes under lateral loading. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2012;226(2):109-18.
- Morris E, Olabi A, Hashmi M. Lateral crushing of circular and non-circular tube systems under quasi-static conditions. Journal of Materials Processing Technology. 2007;191(1-3):132-5.
- 42. Olabi A-G, Morris E, Hashmi M, Gilchrist MD. Optimised design of nested oblong tube energy absorbers under lateral impact loading. International journal of impact engineering. 2008;35(1):10-26.
- 43. Wang H, Yang J, Liu H, Sun Y, Yu TX. Internally nested circular tube system subjected to lateral impact loading. Thin-Walled Structures. 2015;91:72-81.
- 44. Baroutaji A, Gilchrist MD, Olabi AG. Quasi-static, impact and energy absorption of internally nested tubes subjected to lateral loading. Thin-Walled Structures. 2016;98, Part B:337-50.
- 45. Olabi A, Morris E, Hashmi M, Gilchrist M. Optimised design of nested circular tube energy absorbers under lateral impact loading. International Journal of Mechanical Sciences. 2008;50(1):104-16.
- Morris E, Olabi A-G, Hashmi M. Analysis of nested tube type energy absorbers with different indenters and exterior constraints. Thin-walled structures. 2006;44(8):872-85.
- 47. Hall IW, Guden M, Claar TD. Transverse and longitudinal crushing of aluminum-foam filled tubes. Scripta Materialia. 2002;46(7):513-8.
- Niknejad A, Elahi SA, Liaghat GH. Experimental investigation on the lateral compression in the foam-filled circular tubes. Materials & Design (1980-2015). 2012;36:24-34.
- Niknejad A, Assaee H, Elahi SA, Golriz A. Flattening process of empty and polyurethane foam-filled E-glass/vinylester composite tubes – An experimental study. Composite Structures. 2013;100:479-92.
- 50. Fan Z, Shen J, Lu G. Investigation of Lateral Crushing of Sandwich Tubes. Procedia Engineering. 2011;14:442-9.

- Niknejad A, Orojloo Pourya H. A novel nested system of tubes with special cross-section as the energy absorber. Thin-Walled Structures. 2016;100:113-23.
- Reid SR, Reddy TY. Static and dynamic crushing of tapered sheet metal tubes of rectangular cross-section. International Journal of Mechanical Sciences. 1986;28(9):623-37.
- Nagel G, Thambiratnam D. Dynamic simulation and energy absorption of tapered tubes under impact loading. International Journal of Crashworthiness. 2004;9(4):389-99.
- Reyes A, Langseth M, Hopperstad OS. Crashworthiness of aluminum extrusions subjected to oblique loading: experiments and numerical analyses. International Journal of Mechanical Sciences. 2002;44(9):1965-84.
- Reyes A, Langseth M, Hopperstad OS. Square aluminum tubes subjected to oblique loading. International Journal of Impact Engineering. 2003;28(10):1077-106.
- 56. Yang S, Qi C. Multiobjective optimization for empty and foam-filled square columns under oblique impact loading. International Journal of Impact Engineering. 2013;54:177-91.
- 57. Børvik T, Hopperstad OS, Reyes A, Langseth M, Solomos G, Dyngeland T. Empty and foam-filled circular aluminium tubes subjected to axial and oblique quasistatic loading. International journal of crashworthiness. 2003;8(5):481-94.
- Reyes A, Hopperstad OS, Langseth M. Aluminum foam-filled extrusions subjected to oblique loading: experimental and numerical study. International journal of solids and structures. 2004;41(5-6):1645-75.
- 59. Ahmad Z, Thambiratnam D, Tan A. Dynamic energy absorption characteristics of foam-filled conical tubes under oblique impact loading. International Journal of Impact Engineering. 2010;37(5):475-88.
- Gao Q, Wang L, Wang Y, Guo F, Zhang Z. Optimization of foam-filled double ellipse tubes under multiple loading cases. Advances in Engineering Software. 2016;99:27-35.
- 61. Gao Q, Wang L, Wang Y, Wang C. Crushing analysis and multiobjective crashworthiness optimization of foam-filled ellipse tubes under oblique impact loading. Thin-Walled Structures. 2016;100:105-12.

- 62. Wang Z, Li Z, Zhang X. Bending resistance of thin-walled multi-cell square tubes. Thin-Walled Structures. 2016;107:287-99.
- Wierzbicki T, Recke L, Abramowicz W, Gholami T, Huang J. Stress profiles in thin-walled prismatic columns subjected to crush loading-II. Bending. Computers & structures. 1994;51(6):625-41.
- Tang T, Zhang W, Yin H, Wang H. Crushing analysis of thin-walled beams with various section geometries under lateral impact. Thin-Walled Structures. 2016;102:43-57.
- Duarte I, Vesenjak M, Krstulović-Opara L. Dynamic and quasi-static bending behaviour of thin-walled aluminium tubes filled with aluminium foam. Composite structures. 2014;109:48-56.
- Li Z, Zheng Z, Yu J, Guo L. Crashworthiness of foam-filled thin-walled circular tubes under dynamic bending. Materials & Design (1980-2015). 2013;52:1058-64.
- Santosa S, Wierzbicki T. Effect of an ultralight metal filler on the bending collapse behavior of thin-walled prismatic columns. International Journal of Mechanical Sciences. 1999;41(8):995-1019.
- Zarei H, Kröger M. Bending behavior of empty and foam-filled beams: Structural optimization. International Journal of Impact Engineering. 2008;35(6):521-9.
- 69. Tabacu S. Axial crushing of circular structures with rectangular multi-cell insert. Thin-Walled Structures. 2015;95:297-309.
- 70. Zhang X, Zhang H. Energy absorption of multi-cell stub columns under axial compression. Thin-Walled Structures. 2013;68:156-63.
- 71. Fang J, Gao Y, Sun G, Qiu N, Li Q. On design of multi-cell tubes under axial and oblique impact loads. Thin-Walled Structures. 2015;95:115-26.
- Zhang X, Cheng G, Zhang H. Theoretical prediction and numerical simulation of multi-cell square thin-walled structures. Thin-Walled Structures. 2006;44(11):1185-91.
- 73. Mahmoodi A, Shojaeefard M, Googarchin HS. Theoretical development and numerical investigation on energy absorption behavior of tapered multi-cell tubes. Thin-Walled Structures. 2016;102:98-110.
- Zhang X, Zhang H. Axial crushing of circular multi-cell columns. International Journal of Impact Engineering. 2014;65:110-25.

- 75. Alavi Nia A, Parsapour M. Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections. Thin-Walled Structures. 2014;74:155-65.
- 76. Sebastian Lipa MK. Numerical and experimental collapse analysis of tubular multi-member energy absorbers under lateral compression. JOURNAL OF THEORETICAL AND APPLIED MECHANICS. 2004.
- 77. Hanssen AG, Langseth M, Hopperstad OS. Static and dynamic crushing of square aluminium extrusions with aluminium foam filler. International Journal of Impact Engineering. 2000;24(4):347-83.
- Wang B, Lu G. Mushrooming of circular tubes under dynamic axial loading. Thin-walled structures. 2002;40(2):167-82.
- 79. Jones N. Structural impact: Cambridge university press; 2011.
- Chen Y, Clausen A, Hopperstad O, Langseth M. Stress-strain behaviour of aluminium alloys at a wide range of strain rates. International Journal of Solids and Structures. 2009;46(21):3825-35.
- Reyes A, Hopperstad OS, Lademo O-G, Langseth M. Modeling of textured aluminum alloys used in a bumper system: Material tests and characterization. Computational Materials Science. 2006;37(3):246-68.
- Tran T, Hou S, Han X, Nguyen N, Chau M. Theoretical prediction and crashworthiness optimization of multi-cell square tubes under oblique impact loading. International Journal of Mechanical Sciences. 2014;89:177-93.
- Tran T, Hou S, Han X, Tan W, Nguyen N. Theoretical prediction and crashworthiness optimization of multi-cell triangular tubes. Thin-Walled Structures. 2014;82:183-95.
- 84. Wu E, Jiang W-S. Axial crush of metallic honeycombs. International Journal of Impact Engineering. 1997;19(5-6):439-56.
- Zhao H, Gary G. Crushing behaviour of aluminium honeycombs under impact loading. International Journal of Impact Engineering. 1998;21(10):827-36.
- Hsu S, Jones N. Quasi-static and dynamic axial crushing of thin-walled circular stainless steel, mild steel and aluminium alloy tubes. International Journal of Crashworthiness. 2004;9(2):195-217.
- Langseth M, Hopperstad O, Berstad T. Crashworthiness of aluminium extrusions: validation of numerical simulation, effect of mass ratio and impact velocity. International Journal of Impact Engineering. 1999;22(9-10):829-54.

- Yamashita M, Gotoh M. Impact behavior of honeycomb structures with various cell specifications—numerical simulation and experiment. International Journal of Impact Engineering. 2005;32(1-4):618-30.
- Guler MA, Cerit ME, Bayram B, Gerceker B, Karakaya E. The effect of geometrical parameters on the energy absorption characteristics of thin-walled structures under axial impact loading. International Journal of Crashworthiness. 2010;15(4):377-90.
- Wang Z, Tian H, Lu Z, Zhou W. High-speed axial impact of aluminum honeycomb-Experiments and simulations. Composites Part B: Engineering. 2014;56:1-8.
- Zhang X, Zhang H, Wen Z. Experimental and numerical studies on the crush resistance of aluminum honeycombs with various cell configurations. International Journal of Impact Engineering. 2014;66:48-59.
- Tarigopula V, Langseth M, Hopperstad OS, Clausen AH. Axial crushing of thin-walled high-strength steel sections. International Journal of Impact Engineering. 2006;32(5):847-82.
- 93. Ahmad Z, Thambiratnam D. Crushing response of foam-filled conical tubes under quasi-static axial loading. Materials & design. 2009;30(7):2393-403.
- Santosa SP, Wierzbicki T, Hanssen AG, Langseth M. Experimental and numerical studies of foam-filled sections. International Journal of Impact Engineering. 2000;24(5):509-34.
- 95. Meguid S, Attia M, Stranart J, Wang W. Solution stability in the dynamic collapse of square aluminium columns. International journal of impact engineering. 2007;34(2):348-59.
- 96. Zhang Y, Wang J, Wang C, Zeng Y, Chen T. Crashworthiness of bionic fractal hierarchical structures. Materials & Design. 2018;158:147-59.
- Altin M, Acar E, Güler MA. Foam filling options for crashworthiness optimization of thin-walled multi-tubular circular columns. Thin-Walled Structures. 2018;131:309-23.
- Chawla A, Mukherjee S, Kumar D, Nakatani T, Ueno M. Prediction of crushing behaviour of honeycomb structures. International journal of crashworthiness. 2003;8(3):229-35.
- 99. Wu S, Li G, Sun G, Wu X, Li Q. Crashworthiness analysis and optimization of sinusoidal corrugation tube. Thin-Walled Structures. 2016;105:121-34.

- Baroutaji A, Gilchrist M, Smyth D, Olabi A-G. Analysis and optimization of sandwich tubes energy absorbers under lateral loading. International Journal of Impact Engineering. 2015;82:74-88.
- 101. Marzbanrad J, Ebrahimi MR. Multi-Objective Optimization of aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm and neural networks. Thin-Walled Structures. 2011;49(12):1605-15.
- 102. Shakeri M, Mirzaeifar R, Salehghaffari S. New insights into the collapsing of cylindrical thin-walled tubes under axial impact load. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2007;221(8):869-85.
- 103. Shi L, Zhu P, Yang RJ, Lin SP. Adaptive sampling-based RBDO method for vehicle crashworthiness design using Bayesian metric and stochastic sensitivity analysis with independent random variables. International Journal of Crashworthiness. 2013;18(4):331-42.
- Shi L, Yang RJ, Zhu P. An adaptive response surface method for crashworthiness optimization. Engineering Optimization. 2013;45(11):1365-77.
- Zarei H, Kröger M. Optimum honeycomb filled crash absorber design. Materials and Design. 2008;29(1):193-204.
- 106. Zarei HR, Kröger M. Optimization of the foam-filled aluminum tubes for crush box application. Thin-Walled Structures. 2008;46(2):214-21.
- 107. Zhang X, Cheng G, Wang B, Zhang H. Optimum design for energy absorption of bitubal hexagonal columns with honeycomb core. International Journal of Crashworthiness. 2008;13(1):99-107.
- 108. Acar E, Guler MA, Gerçeker B, Cerit ME, Bayram B. Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations. Thin-Walled Structures. 2011;49(1):94-105.
- 109. Abbasi M, Ghafari-Nazari A, Reddy S, Fard M. A new approach for optimizing automotive crashworthiness: Concurrent usage of ANFIS and Taguchi method. Structural and Multidisciplinary Optimization. 2014;49(3):485-99.
- 110. Hanssen AG, Langseth M, Hopperstad OS. Optimum design for energy absorption of square aluminum columns with aluminum foam filler. International Journal of Mechanical Sciences. 2001;43(1):153-76.

- 111. Hanssen AG, Hopperstad OS, Langseth M. Design of aluminium foam-filled crash boxes of square and circular cross-sections. International Journal of Crashworthiness. 2001;6(2):177-88.
- 112. Xu P, Yang C, Peng Y, Yao S, Zhang D, Li B. Crash performance and multiobjective optimization of a gradual energy-absorbing structure for subway vehicles. International Journal of Mechanical Sciences. 2016;107:1-12.
- Yin H, Xiao Y, Wen G, Qing Q, Wu X. Crushing analysis and multi-objective optimization design for bionic thin-walled structure. Materials and Design. 2015;87:825-34.
- 114. Yin H, Xiao Y, Wen G, Qing Q, Deng Y. Multiobjective optimization for foam-filled multi-cell thin-walled structures under lateral impact. Thin-Walled Structures. 2015;94:1-12.
- 115. Wen GL, Kong XZ, Yin HF, Xiao JR. Multi-objective crashworthiness optimization design of foam-filled sandwich wall multi-cell structures. Zhendong yu Chongji/Journal of Vibration and Shock. 2015;34(5):115-21.
- 116. Abramowicz W, Jones N. Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically. International Journal of Impact Engineering. 1997;19(5-6):415-37.
- Ahmad Z, Thambiratnam DP. Dynamic computer simulation and energy absorption of foam-filled conical tubes under axial impact loading. Computers & Structures. 2009;87(3-4):186-97.
- 118. Antony J. Design of experiments for engineers and scientists: Elsevier; 2014.
- 119. Mohsenizadeh S, Alipour R, Shokri Rad M, Farokhi Nejad A, Ahmad Z. Crashworthiness assessment of auxetic foam-filled tube under quasi-static axial loading. Materials & Design. 2015;88:258-68.

LIST OF PUBLICATIONS

Sofi MIM, Ahmad Z, Jye WK. Lateral Crushing of Single and Multi-Cell Thin-Walled Circular Tube Under a Quasi-Static Loading. Journal of Engineering Science and Technology. 2019;14(2):1019-30.