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ABSTRACT

Energy absorption performance of a structure is a vital aspect in modern 
transportation design to minimize human injuries during collision. To minimize impact 
energy, it is necessary to dissipate the energy generated from the collision by absorbing 
it through deformation of crashworthy structure. Thin-walled structures are widely 
used as energy absorbing systems due to their capability to efficiently absorb kinetic 
energy through plastic deformation. However, there are several accidents reported that 
involve collision between vehicles with toll booths, utility poles and flyover pillar that 
are lack of protective device. Most of the crashworthiness studies emphasized on the 
multi-cell structure with load applied axially. Therefore, the investigation on the multi­
cell circular thin-walled tubes under lateral loading still gained less attention among 
the researchers. The primary objective of this thesis is to evaluate the crush response 
and energy absorption performance of multi-cell thin-walled tubes under quasi-static 
lateral loading. The compression test was performed under quasi-static lateral loading 
to evaluate the energy absorption performance of circular thin-walled tubes. Finite 
element models were developed and validated by comparing the crushing profile and 
load-displacement curve response of. A multi-cell configuration study was performed 
to identify the most optimal multi-cell configuration. Furthermore, the response 
surface method (RSM) for the design of experiment (DOE) was employed to identify 
the correlation between the geometrical variables parameters and the energy 
absorption responses. In addition, an investigation of geometrical factor of multi-cell 
structure was conducted by employing the multi-objective optimization design 
approach in order to establish the design guidelines of optimal geometrical 
configuration. Compression test result shows that a multi-cell thin-walled tube has 
superior energy absorption performance compared to a single thin-walled circular tube 
under lateral loading. It is evident that the specific energy absorption (SEA) of multi­
cell thin-walled tube produces 28% and 76% greater than the single thin-walled 
circular tubes, SC-small and SC-large configurations, respectively. The outcomes of 
the study show that the energy absorption performance of multi-cell structure is 
significantly dependent on the number of tube cells and contact joint of the tube. Based 
on the multi-objective optimization study, it is evident that the optimal configuration 
of multi-cell thin-walled tube can be achieved with a smaller diameter and thicker 
circular tube. The main contribution of this thesis is the development of design 
guideline for the most optimal geometrical parameter of multi-cell thin-walled tube 
under lateral loading.
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ABSTRAK

Prestasi penyerapan tenaga struktur adalah aspek penting dalam mereka bentuk 
struktur pengangkutan moden, bagi mengurangkan kecederaan semasa perlanggaran. 
Untuk mengurangkan tenaga impak, adalah perlu untuk melesapkan tenaga yang 
dihasilkan dari perlanggaran dengan menyerap tenaga melalui perubahan bentuk 
struktur yang kekal. Struktur berdinding nipis digunakan secara meluas sebagai sistem 
menyerap tenaga kerana keupayaannya untuk menyerap tenaga kinetik melalui 
perubahan bentuk plastik. Walau bagaimanapun, terdapat beberapa laporan tentang 
kemalangan yang melibatkan kenderaan dengan struktur yang kurang perlindungan 
seperti plaza tol, tiang jalan raya dan juga tiang jejambat. Kebanyakan daripada kajian 
keupayaan perlanggaran menekankan kepada struktur berbilang sel dengan beban 
paksi. Oleh itu, penyiasatan ke atas tiub dinding nipis bulat berbilang sel di bawah 
beban sisi masih kurang mendapat perhatian di kalangan penyelidik. Objektif utama 
tesis ini adalah untuk menilai tindak balas penghancuran dan prestasi penyerapan 
tenaga tiub berdinding nipis berbilang sel di bawah beban sisi kuasi-statik. Ujian 
mampatan dilakukan di bawah beban sisi kuasi-statik untuk menilai prestasi 
penyerapan tenaga tiub berdinding nipis bulat. Selain itu, model unsur terhingga telah 
dibangunkan dan disahkan dengan melakukan perbandingan profil penghancuran dan 
lengkung tindak balas beban ujian mampatan. Malahan, kajian konfigurasi berbilang 
sel telah dilakukan untuk mengenal pasti konfigurasi berbilang sel yang paling 
optimum. Kaedah permukaan tindak balas (RSM) untuk reka bentuk eksperimen 
(DOE) telah digunakan bagi mengenal pasti hubungan di antara parameter pemboleh 
ubah geometri dan tindak balas penyerapan tenaga. Di samping itu, penyelidikan 
mengenai struktur geometri struktur pelbagai sel telah dijalankan dengan 
menggunakan pendekatan reka bentuk pengoptimuman multi-objektif bagi 
menghasilkan garis panduan reka bentuk konfigurasi geometri yang optimum. Hasil 
ujian mampatan menunjukkan bahawa, tiub berdinding nipis berbilang sel di bawah 
ujian bebanan sisi mempunyai prestasi penyerapan tenaga yang lebih baik berbanding 
dengan satu tiub berdinding nipis. Adalah jelas bahawa tiub berdinding nipis pelbagai 
sel mampu menghasilkan penyerapan tenaga tertentu (SEA) masing-masing sebanyak 
28% dan 76% lebih besar daripada konfigurasi tiub berdinding nipis tunggal, SC-kecil 
dan SC-besar. Kesimpulan utama dari kajian konfigurasi berbilang sel menunjukkan 
prestasi penyerapan tenaga struktur berbilang sel bergantung kepada bilangan tiub sel 
dan juga gabungan sentuhan di antara tiub. Berdasarkan kajian pengoptimuman multi- 
objektif, ianya dapat dibuktikan bahawa konfigurasi optimum tiub berdinding nipis 
berbilang sel boleh dicapai dengan diameter yang lebih kecil dan tiub yang lebih tebal. 
Sumbangan utama tesis ini adalah pembangunan satu garis panduan reka bentuk untuk 
memperolehi parameter geometri yang paling optimum bagi tiub berdinding nipis 
berbilang sel di bawah beban sisi.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

The demand for various types of vehicles in society is increasing year by year 

due to the development of new technology and features in automobile and 

transportation industries. Vehicles have become an important part of modern society 

life that are used almost every day for transportation. Unfortunately, road accidents are 

somewhat inevitable that have been increasing and becoming a major worldwide 

hazard problem. Subsequently, any vehicular accident will either cause loss of life, 

severe injuries, or property losses. Annually, automobile accidents result in critical 

wounds or fatality of up to thousands of individuals globally. It shows that the 

worldwide phenomenon of transportation vehicles proliferation is an indirect 

consequence to the increase in vehicle accidents. In Malaysia, the rate of road 

accidents is increasing on par with increasing the number of road users. Statistics show 

that the rate of accidents in year of 2017 increased by 30 % compared to year of 2008 

as tabulated in T able 1.1.

Therefore, it is obvious that a major action in safety of vehicles structures needs 

to be taken to reduce the serious effect of vehicle accident on human lives and health. 

Thus, over the past few decades plenty of efforts have been made by engineers and 

researchers to develop reliable energy absorber components and systems that can 

dissipate the impact energy during a collision. An energy absorber is a vital component 

in modern transportation design structure to reduce human death or injuries during 

collision. However, energy absorption systems are not capable of preventing any of 

road accidents from occurring owing to most of accidents happening caused by human 

errors.
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Table 1.1 Statistics of vehicles and road accident in Malaysia (source of Traffic 
Investigation and Enforcement Department, Polis Diraja Malaysia)

Year
Total number of 

accidents
Death Serious injuries

2008 373,071 6,527 8,868

2009 397,330 6,745 8,849

2010 414,421 6,872 7,781

2011 449,040 6,877 6,328

2012 462,423 6,917 5,868

2013 477,204 6,915 4,597

2014 476,196 6,674 4,432

2015 489,606 6,706 4,120

2016 521,466 7,152 4,506

2017 533,875 6,740 3,310

Meanwhile, the crashworthiness is defined as the quality or condition of the 

vehicles or energy absorber structures under impact collision [1]. The energy absorbers 

have good crashworthiness performance when the protected structure or passengers 

sustaining less damage after collision. In order to diminish likelihood of injuries and 

wounds, it is imperative to disperse energy directing towards the passengers onto the 

vehicle structure via energy absorber deformation during a crash. The crashworthiness 

performance of energy absorber is evaluated based on several energy absorption 

indicators. Hence, numerous studies have been performed to comprehend the 

behaviour of energy absorption response with several of crashworthiness structures.

Thin-walled tubes have extensively been utilized in crashworthiness 

application as energy absorber structures [2]. This structure has inclusively been 

utilized in crashworthiness applications for its capability to efficiently absorb kinetic 

energy through plastic deformation, thus improving energy dissipation and 

crashworthiness performances. Several reasons govern the predominant application of 

energy absorbers that are thin-walled tubes. One of the reasons is thin-walled tubes are 

easy to be fabricated and still maintain great energy absorption performance. 

Furthermore, thin-walled tubes made from various ductile materials have been used as

2



crashworthy structure due to its abilities to convert kinetic energy into inelastic energy 

by permanent plastic deformation during the impact event. In addition, thin-walled 

tubes can be produced in several geometrical shapes and different configurations with 

minimum manufacturing cost. Depending on the material used, thin-walled tube is a 

lightweight structure that can be utilized in vehicles such as airplane and cars in 

reducing weight of vehicles.

Figure 1.1 Aluminium crash boxes of BMW 5 series (Aluminium Automotive 
Manual, European Aluminium Association)

The most noticeable application of thin-walled structure as an energy absorber 

is as crash boxes of vehicles as shown in Figure 1.1. During the frontal collision of 

vehicles, the crash boxes undergo plastic deformation before the impact load 

transferred to other vehicles components. Thus, the crash boxes minimize the load 

transmitting to other parts of protected structure or components. This energy absorber 

system will reduce the risk of injuries or death to passenger as well cost of damage 

repair. Moreover, thin-walled tube also has been widely utilised in other 

crashworthiness applications such as aircraft subfloor structures and Roll over 

Protective Structures (ROPS) of heavy vehicles, such as bulldozers and tractors [3-5].

!
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Over past few decades, researchers carried out continuing efforts to enhance 

the energy absorption of structures through analytical, experimental and numerical 

methods [2]. In the selection of energy absorption structures, single cell structures are 

outperformed by multi-cell structures by their better energy absorption capacity. 

Generally, a multi-cell structure is a structural member created from combination of 

different angle and cells numbers with thin-walled tubes. Additional number of cell 

structure will contribute in strengthening of the energy absorber, thus enhancing the 

energy absorption capacity.

In addition, the concepts of multi-cell thin-walled tube structure are practical 

as an energy absorber for crash barrier system as shown in Figure 1.2. There are several 

accidents reported that involve collision between vehicles with toll booths, utility poles 

and flyover pillar that are lack of protective device on these structures [6]. The idea 

of this system is to retrofit a crash barrier, thus to prevent force from transmitting to 

the protected structure. Consequently, this barrier will minimize the damage level and 

cost as it will reduce risk of injury or death.

Figure 1.2 A crash barrier protection system consisting of multi-cell thin-walled 
tube structures

1.2 Problem Background

The safety of road users has always been the priority that needs the most 

attention. Road accidents involving collision between two or more vehicles are

4



common throughout the year. Such tragic accident obviously contributes a great 

economic loss to society. Furthermore, road accident also can involve collision of 

vehicles with other structure such as toll booths, utility poles and flyover pillar. Due 

to lack of protection against the structure, it will cause serious injuries or fatality.

Owing to the advantages of thin-walled tubes in energy absorption application, 

numerous studies of thin-walled tubes had been carried out to identify their energy 

absorption performance based on several factors. Most of the crashworthiness studies 

emphasized on the multi-cell structure with load applied axially. Therefore, the 

investigation on the multi-cell circular thin-walled tubes under lateral loading still 

gained less attention among the researchers.

1.3 Research Objectives

The thesis consists of two main objectives which are listed as follows.

(a) To evaluate the crush response and energy absorption performance of multi­

cell thin-walled tubes under quasi-static lateral loading.

(b) To evaluate the geometrical factor of multi-cell structures by employing the 

multi-objective optimization design approach.

1.4 Research Scopes

This research is concentrated on crush response and energy absorption of multi­

cell thin-walled circular tubes under lateral loading. In order to achieve the aims, the 

finite element model of multi-cell thin-wall circular tubes was developed to identify 

the energy absorption performance. Both experimental and numerical studies are 

performed in this research. The scope of the work is highlighted as follows:

5



i. Develop preliminary finite element (FE) models of the thin-walled circular 

tubes using finite element nonlinear code LS-DYNA to comprehend the 

crushing behaviour of these structures under quasi-static lateral loading.

ii. Conducting standard tests to identify the material properties of circular tubes.

iii. Conducting a series of quasi-static compression tests on the multi-cell and 

single thin-walled circular tubes and perform the energy absorption 

performance comparison between each thin-walled structure in order to 

examine the advantages of multi-cell structure.

iv. Develop detailed finite element models of multi-cell and single thin-walled 

circular tubes for examining the impact characteristics and energy absorption 

performance.

v. Validate the numerical models by comparing the crushing profile and load- 

displacement responses.

vi. Perform an investigation on various multi-cell configuration structures based 

on validated FE model in order to identify the optimal multi-cell configuration.

vii. Develop Response Surface (RS) models of multi-cell thin-walled tubes by 

using statistical software, Design-expert v6.

viii. Perform a series of parametric study to identify the influence of geometrical 

parameter on the energy absorption performance.

ix. Conduct multi-objective optimization algorithm to identify the optimum

performance of multi-cell thin-walled circular tubes.

1.5 Significance of Study

The present study provides comprehensive research information on the energy 

absorption performance of multi-cell and single thin-walled circular tubes when 

subjected to quasi-static lateral loading condition. At the moment, there are limited 

information on multi-cell circular tubes structure subjected to the crushing load 

laterally. Hence, this study may indispensably contribute as design information and 

provide the advantages of multi-cell tubes structures as an energy absorber for 

crashworthiness applications. In addition to this, the multi-cell configuration study can 

assist in understanding the influence of multi-cell configuration on energy absorption

6



responses. It has also established the effect of multi-cell structure’s geometrical factor 

on energy absorption responses. Moreover, the primary outcome of this study is to 

generate a new optimal design for multi-cell structure. Therefore, the results can be 

utilized for developing a new design guidelines of multi-cell tubes to enhance the 

crashworthiness performance.

1.6 Thesis Outline

This thesis is divided into 6 chapters. Chapter 1 presents the overview of this 

study. This chapter highlights the discussion on the background study of research 

where detailed explanation on energy absorption structures and applications involved 

are described. A problem statement is clearly defined based on the current problem in 

crashworthiness application. In addition, the main objectives, scope of work and 

significance study are also treated in this study.

Subsequently, Chapter 2 provides a critical review on the recent works that are 

related to the objectives and scopes of this research. This chapter begins with the 

fundamental of energy absorption characteristics. Then the literature review continues 

with explanation of general principles in designing energy absorbers. Further 

discussions based on previous conducted research on types of loading with various 

energy absorber structures are also presented in this chapter. In addition, the 

advantages of multi-cell structure in crashworthiness applications are also explicitly 

explained. Finally, the finite element analysis and multi-objective optimization study 

of energy absorption systems are described.

In Chapter 3, the important methods and approaches used in this research are 

presented. This chapter focuses on four parts: experimental technique, finite element 

(FE) model, multi-objective optimization and parametric study. The experimental part 

discusses the techniques that are involved in performing tensile and compression tests, 

while FE model is briefly described the methods required in finite element modelling 

of circular thin-walled tubes structures. The next section deals with the design of 

experiment and multi-objective optimisation approach by using design expert

7



software. Finally, this chapter discusses the parametric study that consists of 

geometrical and multi-cell configuration study. 3

Chapter 4 discusses the results of thin-walled structures obtained from quasi­

static compression test. The energy absorption behaviour of each thin-walled tube was 

investigated to allow more understanding these thin-walled structures under lateral 

loading condition. In addition, the comparison between the energy absorption 

responses of each thin-walled structures was also discussed in this chapter. The 

validation of FE models of thin-walled structures also was described in this chapter 

where the developed FE models were validated by comparing the numerical results 

with experiment results. The validation is required to ensure the accuracy of the 

numerical model and FE models.

Chapter 5 introduces the multi-cell tubes with different configurations where 

energy absorption responses of each multi-cell configuration was analysed. Thus, first 

section of this chapter will provide the optimal multi-cell configuration as a design 

guideline for utilizing in crashworthiness application. The next section describes the 

Response Surface Methodology (RSM) for Design of Experiment (DOE) constructed 

along with finite element approach. The parametric study based on RS models was 

performed in order to investigate the relationship between various geometries 

parameters with specified energy absorption and initial peak load responses. 

Moreover, multi-objective optimization method of multi-cell thin-walled structures 

was employed to identify the optimum geometrical factor of the energy absorber.

Chapter 6 is a final chapter where a clear and concise summary of the thesis is 

presented. In addition, this final chapter also provides recommendation for future 

works for refining the research in this field.
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