METAMATERIAL ABSORBERS AND REFLECTORS FOR MULTIBAND AND WIDEBAND APPLICATIONS

MOHAMMED GAJIBO MUSTAPHA

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

School of Electrical Engineering Faculty of Technology and Informatics Universiti Teknologi Malaysia

FEBRUARY 2020

DEDICATION

This thesis is dedicated to my father Engr. Mustapha Alkali Gajibo, who supported me all through and always stood by my choices and encouraged me as he steers me towards brighter future; To my mothers Hajja Yagana, Hajja Safiya and Hajja Fatimah for contributing in their own ways mostly with endless prayers, comfort and advices; To my siblings, Binta, Awal, Kaka, Hadiza, Ahmed, Kaltum, Muktar, Amina, Nafisa, Yusuf, Halima & Ahmed for their Kind hearts and making me not to feel the distance and the struggle.

ACKNOWLEDGEMENT

In the Name of Allah, Most Gracious, Most Merciful

I would like to extend my gratitude to my supervisor, **Professor Dr. Mohamad Kamal A. Rahim** for his never-ending support, guidance, gentleness and patience. I believe without his kind heart and understanding, I will not have been able to complete this research and thesis. Also, my sincere gratitude goes to my co-supervisors, **Dr. Asniza Murad** and **Dr. Osman Ayop**, for their tired less effort in keeping me on track and for their fruitful discussions.

Others I must mention and show my sincere appreciation are, Dr. Huda A Majid, Dr. Farid Zubir, Dr. Mohd Rijal Hamid, Dr. Noor Asmawati Samsuri, Dr. Mohd Fairus Mohd Yusof and entire Advance RF and Microwave Research Group (ARFMRG) members who in one or the other ways contributed during our weekly meetings and monthly presentations.

Finally, I am very grateful to my **beloved parents**, for their endless prayers, love and encouragement especially my father who always believe in my choices. Also, I would like to express my appreciation to Shariffah Nadira bt Syed Othmawi and her family for their patience, understanding and full-time support during this research period.

.

iv

ABSTRACT

Metamaterials (MTMs) are materials artificially engineered by artificially arranging structural elements to achieve unusual properties that do not ordinarily exist in nature. It is no secret that electronic devices and communication devices such as mobile phones, pacemakers, infusion pumps, laptops and others, are becoming even more smaller, precise and sensitive. In addition to that, they tend to move towards higher frequency and are adopting the wireless technology which is susceptible to attenuation and interference. At lower frequencies, antennas are larger, therefore miniaturization is required to enable them fit into those tiny electronic devices. In general, electromagnetic waves propagation is characterized by multiple directions as well as many polarization angles, which contributes to the complexity of the signal at the receiver's end. However, this complexity can be reduced by developing MTM absorbers to absorb any unwanted signals. It can be further reduced by developing MTM reflectors to guide the transmitted signal towards the intended destination. This thesis is aimed at taking advantages of the unusual properties offered by MTMs to develop X-band MTM absorbers and (artificial magnetic conductor) AMC/ MTM reflectors. The new MTM absorbers and MTM reflectors were designed using FR-4 substrate with thickness of 1.6 mm, loss tangent of 0.019 and dielectric constant of 4.6. The MTM absorber catered for the bulky size issues of conventional absorbers and narrow bandwidth issues associated with MTMs absorbers. Whereas the new MTM reflectors catered for the out of phase image current and surface current propagation supported by perfect electric conductor (PEC). Finally, copper wires were used as switches to demonstrate reconfigurability and compactness. The first proposed structure is based on circular ring (CR) structure. It resonated at 11.11 GHz and was modified to have four smaller extended circular rings to demonstrate the concept of size reduction by suppressing the resonance frequency. The second structure is based on the famous "H" pattern absorber, which was modified to have four copper wires as switches in order to manipulate the flow of the circulating charges. A dual-band absorption characteristic with reconfigurability between single band (7.20 GHz) and dual-band (7.20 GHz and 11.20 GHz) absorption was demonstrated. The third structure is made up of foursquare patch separated by a vertical bar. The charges flow paths were manipulated by connecting the individual square patch to the vertical bar with copper wires. The concept of connecting multiple neighboring resonances to achieve a wideband absorption was demonstrated. Almost a 100% absorption across the entire X-band region (9.00 GHz to 13.00 GHz) was achieved and furthermore, switchability between total absorbance and total reflection at 11.20 GHz was demonstrated using copper wires. Reflection was more than 75%. The fourth structure is made up of two quad gapped square shaped split-ring resonators (QGSSSRR). This structure also achieved almost 100% absorption across the entire X-band region (9.00 GHz to 13.00 GHz), and it also demonstrated switchability between total absorbance and total reflection at 11.20 GHz. All the proposed designs were tested for incident wave angles (IWAs) in the range of 0° to 60° in which almost all of them performed excellently with a minimum absorption rate of close to 80% and reflection rate of close to 75%.

ABSTRAK

Metabahan (MTMs) adalah bahan yang direka secara buatan dengan menyusun unsur struktur tiruan untuk mencapai ciri luar biasa yang biasanya tidak wujud secara semulajadi. Ia bukan rahsia bahawa peranti elektronik dan peranti komunikasi seperti telefon mudah alih, perentak jantung, pam infusi, komputer riba dan lain-lain, menjadi lebih kecil, tepat dan sensitif. Di samping itu, mereka cenderung untuk bergerak ke arah frekuensi yang lebih tinggi dan mengguna pakai teknologi tanpa wayar yang terdedah kepada rosotan dan gangguan. Pada frekuensi yang lebih rendah, antenna adalah lebih besar, oleh itu pengecilan saiz diperlukan untuk membolehkannya dimuatkan ke peranti elektronik kecil itu. Secara umum, perambatan gelombang elektromagnet dicirikan oleh pelbagai arah serta banyak sudut polarisasi yang menyumbang kepada kerumitan isyarat pada akhir penerima. Walau bagaimanapun, kerumitan ini dapat dikurangkan dengan membangunkan penyerap MTM untuk menyerap sebarang isyarat yang tidak diingini. Ia boleh dikurangkan lagi dengan membangunkan pemantul MTM untuk memandu isyarat yang dihantar ke arah destinasi yang dimaksudkan. Tesis ini bertujuan untuk mendapatkan kelebihan sifat luar biasa yang ditawarkan oleh MTM untuk membangunkan penyerap MTM jalur-X dan pemantul AMC / MTM. Penyerap MTM dan pemantul MTM baru direka menggunakan substrat FR-4 dengan ketebalan 1.6 mm, kehilangan tangen 0.019 dan pemalar dielektrik 4.6. Penyerap MTM menampung isu saiz besar penyerap konvensional dan isu jalur lebar sempit yang berkaitan dengan penyerap MTM. Manakala pemantul MTM yang baru disediakan untuk arus imej tidak sefasa dan perambatan arus permukaan yang disokong oleh pengalir elektrik yang sempurna (PEC). Akhirnya, wayar tembaga digunakan sebagai suis untuk menunjukkan kebolehan konfigurasi semula dan kepadatan. Struktur pertama adalah berdasarkan struktur bulatan cincin (CR). Ia menyalun pada frekuensi 11.11 GHz dan telah diubahsuai untuk mempunyai empat lanjutan cincin bulat kecil untuk menunjukkan konsep pengurangan saiz dengan menekan frekuensi resonans. Struktur kedua berdasarkan pada penyerap corak "H" yang telah diubahsuai untuk mempunyai empat wayar tembaga sebagai suis bagi memanipulasi aliran cas bergerak secara bulatan. Ciri penyerapan dwijalur dengan kebolehan konfigurasi semula antara penyerapan satu jalur (7.20 GHz) dan dua jalur (7.20 GHz dan 11.20 GHz). Struktur ketiga terdiri daripada empat tampal segi empat sama yang dipisahkan oleh bar menegak. Laluan aliran cas dimanipulasi dengan menyambung tampal segi empat sama individu ke bar menegak dengan wayar tembaga. Konsep menghubungkan resonans bersebelahan untuk mencapai penyerapan jalur lebar telah ditunjukkan. Hampir 100% penyerapan di seluruh rantau jalur-X (9.00 GHz hingga 13.00 GHz) telah dicapai dan seterusnya, kebolehan berubah antara jumlah penyerapan dan jumlah pantulan pada 11.20 GHz ditunjukkan menggunakan wayar tembaga. Pantulan adalah lebih daripada 75%. Struktur keempat terdiri daripada dua penyalun cincin terpisah berbentuk quad berongga segi empat sama (QGSSSRR). Struktur ini juga mencapai hampir 100% penyerapan merentas seluruh rantau jalur-X (9.00 GHz hingga 13.00 GHz) dan ia juga menunjukkan kebolehan berubah antara jumlah penyerapan dan jumlah pantulan pada 11.11 GHz. Semua reka bentuk yang dicadangkan telah diuji untuk sudut gelombang tuju (IWAs) dalam julat 0° hingga 60° di mana hampir semuanya dilakukan dengan kadar penyerapan minimum menghampiri 80% dan kadar pantulan menghampiri 75%.

TABLE OF CONTENTS

TITLE

DECL	ARATION	ii
DEDI	CATION	iii
ACKN	IOWLEDGEMENT	iv
ABST	RACT	v
ABST	RAK	vii
TABL	E OF CONTENTS	viii
LIST	OF TABLES	xiv
LIST	OF FIGURES	xvi
LIST	OF ABBREVIATIONS	XXV
LIST	OF SYMBOLS	xxvi
LIST	OF APPENDICES	xxvii
CHAPTER 1	INTRODUCTION	1
1.1	Introduction	1
1.2	Background Study	1
1.3	Problem statement	3
1.4	Research objectives	4
1.5	Scope of Work	4
1.6	Thesis Outline	5
CHAPTER 2	LITERATURE REVIEW	7
2.1	Introduction	7
2.2	Overview of Metamaterial (MTM)	7
	2.2.1 Left-Handed Metamaterial (LHM)	9
	2.2.2 Resonant Structures	11
	2.2.3 Electromagnetic bandgap	13
2.3	Metamaterial Absorber (MTMAbs)	16
	2.3.1 Absorption Theory	17

	2.3.2	Previous	works related to MTM Absorbers	22
		2.3.2.1	Single Band Metamaterial Absorber	22
		2.3.2.2	Dual/ Multiband Metamaterial Absorber	26
		2.3.2.3	Wide Band Metamaterial Absorber	30
2.4	Metar	naterial Re	flector /AMC Reflectors.	32
	2.4.1	Reflection	n Theory	32
	2.4.2	High Imp	edance Surface (HIS)	33
	2.4.3	Properties	s of High Impedance Surface	34
		2.4.3.1	In- Phase wave reflection	34
		2.4.3.2	Surface Wave Suppression	34
	2.4.4	Relative i	mpedance (Reflector / AMC)	35
	2.4.5	Previous Reflector	works related to AMC / MTM s	35
2.5	Switch Reflec	hable MTN ctors.	Absorber or MTM Reflector /AMC	40
	2.5.1	Switching methods.	g techniques or reconfigurability	40
		2.5.1.1	Copper wires/ hardwire technique.	40
		2.5.1.2	Circuit tuning technique	41
		2.5.1.3	Varactor Tuning	41
		2.5.1.4	(Nearly) Ideal Switches	42
	2.5.2	Previous Absorber	works related to Switchable MTM or MTM Reflector /AMC Reflectors	43
2.6	Chapt	er Summar	у	46
CHAPTER 3	RESE	EARCH M	ETHODOLOGY	47
3.1	Introd	uction		47
3.2	Desig	n Specifica	tion	49
3.3	Simul	ation Setur)	49
3.4	Desig	n Equation	for MTM Absorbers and Reflectors	50
	3.4.1	Substrate and Refle	Size Equation for MTM Absorbers	50

	3.4.2	Design absorber	Equations for Circular ring MTM s	51
	3.4.3	Design Reflecto	Equations for Square Absorbers and rs	53
	3.4.4	Design Square S	Equations for Dual Quad Gapped Shaped Split Ring Resonator.	55
3.5	Fabric	cation Proc	cess	58
	3.5.1	Absorpti	on	60
	3.5.2	Reflectio	on	60
	3.5.3	Relative	impedance (MTMAbs)	60
3.6	Measu	urement P	rocess	61
	3.6.1	Measure	ment Setup	63
3.7	Deter	mination c	of free space path loss	65
3.8	Chapt	er Summa	ıry	68
	DEGI			
CHAPTER 4 METAMATERI	DESI [AL AB	GN AND SORBER	ANALYSIS OF S	69
CHAPTER 4 METAMATERI 4.1	DESI IAL AB Introd	GN AND SORBER	ANALYSIS OF RS	69 69
CHAPTER 4 METAMATERI 4.1 4.2	DESI (AL AB Introd Single	GN AND SORBER uction Band M7	ANALYSIS OF S FM Absorber	69 69 71
CHAPTER 4 METAMATERI 4.1 4.2	DESI IAL AB Introd Single 4.2.1	GN AND SORBER uction Band M7 Circular	ANALYSIS OF SS I'M Absorber Ring Metamaterial Absorber	69 69 71 71
CHAPTER 4 METAMATERI 4.1 4.2	DESI IAL AB Introd Single 4.2.1	GN AND SORBER uction Band M7 Circular 4.2.1.1	ANALYSIS OF S TM Absorber Ring Metamaterial Absorber Basic Equations for Average radius of Circular ring	69 69 71 71 71
CHAPTER 4 METAMATERI 4.1 4.2	DESI IAL AB Introd Single 4.2.1	GN AND SORBER Juction Band MT Circular 4.2.1.1 4.2.1.2	ANALYSIS OF SS TM Absorber Ring Metamaterial Absorber Basic Equations for Average radius of Circular ring Single Band Circular Ring MTMAbs	69 71 71 71 71
CHAPTER 4 METAMATERI 4.1 4.2	DESI IAL AB Introd Single 4.2.1	GN AND SORBER uction e Band M7 Circular 4.2.1.1 4.2.1.2 4.2.1.3	ANALYSIS OF S TM Absorber Ring Metamaterial Absorber Basic Equations for Average radius of Circular ring Single Band Circular Ring MTMAbs Simulated TE and TM polarization Surface current of the Circular ring MTMAbs	 69 71 71 71 73 83
CHAPTER 4 METAMATERI 4.1 4.2	DESI IAL AB Introd Single 4.2.1	GN AND SORBER Luction Band M7 Circular 4.2.1.1 4.2.1.2 4.2.1.3	ANALYSIS OF SS TM Absorber Ring Metamaterial Absorber Basic Equations for Average radius of Circular ring Single Band Circular Ring MTMAbs Simulated TE and TM polarization Surface current of the Circular ring MTMAbs Fabricated Circular Ring MTMAbs	 69 71 71 71 73 83 85

4.2.1.6Simulated
polarizationMTMAbs864.2.1.6Simulated
polarization
absorptionMeasured
the
the
Circular Ring MTMAbs88

89

4.2.2 Circular Ring Metamaterial Absorber Concept of Size reduction

		4.2.2.1	Introduction of two Smaller Circular Rings.	89
		4.2.2.2	Introduction of three Smaller Circular Rings.	91
		4.2.2.3	Introduction of four Smaller Circular Rings.	92
		4.2.2.4	Size Reduction Achievement	94
	4.2.3	Comparia other wor	son between designed structure and rks in literature	97
4.3	Dual-	band / Mul	tiband MTM Absorber	97
	4.3.1	Toppled	"H" Single Band MTMAbs	98
		4.3.1.1	Parametric study on horizontal and vertical Bars thickness	100
		4.3.1.2	Absorption rate and Resonance for Different incident wave angles.	103
	4.3.2	Modified MTM At	l Toppled "H" Dual or Multiband Band psorber	105
		4.3.2.1	Parametric studies on the number of CuWs.	106
4.4	Wideł	oand MTM	I Absorber	109
	4.4.1	Square T	iled Wideband MTM Absorber	110
		4.4.1.1	Parametric studies on Width of Copper Wire, Width and length of center bar.	112
		4.4.1.2	Fabricated Square Tiled Wideband MTMAbs	116
		4.4.1.3	Simulated and Measured TE absorption of the Square Tiled Wideband MTMAbs	117
		4.4.1.4	Comparison between designed structure and other works in literature	120
		4.4.1.5	Simulated TE and TM Surface current of the Square Tiled Wideband MTMAbs	121
	4.4.2	Dual Qu Absorber	ad Gapped SSSRR wideband MTM	126

		4.4.2.1	Parametric studies on the Dual Quad Gapped SSSRR.	128
		4.4.2.2	Parametric studies on width W1, lengths Lg and L3 of the Dual Quad Gapped SSSRR.	130
		4.4.2.3	Fabricated Dual Quad Gapped SSSRR wideband MTM Absorber	136
		4.4.2.4	Simulated and Measured TE-mode and TM-mode Absorption of the Dual Quad Gapped SSSRR wideband MTMAbs.	136
		4.4.2.5	Comparison between designed structure and other works in literature	139
		4.4.2.6	Simulated TE-mode and TM-mode Surface current of the Dual Quad Gapped SSSRR wideband MTMAbs.	140
4.5	Chapt	er Summa	ıry	145
	DEGI	CINT ANTO		
CHAPTER 5 METAMATERI	DESI AL RE	GN AND FLECTO	ANALYSIS OF DRS	147
CHAPTER 5 METAMATERI 5.1	DESI AL RE	GN AND FLECTO uction	ANALYSIS OF DRS	147 147
CHAPTER 5 METAMATERI 5.1	DESI AL RE Introd 5.1.1	GN AND FLECTO uction Section Reflector	ANALYSIS OF DRS One: Metamaterial Reflectors (AMC rs)	147 147 147
CHAPTER 5 METAMATERI 5.1	DESI AL RE Introd 5.1.1	GN AND FLECTO uction Section Reflecto 5.1.1.1	ANALYSIS OF DRS One: Metamaterial Reflectors (AMC rs) Square Tiled MTM Reflector	147 147 147 149
CHAPTER 5 METAMATERI 5.1	DESI AL RE Introd 5.1.1	GN AND FLECTO uction Section Reflector 5.1.1.1 5.1.1.2	ANALYSIS OF ORS One: Metamaterial Reflectors (AMC rs) Square Tiled MTM Reflector Dual Quad Gapped SSSRR MTM Reflector	147 147 147 149 166
CHAPTER 5 METAMATERI 5.1	DESI AL RE Introd 5.1.1	GN AND FLECTO uction Section Reflector 5.1.1.1 5.1.1.2 Section copper w	ANALYSIS OF DRS One: Metamaterial Reflectors (AMC rs) Square Tiled MTM Reflector Dual Quad Gapped SSSRR MTM Reflector Two: Switching Demonstration using vires (CuW)	 147 147 147 149 166 183
CHAPTER 5 METAMATERI 5.1	DESI AL RE Introd 5.1.1	GN AND FLECTO uction Section Reflector 5.1.1.1 5.1.1.2 Section copper w 5.1.2.1	ANALYSIS OF PRS One: Metamaterial Reflectors (AMC rs) Square Tiled MTM Reflector Dual Quad Gapped SSSRR MTM Reflector Two: Switching Demonstration using vires (CuW) Square Tiled Switchable Wideband MTM Absorber / MTM Reflector	 147 147 147 149 166 183 183
CHAPTER 5 METAMATERI 5.1	DESI AL RE Introd 5.1.1	GN AND FLECTO uction Section Reflector 5.1.1.1 5.1.1.2 Section copper w 5.1.2.1 5.1.2.2	ANALYSIS OF PRS One: Metamaterial Reflectors (AMC rs) Square Tiled MTM Reflector Dual Quad Gapped SSSRR MTM Reflector Two: Switching Demonstration using wires (CuW) Square Tiled Switchable Wideband MTM Absorber / MTM Reflector Dual Quad Gapped SSSRR Switchable MTM Absorber / MTM Reflector	 147 147 147 149 166 183 183 185
CHAPTER 5 METAMATERI 5.1	DESI AL RE Introd 5.1.1 5.1.2	GN AND FLECTO uction Section Reflector 5.1.1.1 5.1.1.2 Section copper w 5.1.2.1 5.1.2.2 er Summa	ANALYSIS OF PRS One: Metamaterial Reflectors (AMC rs) Square Tiled MTM Reflector Dual Quad Gapped SSSRR MTM Reflector Two: Switching Demonstration using vires (CuW) Square Tiled Switchable Wideband MTM Absorber / MTM Reflector Dual Quad Gapped SSSRR Switchable MTM Absorber / MTM Reflector ry	 147 147 147 149 166 183 183 185 187
CHAPTER 5 METAMATERI 5.1 5.2 CHAPTER 6	DESI AL RE Introd 5.1.1 5.1.2 Chapt CON	GN AND FLECTO uction Section Reflector 5.1.1.1 5.1.1.2 Section copper w 5.1.2.1 5.1.2.2 er Summa	ANALYSIS OF PRS One: Metamaterial Reflectors (AMC rs) Square Tiled MTM Reflector Dual Quad Gapped SSSRR MTM Reflector Two: Switching Demonstration using wires (CuW) Square Tiled Switchable Wideband MTM Absorber / MTM Reflector Dual Quad Gapped SSSRR Switchable MTM Absorber / MTM Reflector ry NAND RECOMMENDATIONS	 147 147 147 149 166 183 183 183 185 187 188

	6.1.1	Metamaterial Absorbers	188
	6.1.2	Metamaterial Reflectors / AMC reflectors	189
	6.1.3	Switching demonstration between total absorption and total reflection	189
6.2	Contri	butions to Knowledge	190
6.3	Future	Works	191
REFERENCES			192
Appendix A			202
Appendix B			204
Appendix C			211

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1:	Resonant structures and their EM moments [72]	12
Table 2.2:	Summary of single-band metamaterial literature review.	24
Table 2.3:	Summary of dual or multi-band metamaterial literature review.	28
Table 2.4:	Summary of wideband metamaterial literature review.	31
Table 2.5:	Summary of AMC / metamaterial reflector literature review.	38
Table 2.6:	Summary of switchable MTM absorber / AMC metamaterial reflector literature review.	45
Table 3.1:	Design Specification of the MTM absorbers and MTM reflectors	49
Table 3.2:	The gain of horn antenna at X-band frequency.	66
Table 3.3:	Summary of total gain, FSPL, and Power received at different frequencies.	67
Table 4.1:	Dimensions of the Proposed metamaterial absorber structure	74
Table 4.2:	Parametric values of the inner and outer radius with resonance frequencies.	75
Table 4.3:	Summary of Parametric study on the width of the circular ring W_{cr}	77
Table 4.4:	Summary of Parametric study on the substrate's thickness h	79
Table 4.5:	Summary of Parametric study on relative permittivity ϵ_r .	81
Table 4.6:	Dimensions of Original Proposed structure vs New Reduced Size	95
Table 4.7:	Comparison between designed structure and other works in literature review	97
Table 4.8:	Dimensions of the Proposed structure Toppled "H" MTMAbs	99

Table 4.9:	Summary of parametric study variables on the Toppled "H" MTMAbs	100
Table 4.10:	Summary of CuWs Combinations, Operation band and resonances	106
Table 4.11:	Dimensions of Proposed Square Tiled wideband MTMAbs structure	111
Table 4.12:	Summary of parametric variables and resonances of the Proposed Square Tiled wideband MTMAbs structure	112
Table 4.13:	Comparison between designed structure and other works in literature review	120
Table 4.14:	Dimensions of the Proposed Dual Quad Gapped SSSRR wideband MTM Absorber	127
Table 4.15:	Summary of parametric study variables and resonances	130
Table 4.16:	Comparison between designed structure and other works in literature review.	139
Table 5.1:	Summary of TE-mode parametric variables and resonances	151
Table 5.2:	Summary of TM-mode parametric variables and resonances	151
Table 5.3:	Comparison between designed structure and other works in literature.	165
Table 5.4:	Summary of parametric variables and resonances	169
Table 5.5:	Comparison between designed structure and other works in literature review.	182

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
Figure 2.1:	Materials classification based on their permittivity and permeability[52]	8
Figure 2.2:	(a) Split-ring resonator (SSR) (b) Unit cell of LHM madeof 6 SRRs (c) Arrays of unit cells of LHM [57]	9
Figure 2.3:	Refractive index vs. frequency for SRR-wire medium [60]	11
Figure 2.4:	Various resonant structures are shown in (a) - (i) [57].	12
Figure 2.5:	Mushroom-like EBG structure (a) Top view and Side view [83]	14
Figure 2.6:	Radiation patterns of a patch antenna with and without HIS for (a) H-plane and (b) E-plane [87].	15
Figure 2.7:	Vertical wire antenna with (a) ordinary metal ground plane and (b) EBG ground plane [87].	15
Figure 2.8:	Patch antenna with (a) ordinary metal ground plane and (b) EBG ground plane [87].	16
Figure 2.9:	Perfect metamaterial absorber: (a) electric resonator, (b) cut wire, (c) transparent perspective unit cell view [91]	16
Figure 2.10:	(a) Salisbury screen [171] and (b) Jaumann absorber [96].	18
Figure 2.11:	Refractive index beams in different quadrants [44]	20
Figure 2.12: A	typical high-impedance surface: (a) Top view (b) Side view [128]	33
Figure 2.13:	Wire current on PEC and AMC surface	34
Figure 2.14:	Measured radiation pattern of a vertical monopole antenna: (a) on a metal ground plane (PEC) and b) on a high- impedance ground plane [86]	35
Figure 2.15:	(a) OFF state (Vacuum) (b) ON state (copper)	41
Figure 2.16:	(a) Discrete Port used in PIN diode Simulations (b) The Actual fabricated varactor (c) File loading using Touch Stone [138]	42
Figure 3.1:	Methodology flow chart	48
Figure 3.2:	Unit cell view of the proposed Circular Ring MTMAbs	52

Figure 3.3:	Unit cell view of the Original unmodified mushroom shaped HIS/AMC (b) Modified mushroom shaped HIS/AMC with added capacitance	54
Figure 3.4:	Unit cell view of the Original unmodified mushroom shaped HIS/AMC (b) Modified mushroom shaped HIS/AMC with added capacitance	55
Figure 3.5:	(a) Top layer (b) Dielectric substrate (c) Bottom layer (d) All layers combined.z	59
Figure 3.6:	Measurement flow chart for Fabricated structures	62
Figure 3.7:	Measurement set up for testing the fabricated structures	64
Figure 3.8:	Two ports calibration using Agilent calibrator	64
Figure 4.1:	Metamaterial Absorber design flow chat	70
Figure 4.2:	Unit cell view of the proposed Circular Ring MTMAbs	74
Figure 4.3:	TE polarization Absorption for different circular ring size of the proposed MTMAbs	76
Figure 4.4:	TM polarization Absorption for different circular ring size of the proposed MTMAbs	76
Figure 4.5:	TE polarization Absorption for different circular ring width of the proposed MTMAbs	78
Figure 4.6:	TM polarization absorption for different circular ring width of the proposed MTMAbs	78
Figure 4.7:	TE polarization Absorption for different substrate thickness of the proposed MTMAbs	80
Figure 4.8:	TM polarization Absorption for different substrate thickness of the proposed MTMAbs	80
Figure 4.9:	TE polarization Absorption for different Relative permittivity of the proposed MTMAbs	82
Figure 4.10:	TM polarization Absorption for different Relative permittivity of the proposed MTMAbs	82
Figure 4.11:	Field distribution at 11.11 GHz for (a) TE polarization E- Field (b) TM polarization E-Field (c) TE polarization H- Field and (d) TM polarization H-Field of the proposed Circular Ring MTMAbs	84
Figure 4.12:	Surface current at 11.11 GHz for (a) TE polarization Top view (resonating element) (b) TE polarization Bottom view (Ground Plane) (c) TM polarization Top view (resonating element) (d) TM polarization bottom view (Ground Plane)	85

Figure 4.13:	(a) Fabricated 300 mm by 300 mm structure (b) Zoomed Unit cell	86
Figure 4.14:	TE polarization simulated vs measured results at different incident wave angles.	87
Figure 4.15:	TM polarization simulated vs measured results at different Incident wave angles.	88
Figure 4.16:	(a) With rings A & C across Y-axis (b) With rings B & D across X-axis	90
Figure 4.17:	TE and TM polarization with the big ring only, with rings D & B and with rings A & C	91
Figure 4.18:	Proposed Circular Ring MTMAbs with 3 rings equally spaced out	91
Figure 4.19:	TE & TM polarization with big rings, and with rings A, B, & C	92
Figure 4.20:	Proposed Circular Ring MTMAbs with 4 rings equally spaced out	93
Figure 4.21:	TE and TM-mode with big rings, and with rings A, B, C, with ring A,B, C & D.	93
Figure 4.22:	(a) Actual original size (b) Reduced size	95
Figure 4.23:	Simulated TE & TM-mode of the reduced size configuration	96
Figure 4.24:	(a) Top view of Unit cell view of the proposed Toppled "H" MTMAbs (b) Side View	99
Figure 4.25:	Simulated TE & TM-mode of the reduced size configuration	101
Figure 4.26:	Simulated TE & TM-mode of the reduced size configuration	102
Figure 4.27:	Simulated TE & TM-mode of the reduced size configuration	102
Figure 4.28:	Simulated Single-band MTMAbs Surface current at 7.22 GHz	103
Figure 4.29:	Simulated Single band MTMAbs Absorbance for different incident wave angles at 7.22 GHz	104
Figure 4.30:	(a) Top view of Unit cell view of the proposed Toppled "H" MTMAbs Showing Copper Wires Positions (b) Side View	105
Figure 4.31:	TE Absorption for various combinations of CuWs	105

Figure 4.32:	Absorption for CuW1 & CuW4 or CuW2 & CuW3 at different incident wave angles	108
Figure 4.33:	Simulated dual/multiband MTMAbs Surface current at 7.22 GHz	109
Figure 4.34:	Simulated dual/multiband MTMAbs Surface current at 11.11 GHz	109
Figure 4.35:	(a) Top view of Unit cell view of the proposed Square Tiled wideband MTMAbs Showing Copper Wires Positions (b) Side View	111
Figure 4.36:	Simulated TE polarization results for different width of center bar	113
Figure 4.37:	Simulated TM polarization results for different width of center bar	113
Figure 4.38:	TE-mode simulated results for different length of center bar	114
Figure 4.39:	TM-mode simulated results for different length of center bar	115
Figure 4.40:	TE-mode simulated results for different length of copper wire.	116
Figure 4.41:	TM-mode simulated results for different length of copper wire.	116
Figure 4.42: (a) Fabricated 300 mm by 300 mm structure(b) Zoomed cell	Unit 117
Figure 4.43:	Simulated vs measured TE absorption results of the square tiled wideband MTMAbs for incident wave angles $0^{\circ} \& 20^{\circ}$	118
Figure 4.44:	Simulated vs measured TE absorption results of the square tiled wideband MTMAbs for incident wave angles 40° & 60° .	119
Figure 4.45:	Simulated vs measured TM absorption results of the square tiled wideband MTMAbs for incident wave angles $0^{\circ} \& 20^{\circ}$	119
Figure 4.46:	Simulated vs measured TM absorption results of the square tiled wideband MTMAbs for incident wave angles 40° & 60°	120
Figure 4.47:	Surface current at 9.20 GHz for (a) TE polarization at 0° incident wave angle (b) TM polarization at 0° incident wave angle	122

Figure 4.48:	Surface current at 10.00 GHz for ((a) TE polarization at 0° incident wave angle (b) TM polarization at 0° incident wave angle.	122
Figure 4.49:	Surface current at 12.00 GHz for (a) TE polarization at 0° incident wave angle (b) TM polarization at 0° incident wave angle.	123
Figure 4.50:	Surface current at 14.00 GHz for (a) TE polarization at 0° incident wave angle (b) TM polarization at 0° incident wave angle.	123
Figure 4.51:	Surface current at 9.20 GHz for (a) TE polarization at 0° incident wave angle (b) TM polarization at 0° incident wave angle	124
Figure 4.52:	Surface current at 10.00 GHz for (a) TE polarization at 0° incident wave angle (b) TM polarization at 0° incident wave angle	125
Figure 4.53:	Surface current at 12.00 GHz for (a) TE polarization at 0° incident wave angle (b) TM polarization at 0° incident wave angle	125
Figure 4.54:	Surface current at 14.00 GHz for (a) TE polarization at 0° incident wave angle (b) TM polarization at 0° incident wave angle	126
Figure 4.55:	Proposed Dual Quad Gapped SSSRR wideband MTM Absorber	127
Figure 4.56:	TE polarization simulated results with various combinations of SSSRR	129
Figure 4.57:	TM polarization simulated results with various combinations of SSSRR	129
Figure 4.58:	TE polarization simulated results of different values of width W1	131
Figure 4.59:	TM polarization simulated results of different values of width W	131
Figure 4.60:	TE polarization simulated results of different values of Length Lg	132
Figure 4.61:	TM polarization simulated results of different values of length Lg	133
Figure 4.62:	TE polarization simulated results of different values of Length L3 (part 1)	134
Figure 4.63:	TE polarization simulated results of different values of Length L3 (part 2)	134

Figure 4.64:	TM polarization simulated results of different values of length L3 (part 1)		
Figure 4.65:	TE polarization simulated results of different values of length L3 (part 2)	135	
Figure 4.66:	(a) Fabricated 300 mm by 300 mm structure (b) Zoomed Unit cell	136	
Figure 4.67:	Simulated TE vs measured TE absorption for incident wave angles 0° and 20°	137	
Figure 4.68:	Simulated TE vs measured TE absorption for incident wave angles 40° and 60°	138	
Figure 4.69:	Simulated TM vs measured TM absorption for incident wave angles 0° and 20°	138	
Figure 4.70:	Simulated TM vs measured TM absorption for incident wave angles 40° and 60°	139	
Figure 4.71:	Surface current at 9.20 GHz for (a) TE polarization at 0° incident wave angle (b) TM polarization at 0° incident wave angle	141	
Figure 4.72:	Surface current at 11.00 GHz for (a) TE polarization at 0° incident wave angle (b) TM polarization at 0° incident wave angle	141	
Figure 4.73:	Surface current at 13.00 GHz for (a) TE polarization at 0° incident wave angle (b) TM polarization at 0° incident wave angle	142	
Figure 4.74:	Surface current at 9.20 GHz for (a) TE polarization at 60° incident wave angle (b) TM polarization at 60° incident wave angle	143	
Figure 4.75:	Surface current at 11.00 GHz for (a) TE polarization at 60° incident wave angle (b) TM polarization at 60° incident wave angle	143	
Figure 4.76:	Surface current at 13.00 GHz for (a) TE polarization at 60° incident wave angle (b) TM polarization at 60° incident wave angle.	144	
Figure 5.1:	Metamaterial Reflector / AMC design flow chat	148	
Figure 5.2:	(a) Top view of Unit cell view of the proposed Square Tiled MTM Reflector Showing Copper Wires Positions (b) Side View	150	
Figure 5.3:	TE-mode simulated reflection for varied W _{CB}	152	
Figure 5.4:	TE-mode simulated reflection phase for varied W _{CB}	153	

Figure 5.5:	TM-mode simulated reflection for varied W_{CB}			
Figure 5.6:	TM-mode simulated reflection phase for varied W_{CB}			
Figure 5.7:	TE-mode and TM-mode simulated reflection for varied $L_{\mbox{\scriptsize CB}}$	155		
Figure 5.8:	TE-mode and TM-mode simulated reflection phase for varied L_{CB}	156		
Figure 5.9:	TE-mode and TM-mode simulated reflection for varied Lcuw1	157		
Figure 5.10:	TE-mode and TM-mode simulated reflection phase for varied L_{CuW1}			
Figure 5.11:	TE-mode and TM-mode simulated reflection for varied L_{g1}	159		
Figure 5.12:	TE-mode and TM-mode simulated reflection phase for varied \mathbf{L}_{g1}	160		
Figure 5.13:	(a) Fabricated 300 mm by 300 mm structure (b) Zoomed Unit cell	161		
Figure 5.14:	TE-mode simulated VS measured results at different IWA	162		
Figure 5.15:	TE-mode simulated VS measured results at different IWA			
Figure 5.16:	TM-mode simulated VS measured results at different IWA	164		
Figure 5.17:	TM-mode simulated VS measured results at different IWA	165		
Figure 5.18:	(a) Top view of Unit cell view of the proposed Toppled "H" MTMAbs Showing Copper Wires Positions (b) Side View	166		
Figure 5.19:	TE-mode simulated results of varied SSSRR	168		
Figure 5.20:	TM-mode simulated results of varied SSSRR	168		
Figure 5.21:	TE-mode simulated reflection coefficient for varied width W1	170		
Figure 5.22:	TM-mode simulated reflection coefficient for varied width W1	170		
Figure 5.23:	TE-mode simulated reflection phase for varied width W1	171		
Figure 5.24:	TM-mode simulated reflection phase for varied width W1	172		
Figure 5.25:	TE-mode simulated reflection coefficient for varied length <i>Lg</i> .	173		
Figure 5.26:	TM-mode simulated reflection coefficient for varied length Lg	173		

Figure 5.27:	TE-mode simulated reflection phase for varied length Lg .		
Figure 5.28:	TM-mode simulated reflection phase for varied length Lg .		
Figure 5.29:	TE-mode simulated reflection coefficient for varied length <i>Lg</i> .	175	
Figure 5.30:	TM-mode simulated reflection coefficient for varied length Lg	176	
Figure 5.31:	TE-mode simulated reflection phase for varied length <i>L3</i> .	177	
Figure 5.32:	TM-mode simulated reflection phase for varied length L3.	177	
Figure 5.33:	(a) Fabricated 300mm by 300mm structure (b) Zoomed Unit cell		
Figure 5.34:	TE-mode simulated VS measured results at different IWA	179	
Figure 5.35:	TE-mode simulated VS measured results at different IWA	180	
Figure 5.36:	TM-mode simulated VS measured results at different IWA	181	
Figure 5.37:	TM-mode simulated VS measured results at different IWA	182	
Figure 5.38:	Proposed MTM Structure (a) Absorber Mode (b) Reflector Mode	183	
Figure 5.39:	Proposed MTM Structure (a) Absorber Mode (b) Reflector Mode	184	
Figure 5.40:	Proposed MTM Structure (a) Absorber Mode (b) Reflector Mode	185	
Figure 5.41:	Proposed MTM Structure (a) Absorber Mode (b) Reflector Mode	186	
Figure B.1:	Creating a new template for simulations (selecting type of structure).	204	
Figure B.2:	Creating a new template for simulations (selecting solver).	205	
Figure B.3:	Creating a new template for simulations (Inputting frequency span)	205	
Figure B.4:	Setting up parameters using variables	206	
Figure B.5:	Setting Up Simulation Frequency Range (Upper and Lower Limits)	207	
Figure B.6:	Setting Up Simulation boundary conditions and floquet boundaries	208	
Figure B.7:	Setting Up Simulation background (Lower and Upper Z distance)	209	

Figure B.8:	Excitation of EMW from Z+ towards Z- (Top towards the bottom) for a normal incident angle		
Figure B.9:	Excitation of EMW for oblique incident angle (a) TE- mode polarization and (b) TM-mode polarization.	211	

LIST OF ABBREVIATIONS

MTM	-	Metamaterial
EBG	-	Electromagnetic Band-Gap
HIS	-	High Impedance Surface
FSS	-	Frequency Selective Surface
LHM	-	Left-Handed Metamaterial
EMW	-	Electromagnetic Waves
MTMABS	-	Metamaterial Absorbers
MTMREF	-	Metamaterial Reflectors
AMC	-	Artificaial Magnetic Conductor
UTM	-	University Technology Malaysia
DNG	-	Double Negative Metamaterial
NIM	-	Negative Index Materials
BWM	-	Backward Media
SSR	-	Split-Ring Resonator
SNG	-	Sinal To Noise Ratio
CRR	-	Conductivity of Metal
ELC	-	Electric Filed Coupled-LC
CELC	-	Complimentary Electric Field Coupled-LC
OSR	-	Omega-Shaped Resonator
PBG	-	Photonic Bandgap
FWHM	-	Full Width At Half Maximum
IWA	-	Incident Wave Angle
MNG	-	Mu-Negative
ENG	-	Epsilon Negative
DSP	-	Double Positive

LIST OF SYMBOLS

Ε	-	Electric Field
Н	-	Magnetic Field
З	-	Permittivity
μ	-	Permeability
Er	-	Relative Permittivity
μ_r	-	Relative Permeability
n	-	Refractive Index
С	-	Speed of Light
ω	-	Radian Frequency
ω_p	-	Plasma Radian Frequency
k	-	Complex wavenumber
f	-	Frequency
λ	-	Wavelength
Ζ	-	Impedence
β	-	Propagation Constant
σ	-	Conductivity of Metal
η	-	Wave Impedance

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A:	LIST OF PUBLICATIONS	202
Appendix B:	SIMULATION SETUP	204
Appendix C:	FABRICATION PROCESS	211

CHAPTER 1

INTRODUCTION

1.1 Introduction

Metamaterials (MTMs) are structures engineered artificially to exhibit extraordinary properties such as negative refractive index [1, 2], negative permeability and negative permittivity (artificial magnetism) [3, 4] which are not found in nature. One unique thing about MTMs is that they do not derive their properties from the original materials but rather from the newly designed structures. Veselago first envisaged the concept of MTM in 1963 [5] which was later validated by Pendry and Smith. MTMs are designed using periodic elements based on equivalent lumped circuits consisting of inductors and capacitors. The equivalent lump element circuit determines the resonance frequency and the dimensions of the lump elements are much smaller than that of operating wavelength [6].

MTMs, based on their characteristics are divided into various categories which include artificial magnetic conductor (AMC) structures, electromagnetic bandgap (EBG), high impedance surface (HIS), Frequency selective surface (FSS), photonic crystal, left-handed metamaterials (LHM), etc. These categories have their own unique properties which are applicable to the development or enhancement of various electromagnetic devices.

1.2 Background Study

What are Electromagnetic waves (EMW) absorbers and EMW reflectors? It is worth mentioning that both are products of FSS, though some absorbers are realized by modifying some HIS. In details; EMW absorbers are structures that can absorber incidental electromagnetic waves. They are designed to minimize reflection and transmission by maximizing energy loss within the structure. Other than the conventional electromagnetic absorber, other absorbers such as the Jaumann absorber [7-11], Salisbury screen [12-14], crossed grating absorbers [15, 16], Dallenbach layer [17, 18] and circuit analogue (CA) absorbers [19-22] are in existence, but they all have their various drawbacks. For instance, the Jaumann absorber and the Salisbury both use the concept of incidental electromagnetic waves cancellation. The Jaumann absorber came to existence due to the disadvantage of absorbing frequency associated with the Salisbury absorber as it operates at a quarter wavelength. It is worth noting that the Jaumann absorber offers only a single and narrow frequency band absorption. In addition to that also, both the Jaumann and Salisbury absorbers are thick in other to enable them to absorb electromagnetic waves of different frequencies. [23]

EMW reflectors are sometimes called Artificial magnetic conductors (AMC)s. These are structures purposely designed with unusual boundary conditions. These boundaries conditions were made in such a way that the structure will be selective in supporting surface wave currents [24]. Initially, conventional metallic conductors and perfect electric conductor (PEC) were often used for antenna ground planes. These were limited by their drawbacks, which includes reversal or out of phase image currents and propagation of surface current, which is radiation caused by an infinite ground plane. AMCs counter these drawbacks and even exhibits the ability to reduce back-radiation as well as increase gain. [25].

It is undeniable that MTM has offered more advantages than disadvantages, especially in the fields of electromagnetic structures. Therefore, researchers are at their heels, exploring all the benefits it offers. One of the areas in which researchers are focused on is the use of MTM structures for absorbers and reflectors. MTM structures will not only address the substrate thickness problem in the previous absorbers, but instead it will even advance further to enhance them in terms of portability and compactness as well as entitle them to the freedom of design structures (not fixed to quarter wavelength).

1.3 Problem statement

With advancement in technology, electronic devices and communication devices such as pacemakers, infusion pumps, mobile phones, laptops and others as mentioned in [26, 27] [28], are becoming even more smaller, precise and even more sensitive [29, 30]. In addition to that also, they tend to move towards higher frequency and are adopting the wireless technology [31]. At lower frequencies, antennas are larger, therefore miniaturization is required to enable them fit into those tiny electronic devices while at higher frequencies, one of the prevalence challenges is the ability to receive a substantial amount of the transmitted signal at the receiver. These challenges are caused by so many different factors. Amongst these factors are, interference caused by unwanted signals in the surroundings, the reflection of the transmitted signals to noise ratio (SNR) which leads to high error rate or total loss of data whereas the reflection causes scattering, which results in multipath.

However, this interference can be reduced if not eliminated by developing multiband or wideband MTM absorbers (MTMAbs) to absorb any unwanted surroundings electromagnetic waves [33] [34]. On the other hand, developing a MTM reflector (MTMRef) and placing it at a desired position can help in reducing the scattering or multipath caused by far distance surround elements [35]. With this two in place, interference will be reduced, and the signal be guided to the targeted destination, which will ensure the reception of ample amount of the transmitted signal.

It is worth noting that multiband MTMAbs can absorb the unwanted electromagnetic waves for selected bands of operations with windows in-between. While the wideband MTMAbs can absorb can for a wider band without windows inbetween. In general, MTMAbs are capable of intercepting electromagnetic waves radiated daily by home appliances, cell phones, Wi-Fi, etc. which tends to be harmful to human and animals. Whereas MTMRefs are capable of improving gains when combined with other antennas. Besides, both combined interchangeably can provide enhanced stealth mode to avoid radar detection or reveal for warships, fighter jets, and tanks.

1.4 Research objectives

The objectives of this project are:

- i. To study, understand MTMAbs and MTMRefs.
- ii. To design MTMAbs and MTMRef structures for X-band applications.
- iii. To fabricate the designed structures.
- iv. To measure and characterise the results in anechoic chamber.

In essence, to design, simulate, fabricate, measure and analyze both the MTMAbs and the MTMRef. The proposed EMW MTMAbs and the MTMRef should be able reduce interference, and increase directivity of transmitted electromagnetic waves as well as demonstrate compactness when compared with the conventional absorbers. Also, the new structures should be to adapt to new surroundings/ environment and should be able to switch between total absorbance and total reflectance using copper wires as switches.

1.5 Scope of Work

The scope of this research includes using basic design concept for metamaterial absorber, and reflectors learned from literature review. Furthermore, it is limited to the availability of facilities and resources required for achieving the objectives of the research.

First, an in-depth literature review was conducted to know the theoretical aspect, have a better understanding of both metamaterial absorbers and metamaterial reflectors as well as reconfigurable/ tunable structures from books, journals, conferences, and academicals or industrial research.

The obtained knowledge of the ideology, the concept, and formulas of electromagnetic structures were used to calculate reference point parameters. These

parameters were then designed using CST and then optimized the structure for better results.

The optimized designs were fabricated using FR4 fire Retardant-4 substrates. Due to the nature of the structure's size and the designed frequency range, fabrication within the UTM facility was quite impossible. Therefore, it was outsourced to a company named "Jac Engineering".

Finally, the fabricated structures were measured in the anechoic chamber, and the results were compared with the simulated results.

1.6 Thesis Outline

Chapter 1 introduces the EMW from absorber and reflector's perspectives, an overview of the research work, problem statements, objectives and scope of the project.

Chapter 2 gives an overview of MTMs and basic intro to left-Handed Metamaterial (LHM), resonant elements and electromagnetic band gap (EBG). Absorption theories of metamaterial absorbers (MTMAbs) and reflection theories of AMC/metamaterial reflectors were discussed. Previous works related to MTMAbs and MTM reflectors were reviewed and summarized.

Chapter 3 gives insight on design specifications, emphasis and details out research methodology and the flow of the research work. It further gives step by step guide to simulation setup, basic equations for MTMAbs and MTMRefs. The last part involves the fabrications of prototypes structures as well as measurement process flow.

Chapter 4 describes the design process for Circular Ring and Split Ring Resonator MTMAbs. In this chapter, new designs of MTMAbs were presented, and their performance in terms of absorption and polarization were discussed. These designs were divided into three categories, namely single band MTM Absorber, dual/multiband MTM Absorber and wideband MTM Absorber. In addition to that, other parametric studies were conducted and reported.

Chapter 5 is divided into two sections; section one introduces a few new designs of MTMRefs based on resonant element "square patch", it also presented their performances in terms of reflection, reflection phase, and polarizations. While section two adapted a few designs from chapter 4 and 5 and demonstrated switchability using copper wires. The structures were capable of switching between total absorption and total reflection. Their performances were tested based on absorption and reflection capabilities.

Chapter 6 concludes the thesis and gives recommendations and suggestions for future work.

REFERENCES

- [1] D. R. Smith, J. B. Pendry, and M. C. Wiltshire, "Metamaterials and negative refractive index," *Science*, vol. 305, no. 5685, pp. 788-792, 2004.
- [2] F. Bilotti and L. Sevgi, "Metamaterials: Definitions, properties, applications, and FDTD-based modeling and simulation," *International Journal of RF and Microwave Computer-Aided Engineering*, vol. 22, no. 4, pp. 422-438, 2012.
- [3] D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," *Physical review letters*, vol. 84, no. 18, p. 4184, 2000.
- [4] V. G. Veselago, "THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF \$\epsilon\$ AND μ," Soviet Physics Uspekhi, vol. 10, no. 4, pp. 509-514, 1968/04/30 1968, doi: 10.1070/pu1968v010n04abeh003699.
- [5] V. Veselago, "The electrodynamic properties of a mixture of electric and magnetic charges," *Soviet Physics JETP*, vol. 25, no. 4, 1967.
- [6] F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-Circuit Models for the Design of Metamaterials Based on Artificial Magnetic Inclusions," *IEEE Transactions on Microwave Theory and Techniques*, vol. 55, no. 12, pp. 2865-2873, 2007, doi: 10.1109/TMTT.2007.909611.
- [7] M. Hyde, A. E. Bogle, and M. Havrilla, "Nondestructive characterization of Salisbury screen and Jaumann absorbers using a clamped rectangular waveguide geometry," *Measurement*, vol. 53, 07/01 2014, doi: 10.1016/j.measurement.2014.03.025.
- [8] L. J. du Toit and J. H. Cloete, *Advances in the design of Jaumann absorbers*. 1990, pp. 1212-1215 vol.3.
- [9] L. Ke, Z. Xin, H. Xinyu, and Z. Peng, "Analysis and design of multilayer Jaumann absorbers," 05/01 2011, doi: 10.1109/ICMTCE.2011.5915168.
- [10] M. A. Ramkumar and C. Sudhendra, "Novel Ultra Wide Band Polarisation Independent Capacitive Jaumann Radar Absorber," *Defence Science Journal*, vol. 68, p. 64, 12/18 2017, doi: 10.14429/dsj.68.12025.
- [11] J. R. Nortier, C. A. Van der Neut, and D. E. Baker, "TABLES FOR THE DESIGN OF JAUMANN MICROWAVE ABSORBER," vol. 30, pp. 219-222, 09/01 1987.
- [12] R. L. Fante and M. T. Mccormack, "Reflection properties of Salisbury screen," *Antennas and Propagation, IEEE Transactions on*, vol. 36, pp. 1443-1454, 11/01 1988, doi: 10.1109/8.8632.
- [13] Z. Zhou, K. Chen, J. Zhao, Y. Feng, and Y. Li, *Expanding Microwave Absorption Bandwidth with Metasurface Salisbury Screen*. 2018, pp. 440 (4 pp.)-440 (4 pp.).
- [14] F. Che Seman, R. Cahill, and V. F. Fusco, "Salisbury screen with reduced angular sensitivity," *Electronics Letters*, vol. 45, pp. 147-149, 03/01 2009, doi: 10.1049/el:20092811.
- [15] X. Mao and L. Zeng, "Design and fabrication of crossed gratings with multiple zero-reference marks for planar encoders," *Measurement Science and Technology*, vol. 29, 11/27 2017, doi: 10.1088/1361-6501/aa9d5e.

- [16] E. Popov, D. Maystre, R. McPhedran, M. Nevière, M. C Hutley, and G. H Derrick, "Total absorption of unpolarized light by crossed gratings," *Optics express*, vol. 16, pp. 6146-55, 05/01 2008, doi: 10.1364/OE.16.006146.
- [17] F. Li, P. Chen, Y. Poo, and R.-X. Wu, *Achieving Perfect Absorption by the Combination of Dallenbach Layer and Salisbury Screen*. 2018, pp. 1507-1509.
- [18] D. L. Jaggard, N. Engheta, and J. Liu, "Chiroshield: A Salisbury/Dallenbach Shield Alternative," *Electronics Letters*, vol. 26, pp. 1332-1334, 09/16 1990, doi: 10.1049/el:19900859.
- [19] B. A. Munk, P. Munk, and J. Pryor, "On Designing Jaumann and Circuit Analog Absorbers (CA Absorbers) for Oblique Angle of Incidence," *Antennas and Propagation, IEEE Transactions on*, vol. 55, pp. 186-193, 02/01 2007, doi: 10.1109/TAP.2006.888395.
- [20] E. J. Riley, E. Lenzing, and R. Narayanan, "X-Band Circuit-Analog Absorbers using Unidirectional Carbon-Fiber Laminas," *IEEE Antennas and Wireless Propagation Letters*, vol. PP, pp. 1-1, 04/30 2018, doi: 10.1109/LAWP.2018.2831909.
- [21] L. M. V. Abdulhakim and A. C K, "A Novel Polarization Independent Wideband Circuit Analog Absorber Using Crossed Loops," *Radioengineering*, vol. 27, pp. 738-745, 09/14 2018, doi: 10.13164/re.2018.0738.
- [22] B. A. Munk, "Jaumann and Circuit Analog Absorbers," 2005, pp. 315-335.
- [23] C. M. Watts, X. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," *Advanced materials*, vol. 24, no. 23, pp. OP98-OP120, 2012.
- [24] M. Hiranandani, A. Yakovlev, and A. Kishk, "Artificial magnetic conductors realised by frequency-selective surfaces on a grounded dielectric slab for antenna applications," *IEE Proceedings-Microwaves, antennas and propagation,* vol. 153, no. 5, pp. 487-493, 2006.
- [25] B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, "Switchable metamaterial reflector/absorber for different polarized electromagnetic waves," *Applied Physics Letters*, vol. 97, no. 5, p. 051906, 2010.
- [26] N. Badizadegan, S. Greenberg, H. Lawrence, and K. Badizadegan, "Radiofrequency Interference in the Clinical Laboratory: Case Report and Review of the Literature," *American journal of clinical pathology*, vol. 151, 01/21 2019, doi: 10.1093/ajcp/aqy174.
- [27] E. Vagdatli, V. Konstandinidou, N. Adrianakis, I. Tsikopoulos, A. Tsikopoulos, and K. Mitsopoulou, "Effects of Electromagnetic Fields on Automated Blood Cell Measurements," *Journal of laboratory automation*, vol. 19, 01/24 2014, doi: 10.1177/2211068213520492.
- [28] R. Togt, E. Lieshout, R. Hensbroek, E. Beinat, J. Binnekade, and P. Bakker, "Electromagnetic Interference From Radio Frequency Identification Inducing Potentially Hazardous Incidents in Critical Care Medical Equipment," *JAMA* : *the journal of the American Medical Association*, vol. 299, pp. 2884-90, 06/01 2008, doi: 10.1001/jama.299.24.2884.
- [29] L. Goldberg, "When is a medical device not a medical device?," vol. 285, 08/24 2010.
- [30] A. Louis, "Powering miniaturized medical devices: Advanced lithium battery chemistries enable self-powered medical devices to become smaller while delivering uncompromised performance," vol. 57, 08/01 2015.
- [31] D. Kissinger and J. C. Chiao, "Medical Applications of Radio-Frequency and Microwaves-Sensing, Monitoring, and Diagnostics [From the Guest Editors'

Desk]," *Microwave Magazine, IEEE,* vol. 16, pp. 34-38, 05/01 2015, doi: 10.1109/MMM.2015.2398593.

- [32] M. Fujii, "A new mode of radio wave diffraction via the terrestrial surface plasmon on mountain range: TERRESTRIAL SURFACE PLASMON," *Radio Science*, vol. 51, 08/01 2016, doi: 10.1002/2016RS006068.
- [33] L. Hualiang, Y. Guo, G. Ji, Y. Zhao, and Z. Xu, "Interface Polarization Strategy to Solve Electromagnetic Wave Interference Issue," *ACS Applied Materials & Interfaces*, vol. 9, 01/24 2017, doi: 10.1021/acsami.6b16223.
- [34] J. Chiappe, "Additional techniques to reduce heatsink emissions utilizing RF absorbers," in 2012 IEEE International Symposium on Electromagnetic Compatibility, 6-10 Aug. 2012 2012, pp. 56-63, doi: 10.1109/ISEMC.2012.6351750.
- [35] X. Begaud, A. Lepage, S. Varault, M. Soiron, and A. Barka, "Ultra-Wideband and Wide-Angle Microwave Metamaterial Absorber," *Materials*, vol. 11, p. 2045, 10/20 2018, doi: 10.3390/ma11102045.
- [36] A. Lakhtakia, W. S. Weiglhofer, and I. J. Hodgkinson, "Complex mediums II: Beyond linear isotropic dielectrics," in *Complex Mediums II: Beyond Linear Isotropic Dielectrics*, 2001, vol. 4467.
- [37] A. Sihvola, "Metamaterials in electromagnetics," *Metamaterials*, vol. 1, no. 1, pp. 2-11, 2007.
- [38] A. Sihvola, "Metamaterials: A Personal View," *Radioengineering*, vol. 18, no. 2, 2009.
- [39] M. Lapine and S. Tretyakov, "Contemporary notes on metamaterials," *IET microwaves, antennas & propagation,* vol. 1, no. 1, pp. 3-11, 2007.
- [40] Y. J. Kim, Y. J. Yoo, J. S. Hwang, and Y. P. Lee, "Ultra-broadband microwave metamaterial absorber based on resistive sheets," *Journal of Optics*, vol. 19, no. 1, p. 015103, 2016/12/09 2016, doi: 10.1088/2040-8986/19/1/015103.
- [41] S. Islam Sikder, R. Iqbal Faruque Mohammad, and T. Islam Mohammad, "Design and absorption analysis of a new multiband split-S-shaped metamaterial," in *Science and Engineering of Composite Materials* vol. 24, ed, 2017, p. 139.
- [42] M. J. Hossain, M. R. I. Faruque, and M. T. Islam, "Design and analysis of a new composite double negative metamaterial for multi-band communication," *Current Applied Physics*, vol. 17, no. 7, pp. 931-939, 2017/07/01/ 2017, doi: https://doi.org/10.1016/j.cap.2017.04.008.
- [43] H. Chen, B. I. Wu, and J. A. Kong, "Review of Electromagnetic Theory in Left-handed Materials," *Journal of Electromagnetic Waves and Applications*, vol. 20, no. 15, pp. 2137-2151, 2006/01/01 2006, doi: 10.1163/156939306779322585.
- [44] V. Veselago, L. Braginsky, V. Shklover, and C. Hafner, *Negative Refractive Index Materials*. 2006, pp. 189-218.
- [45] S. N. Burokur, M. Latrach, and S. Toutain, "Analysis and Design of Waveguides Loaded with Split-Ring Resonators," *Journal of Electromagnetic Waves and Applications*, vol. 19, no. 10, pp. 1407-1421, 2005/01/01 2005, doi: 10.1163/156939305775525864.
- [46] C. Chan, J. Li, and K. H. Fung, "On extending the concept of double negativity to acoustic waves," *Journal of Zhejiang University SCIENCE A*, vol. 7, pp. 24-28, 01/01 2006, doi: 10.1631/jzus.2006.A0024.
- [47] S. Islam, M. R. Faruque, M. Islam, and T. Alam, *A new mu-negative metamaterial*. 2015.

- [48] S.-Y. Chen, R. Ouedraogo, A. Temme, A. Diaz, and E. Rothwell, *MNG-metamaterial-based efficient small loop antenna*. 2009, pp. 1-4.
- [49] H. Kondori, M. Mansouri-Birjandi, and S. Tavakoli, "Effects of an MNG metamaterial on a microstrip patch antenna," *International Journal on Communications Antenna and Propagation*, vol. 2, 06/01 2012.
- [50] L. Guo, "A high-gain and frequency-tunable bow tie antenna with epsilonnegative metasurface," *Journal of Electromagnetic Waves and Applications*, vol. 29, pp. 693-702, 07/31 2018.
- [51] M. Gajibo, M. K. A. Rahim, B. Bala, and H. Majid, "Reconfigurable epsilon negative metamaterial antenna," pp. 265-267, 02/17 2015, doi: 10.1109/APACE.2014.7043797.
- [52] I. A. Buriak, V. O. Zhurba, G. S. Vorobjov, V. R. Kulizhko, O. K. Kononov, and O. Rybalko, "Metamaterials: Theory, Classification and Application Strategies (Review)," *Journal of Nano- and Electronic Physics*, vol. 8, pp. 04088-1, 12/01 2016, doi: 10.21272/jnep.8(4(2)).04088.
- [53] K. Y. e. Bliokh and Y. P. Bliokh, "What are the left-handed media and what is interesting about them?," *Physics-Uspekhi*, vol. 47, no. 4, pp. 393-400, 2004.
- [54] J. B. Pendry, A. Holden, W. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," *Physical review letters*, vol. 76, no. 25, p. 4773, 1996.
- [55] R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," *science*, vol. 292, no. 5514, pp. 77-79, 2001.
- [56] C. Parazzoli, R. Greegor, K. Li, B. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," *Physical Review Letters*, vol. 90, no. 10, p. 107401, 2003.
- [57] R. A. Shelby, D. R. Smith, S. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," *Applied Physics Letters*, vol. 78, pp. 489-491, 01/22 2001, doi: 10.1063/1.1343489.
- [58] C. Caloz and T. Itoh, *Electromagnetic metamaterials: transmission line theory and microwave applications*. John Wiley & Sons, 2005.
- [59] N. Engheta and R. W. Ziolkowski, *Metamaterials: physics and engineering explorations*. John Wiley & Sons, 2006.
- [60] R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of negative index of refraction," *Science*, vol. 292, 01/01 2001.
- [61] V. Sharma, S. Pattnaik, T. Garg, and S. Devi, "A microstrip metamaterial split ring resonator," *International Journal of the Physical Sciences*, vol. 6, pp. 660-663, 01/18 2011.
- [62] H. Imtiaz, T. Ejaz, T. Zaidi, and Z. Nisha Khan, *Design And Analysis Of Dual Split Ring Resonator*. 2019.
- [63] S. Llewellyn Smith and A. M. J. Davis, "The split ring resonator," *Proceedings* of *The Royal Society A: Mathematical, Physical and Engineering Sciences*, vol. 466, 09/27 2010, doi: 10.1098/rspa.2010.0047.
- [64] M. Yoo and S. Lim, "Switchable Electromagnetic Reflector/Absorber with Electric-Field-Coupled LC Resonator," *Electromagnetics*, vol. 34, 06/16 2014, doi: 10.1080/02726343.2014.910375.
- [65] B. Bala, M. K. A. Rahim, N. Murad, and M. H Mokhtar, "Compact Triple Band Metamaterial Antenna Based on Modified Electric- field Coupled-LC Resonator," *Jurnal Teknologi*, vol. 701, pp. 2180-3722, 08/01 2014, doi: 10.11113/jt.v70.2914.

- [66] B. Bala, M. K. A. Rahim, and N. Murad, "Small electrical metamaterial antenna based on coupled electric field resonator with enhanced bandwidth," *Electronics Letters*, vol. 50, pp. 138-139, 01/30 2014, doi: 10.1049/el.2013.3884.
- [67] D. Pal, V. Jindal, A. K. Bandyopadhyay, L. Kumar Verma, and R. Singhal, *Performance enhancement of coupled-fed printed log-periodic antenna using complimentary split ring resonator*. 2017, pp. 2817-2821.
- [68] P. Garg and P. Jain, "Design and Analysis of Complimentary Split Ring Resonator Backed Microstrip Transmission Line Using Equivalent Circuit Model," *Journal of Communications Technology and Electronics*, vol. 63, pp. 1424-1430, 12/01 2018, doi: 10.1134/S1064226918120069.
- [69] T. H. Hand, J. Gollub, S. Sajuyigbe, D. Smith, and S. Cummer, "Characterization of complementary electric field coupled resonate surface," *Applied Physics Letters*, vol. 93, pp. 212504-212504, 12/01 2008, doi: 10.1063/1.3037215.
- [70] Y. Torabi, G. Dadashzadeh, and H. Oraizi, "Miniaturized sharp band-pass filter based on complementary electric-LC resonator," *Applied Physics A*, vol. 122, 04/01 2016, doi: 10.1007/s00339-016-9787-2.
- [71] 刘. Liu Yao and 陈. Chen Yuegang, "Resonance of I-Shaped Metamaterials," *Acta Optica Sinica*, vol. 38, p. 0324001, 03/10 2018, doi: 10.3788/AOS201838.0324001.
- [72] Y. Sun, Z. Du, J. Du, Y. Liu, and M. Basit, "Enhanced gain and broadband of endfire antenna by using I-shaped resonator structures," *International Journal of RF and Microwave Computer-Aided Engineering*, vol. 28, 09/01 2018, doi: 10.1002/mmce.21519.
- [73] M. Labidi, R. Salhi, and F. Choubani, "A design of metamaterial multi-band bowtie antenna based on omega-shaped resonator," *Applied Physics A*, vol. 123, 04/06 2017, doi: 10.1007/s00339-017-0924-3.
- [74] Paras, D. Pandey, and S. Kumar, "Multiband Metamaterial Antenna with Omega Shaped SRR Structure for Wireless Communication," 11/05 2018.
- [75] Y.-X. Zhang, S. Qiao, W. Huang, W. Ling, L. Li, and S.-g. Liu, *Asymmetric* single-particle triple-resonant metamaterial in terahertz band. 2011, pp. 073111-073111.
- [76] S. Rout, "Active Metamaterials for Terahertz Communication and Imaging," 2016.
- [77] E. A. Hajlaoui and H. Trabelsi, "Improvement of Circularly Polarized Slot-Patch Antenna Parameters by Using Electromagnetic Band Gap Structures," *Journal of Microwaves, Optoelectronics and Electromagnetic Applications*, vol. 15, no. 4, pp. 428-440, 2016.
- [78] M. Fouad, A.-H. Shaalan, and K. Awadalla, *Design and simulation of a single fed multi-band circularly polarized microstrip antenna with slots*. 2015, pp. 71-79.
- [79] E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," *Physical Review Letters*, vol. 58, no. 20, pp. 2059-2062, 05/18/ 1987, doi: 10.1103/PhysRevLett.58.2059.
- [80] V. Radisic, Y. Qian, R. Coccioli, and T. Itoh, *Novel 2-D Photonic Bandgap Structure for Microstrip Lines*. 1998, pp. 69-71.
- [81] M. Islam and M. S. Alam, *Design of High Impedance Electromagnetic Surfaces for Mutual Coupling Reduction in Patch Antenna Array.* 2013, pp. 143-155.

- [82] G. Niyomjan and Y. Huang, An Accurate and Simple Design of High Impedance Surface Structure Using an Enhanced Effective Medium Method. 2007, pp. 372-375.
- [83] F. Yang and Y. Rahmat-Samii, *Microstrip Antennas Integrated with Electromagnetic Band-Gap (EBG) Structures: A Low Mutual Coupling Design for Array Applications*. 2003, pp. 2936-2946.
- [84] M. R. Abkenar and P. Rezaei, "Design of a novel EBG structure and its application for improving performance of a low profile antenna," in *2011 19th Iranian Conference on Electrical Engineering*, 17-19 May 2011 2011, pp. 1-5.
- [85] A. Abdelraheem, M. Abdalla, M. Hessen, and A. Abdelsallam, *Surface Wave and Mutual Coupling Reduction Between Two Element Array MIMO Antenna*. 2013.
- [86] D. Sievenpiper, L. Zhang, R. F. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," *IEEE Transactions on Microwave Theory and techniques*, vol. 47, no. 11, pp. 2059-2074, 1999.
- [87] Sievenpiper and D. Frederic, *High-impedance electromagnetic surfaces*. 2019.
- [88] C. Watts, X. Liu, and W. Padilla, *Metamaterial Electromagnetic Wave Absorbers*. 2012, pp. OP98-120, OP181.
- [89] A. Dubey and T. C. Shami, *Metamaterials in Electromagnetic Wave Absorbers*. 2012, pp. 261-268.
- [90] R. C Jain, Understanding Electromagnetic Wave Absorbers. 2015, pp. 35-43.
- [91] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. J. P. r. l. Padilla, "Perfect metamaterial absorber," vol. 100, no. 20, p. 207402, 2008.
- [92] K. Hatakeyama and T. Inui, "Electromagnetic wave absorber using ferrite absorbing material dispersed with short metal fibers," *IEEE Transactions on Magnetics*, vol. 20, no. 5, pp. 1261-1263, 1984, doi: 10.1109/TMAG.1984.1063424.
- [93] X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, "Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance," *Physical Review Letters*, vol. 104, no. 20, p. 207403, 05/19/ 2010, doi: 10.1103/PhysRevLett.104.207403.
- [94] B. Munk, "Frequency selective surfaces : theory and design," (in English), 2000. [Online]. Available: http://public.eblib.com/choice/publicfullrecord.aspx?p=226559.
- [95] X. Fang, C. Y. Zhao, and H. J. F. i. E. Bao, "Design and analysis of Salisbury screens and Jaumann absorbers for solar radiation absorption," journal article vol. 12, no. 1, pp. 158-168, March 01 2018, doi: 10.1007/s11708-018-0542-6.
- [96] A. Motevasselian and B. L. G. Jonsson, *Partially Transparent Jaumann-Like Absorber Applied to a Curved Structure*. 2011.
- [97] D. Schurig, J. J. Mock, and D. R. Smith, *Electric-Field-Coupled Resonators* for Negative Permittivity Metamaterials. 2006, pp. 041109-041109.
- [98] J. Batchelor, B. Sanz-Izquierdo, E. A. Parker, and J.-B. Robertson, "Tuneable frequency selective surface," 2014.
- [99] D. Song Wang, S.-W. Qu, and C. Hou Chan, "Frequency Selective Surfaces," 2016.
- [100] N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," *Physical Review B*, vol. 79, no. 12, p. 125104, 03/05/ 2009, doi: 10.1103/PhysRevB.79.125104.

- [101] D. Smith, D. Vier, T. Koschny, and C. J. P. r. E. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," vol. 71, no. 3, p. 036617, 2005.
- [102] F. Bagci and B. Akaoglu, *Consequences of Unit Cell Design in Metamaterial Perfect Absorbers*. 2016, pp. 792-796.
- [103] O. Ayop, M. K. A. Rahim, N. A. Murad, and H. A. J. A. P. A. Majid, "Metamaterial absorber based on circular ring structure with and without copper lines," vol. 117, no. 2, pp. 651-656, 2014.
- [104] B. Ma, S. Liu, X.-K. Kong, Y. Jiang, J. Xu, and H. Yang, "A Novel Wide-band Tunable Metamaterial Absorber Based On Varactor Diode/Graphene," *Optik -International Journal for Light and Electron Optics*, vol. 127, 12/01 2015, doi: 10.1016/j.ijleo.2015.11.168.
- [105] J. Wang *et al.*, "Three dimensional microwave metamaterials absorbers composed of coplanar electric and magnetic resonators," *Progress in Electromagnetics Research Letters*, vol. 7, pp. 15-24, 01/01 2009, doi: 10.2528/PIERL09012003.
- [106] J. Song, L. Wang, M. Li, and J. Dong, "A dual-band metamaterial absorber with adjacent absorption peaks," *Journal of Physics D: Applied Physics*, vol. 51, no. 38, p. 385105, 2018/08/21 2018, doi: 10.1088/1361-6463/aad7e1.
- [107] A. Hoque, M. Tariqul Islam, A. F. Almutairi, T. Alam, M. Jit Singh, and N. Amin, "A Polarization Independent Quasi-TEM Metamaterial Absorber for X and Ku Band Sensing Applications," vol. 18, no. 12, p. 4209, 2018. [Online]. Available: http://www.mdpi.com/1424-8220/18/12/4209.
- [108] O. Ayop, M. K. A. Rahim, N. Murad, N. A. Samsuri, and R. Dewan, "Triple Band Circular Ring-Shaped Metamaterial Absorber for X-Band Applications," *Progress In Electromagnetics Research M*, vol. 39, pp. 65-75, 10/06 2014, doi: 10.2528/PIERM14052402.
- [109] H. Li, L. Hua Yuan, B. Zhou, X. Peng Shen, Q. Cheng, and T. Jun Cui, "Ultrathin multiband gigahertz metamaterial absorbers," *Journal of Applied Physics*, vol. 110, pp. 014909-014909, 07/12 2011, doi: 10.1063/1.3608246.
- [110] W. Zuo, Y. Yang, X. He, C. Mao, T. J. I. A. Liu, and W. P. Letters, "An Ultrawideband Miniaturized Metamaterial Absorber in the Ultrahigh-Frequency Range," vol. 16, pp. 928-931, 2017.
- [111] D. Sood and C. C. Tripathi, *A compact ultrathin ultra-wideband metamaterial microwave absorber*. 2017, pp. 514-528.
- [112] T. T. Nguyen and S. Lim, "Design of Metamaterial Absorber using Eight-Resistive-Arm Cell for Simultaneous Broadband and Wide-Incidence-Angle Absorption," *Scientific Reports*, vol. 8, 12/01 2018, doi: 10.1038/s41598-018-25074-8.
- [113] M. Yoo and S. Lim, "Switchable Electromagnetic Reflector/Absorber with Electric-Field-Coupled LC Resonator," *Electromagnetics*, vol. 34, no. 5, pp. 421-429, 2014/07/04 2014, doi: 10.1080/02726343.2014.910375.
- [114] B. Slovick, Z. G. Yu, M. Berding, and S. J. P. R. B. Krishnamurthy, "Perfect dielectric-metamaterial reflector," vol. 88, no. 16, p. 165116, 2013.
- [115] L. Akhoondzadeh-Asl, J. Nourinia, C. Ghobadi, and P. Hall, "Influence of element shape on the bandwidth of artificial magnetic conductors," *Journal of Electromagnetic Waves and Applications*, vol. 21, no. 7, pp. 929-946, 2007.
- [116] M. M. Hasan, M. R. I. Faruque, S. S. Islam, and M. T. Islam, "A New Compact Double-Negative Miniaturized Metamaterial for Wideband Operation," (in eng), *Materials (Basel)*, vol. 9, no. 10, p. 830, 2016, doi: 10.3390/ma9100830.

- [117] R. M. Walser, A. P. Valanju, W. Win, M. Becker, R. W. Bene, and A. B. Buckman, *New smart materials for adaptive microwave signature control*. 1993.
- [118] I. Lindell and A. Sihvola, *Electromagnetic Boundaries with PEC/PMC Equivalence*. 2016.
- [119] R. Dewan et al., Artificial magnetic conductor for various antenna applications: An overview. 2017.
- [120] R. Sadaf Anwar and H. Ning, Frequency Selective Surfaces: A Review. 2018, p. 1689.
- [121] A. Kaur and G. Saini, *Review of Various Designs of Periodic Structures for Frequency Selective Surfaces*. 2016, pp. 246-250.
- [122] N. K. Chahat Jain, G. J. I. J. o. E. T. Kaur, and A. Engineering, "Artificial magnetic conductor for miniaturized antenna applications-A Review," 2012.
- [123] K. k. Varikuntla and R. Singarav, Review on Design of Frequency Selective Surfaces based on Substrate Integrated Waveguide Technology. 2018, pp. 101-110.
- [124] M. Abu and M. K. A. Rahim, *Single-band and Dual-band Artificial Magnetic Conductor Ground Planes for Multi-band Dipole Antenna*. 2012, pp. 999-1006.
- [125] E. Hussin, Designing Artificial Magnetic Conductor at 2.45 GHz for Metallic Detection in RFID Tag Application. 2014, pp. 427-435.
- [126] F. Yang and Y. Rahmat-Samii, Reflection Phase Characterizations of the EBG Ground Plane for Low Profile Wire Antenna Applications. 2003, pp. 2691-2703.
- [127] B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, *Switchable Metamaterial Reflector/Absorber for Different Polarized Electromagnetic Waves*. 2010.
- [128] S. P. Rea, D. Linton, E. Orr, and J. McConnell, *Broadband high-impedance* surface design for aircraft HIRF protection. 2006, pp. 307-313.
- [129] W. Ramos, R. Mesquita, and E. Silva, *Design of the artificial magnetic conductors with meander line elements: Reduction in the first and second resonant frequencies*. 2017, p. 075801.
- [130] J. Li, H. Huo, J. Chen, S. Zhu, H. Shi, and A. Zhang, "Miniaturised artificial magnetic conductor and its application in unidirectional circularly polarised slot antenna design," *IET Microwaves, Antennas & Propagation*, vol. 12, no. 12, pp. 1885-1889, 2018, doi: 10.1049/iet-map.2018.0108.
- [131] H. Liu, K. L. Ford, and R. J. Langley, "Miniaturised artificial magnetic conductor design using lumped reactive components," *Electronics Letters*, vol. 45, no. 6, pp. 294-295, 2009, doi: 10.1049/el.2009.3369.
- [132] C. Ma et al., "Antenna reflector based on air loaded AMC structure," in 2017 International Applied Computational Electromagnetics Society Symposium (ACES), 1-4 Aug. 2017 2017, pp. 1-2.
- [133] N. Ojaroudi Parchin, H. Jahanbakhsh, Y. Al-Yasir, R. Abd-Alhameed, A. Abdulkhaleq, and J. Noras, *Recent Developments of Reconfigurable Antennas for Current and Future Wireless Communication Systems*. 2019, p. 128.
- [134] T. Song, Y. Lee, D. Ga, and J. Choi, *A Polarization Reconfigurable Microstrip Patch Antenna using PIN Diodes*. 2012, pp. 616-618.
- [135] D. Niture, S. S. Gurame, and S. P. Mahajan, *A Pattern and Polarization Reconfigurable Antenna For WLAN Application*. 2018, pp. 303-308.
- [136] F. Dicandia, S. Genovesi, and A. Monorchio, *Characteristic modes analysis* for pattern reconfigurable antenna design. 2016, pp. 417-418.

- [137] J. P. Turpin, J. A. Bossard, K. L. Morgan, D. H. Werner, and P. L. Werner, *Reconfigurable and Tunable Metamaterials: A Review of the Theory and Applications*. 2014, pp. 1-18.
- [138] B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. J. A. P. L. Jiang, "Switchable metamaterial reflector/absorber for different polarized electromagnetic waves," vol. 97, no. 5, p. 051906, 2010.
- [139] D. Lee, H. Jeong, and S. J. S. R. Lim, "Electronically switchable broadband metamaterial absorber," vol. 7, no. 1, p. 4891, 2017.
- [140] M. D. Gregory *et al.*, "A Low Cost and Highly Efficient Metamaterial Reflector Antenna," *IEEE Transactions on Antennas and Propagation*, vol. 66, no. 3, pp. 1545-1548, 2018, doi: 10.1109/TAP.2017.2781151.
- [141] H. Wakatsuchi, S. Greedy, C. Christopoulos, and J. Paul, *Customised* broadband metamaterial absorbers for arbitrary polarisation. 2010, pp. 22187-98.
- [142] A. Chandra Kundu and I. Awai, *Control of attenuation pole frequency of a dual-mode microstrip ring resonator bandpass filter*. 2001, pp. 1113-1117.
- [143] H. Y Chen, X. Y Hou, and L. J Deng, *A Novel Microwave Absorbing Structure* Using FSS Metamaterial. 2019.
- [144] M. Agarwal and M. K. Meshram, "Metamaterial-based dual-band microwave absorber with polarization insensitive and wide-angle performance," *AIP Advances*, vol. 8, no. 9, p. 095016, 2018, doi: 10.1063/1.5020702.
- [145] J. Shaw, Radiometry and the Friis transmission equation. 2013, pp. 33-37.
- [146] P. Eskelinen, "Modern millimeter-wave technologies [Book Review]," *IEEE Aerospace and Electronic Systems Magazine*, vol. 17, no. 7, pp. 38-39, 2002, doi: 10.1109/MAES.2002.1017794.
- [147] T. Li, H. Zhai, C. Liang, and Q. Li, "Study of coupling properties of the square split ring resonator," *Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University*, vol. 40, pp. 26-29+35, 02/01 2013, doi: 10.3969/j.issn.1001-2400.2013.01.005.
- [148] C. Saha, J. Siddiqui, D. Guha, and Y. M. M. Antar, Square Split Ring Resonators: Modelling of resonant frequency and polarizability. 2008, pp. 1-3.
- [149] Q. Wu, F. Lan, Y. Zhang, H. Zeng, Z. Yang, and X. Gao, "Polarization insensitivity in square split-ring resonators with asymmetrical arm widths," *Chinese Optics Letters*, vol. 13, pp. 101601-101605, 10/10 2015, doi: 10.3788/COL201513.101601.
- [150] X. Shen, T. Jun Cui, J. Zhao, H. Feng Ma, W. X. Jiang, and H. Li, Polarizationindependent wide-angle triple-band metamaterial absorber. 2011, pp. 9401-7.
- [151] K. B. Alici, F. Bilotti, L. Vegni, and E. J. J. o. A. P. Ozbay, "Experimental verification of metamaterial based subwavelength microwave absorbers," vol. 108, no. 8, p. 083113, 2010.
- [152] H. Luo, Y. Cheng, and R. Z. Gong, "Numerical study of metamaterial absorber and extending absorbance bandwidth base on multi square patches," *The European Physical Journal B - Condensed Matter and Complex Systems*, vol. 81, pp. 387-392, 06/01 2011, doi: 10.1140/epjb/e2011-20115-1.
- [153] H. Torun, S. Sadeghzadeh, H. Bilgin, and A. Yalcinkaya, "A Suspended Array of Square Patch Metamaterial Absorbers for Terahertz Applications," *Procedia Engineering*, vol. 120, pp. 20-25, 12/31 2015, doi: 10.1016/j.proeng.2015.08.557.

- [154] M. Hosseinipanah and Q. Wu, Equivalent Circuit Model for Designing of Jerusalem Cross-Based Artificial Magnetic Conductors. 2009.
- [155] M. Hosseini and M. Hakkak, *Characteristics Estimation for Jerusalem Cross-*Based Artificial Magnetic Conductors. 2008, pp. 58-61.
- [156] Q. Luo, H. Tian, Z. Huang, X. Wang, Z. Guo, and Y. Ji, "Unidirectional Dual-Band CPW-Fed Antenna Loaded with an AMC Reflector," *International Journal of Antennas and Propagation*, vol. 2013, pp. 1-10, 11/18 2013, doi: 10.1155/2013/875281.

Appendix A: LIST OF PUBLICATIONS

• Journal Papers:

- M. Gajibo, M. K. A. Rahim, N. Murad, O. Ayop, H. Majid, D. Raimi "Entire X-band region metamaterial absorber and reflector with a microstrip patch switch for X-band application," *Indonesian Journal of Electrical Engineering and Computer Science*, vol. 15, no. 3, p. 35~29, 03/09/2019
- M. Gajibo, M. K. A Rahim, N. Murad, O. Ayop, and H. Majid, "Switchable Wideband Metamaterial Absorber and AMC reflector for X-band Applications and Operations," *Telkomnika (Telecommunication Computing Electronics and Control)*, vol. 16, pp. 1535-1541, 08/01 2018
- M. Gajibo, M. K. A. Rahim, N. Murad, O. Ayop, B. Bala, and H. Majid, "Xband Operations Metamaterial Absorber with Extended Circular Ring Topology for Size Reduction," *Indonesian Journal of Electrical Engineering and Computer Science*, vol. 6, p. 180, 04/01 2017

• Conferences Papers:

- International Conference on Electrical, Electronic, Communication and Control Engineering (ICEECC) 28th – 30th November, 2018, Johor Bahru, Malaysia.
 - Entire X-band Region Metamaterial Absorber and Reflector with a Microstrip Patch Switch for X-band Applications
- IEEE Asia Pacific Microwave Conference (APMC) 13th 16th November, 2018, Kuala Lumpur, Malaysia.
 - A Single and dual band selectable MTM absorber or Reflector
- International Symposium on Antennas and Propagation (ISAP) 23rd
 26th October 2018, Busan, Korea.
 - X-Band Directivity Improvement Using Reflector
- Regional Conference on Electrical and Electronics Engineering (RCEEE), 14th to 15th August, 2018, Pulau Pinang, Malaysia.
 - Switchable X-band Reflector/ Wideband Absorber
- International Conference on Electrical, Electronic, Communication and Control Engineering (ICEECC) 5th – 6th December, 2017, Kuala Lumpur, Malaysia.
 - Switchable Wideband Metamaterial Absorber and AMC reflector for X-band Applications and Operations
- International Symposium on Antennas and Propagation (ISAP) 30th
 Oct. 2nd Nov. 2017, Phuket, Thailand.
 - Single / Dual Band selectable MTM Absorber
- META 2017, International Conference on Metamaterials, Photonic Crystals and Plasmonics, 25th – 28th, July, 2017, Incheon - Seoul, South Korea.

- 9.5GHz MTM Reflector for X-band applications and operations.
- International Conference on Electrical, Electronic, Communication and Control Engineering (ICEECC) 18th – 19th December, 2016, Johor Bharu, Malaysia.
 - X-band Operations Metamaterial Absorber with Circular Rings for Size Reduction
- META 2016, International Conference on Metamaterials, Photonic Crystals and Plasmonics, 25th – 28th, July, 2016, Torremolinos (Malaga), Spain.
 - Switchable Metamaterial Absorber/ Reflector for X-band Applications operating at 10.7GHz.
- IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE)
 8 10 December, 2014 at Johor Bahru, Johor, Malaysia.
 - Frequency Reconfigurable Epsilon Negative Metamaterial Antenna.