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ABSTRACT 

Metamaterials (MTMs) are materials artificially engineered by artificially 

arranging structural elements to achieve unusual properties that do not ordinarily exist in 

nature. It is no secret that electronic devices and communication devices such as mobile 

phones, pacemakers, infusion pumps, laptops and others, are becoming even more 

smaller, precise and sensitive. In addition to that, they tend to move towards higher 

frequency and are adopting the wireless technology which is susceptible to attenuation 

and interference. At lower frequencies, antennas are larger, therefore miniaturization is 

required to enable them fit into those tiny electronic devices. In general, electromagnetic 

waves propagation is characterized by multiple directions as well as many polarization 

angles, which contributes to the complexity of the signal at the receiver’s end. However, 

this complexity can be reduced by developing MTM absorbers to absorb any unwanted 

signals. It can be further reduced by developing MTM reflectors to guide the transmitted 

signal towards the intended destination. This thesis is aimed at taking advantages of the 

unusual properties offered by MTMs to develop X-band MTM absorbers and (artificial 

magnetic conductor) AMC/ MTM reflectors. The new MTM absorbers and MTM 

reflectors were designed using FR-4 substrate with thickness of 1.6 mm, loss tangent of 

0.019 and dielectric constant of 4.6. The MTM absorber catered for the bulky size issues 

of conventional absorbers and narrow bandwidth issues associated with MTMs absorbers. 

Whereas the new MTM reflectors catered for the out of phase image current and surface 

current propagation supported by perfect electric conductor (PEC). Finally, copper wires 

were used as switches to demonstrate reconfigurability and compactness. The first 

proposed structure is based on circular ring (CR) structure. It resonated at 11.11 GHz and 

was modified to have four smaller extended circular rings to demonstrate the concept of 

size reduction by suppressing the resonance frequency. The second structure is based on 

the famous “H” pattern absorber, which was modified to have four copper wires as 

switches in order to manipulate the flow of the circulating charges. A dual-band absorption 

characteristic with reconfigurability between single band (7.20 GHz) and dual-band (7.20 

GHz and 11.20 GHz) absorption was demonstrated. The third structure is made up of four-

square patch separated by a vertical bar. The charges flow paths were manipulated by 

connecting the individual square patch to the vertical bar with copper wires. The concept 

of connecting multiple neighboring resonances to achieve a wideband absorption was 

demonstrated. Almost a 100% absorption across the entire X-band region (9.00 GHz to 

13.00 GHz) was achieved and furthermore, switchability between total absorbance and 

total reflection at 11.20 GHz was demonstrated using copper wires. Reflection was more 

than 75%. The fourth structure is made up of two quad gapped square shaped split-ring 

resonators (QGSSSRR). This structure also achieved almost 100% absorption across the 

entire X-band region (9.00 GHz to 13.00 GHz), and it also demonstrated switchability 

between total absorbance and total reflection at 11.20 GHz. All the proposed designs were 

tested for incident wave angles (IWAs) in the range of 0o to 60o in which almost all of 

them performed excellently with a minimum absorption rate of close to 80% and reflection 

rate of close to 75%. 
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ABSTRAK 

Metabahan (MTMs) adalah bahan yang direka secara buatan dengan menyusun unsur 

struktur tiruan untuk mencapai ciri luar biasa yang biasanya tidak wujud secara semulajadi. Ia 

bukan rahsia bahawa peranti elektronik dan peranti komunikasi seperti telefon mudah alih, 

perentak jantung, pam infusi, komputer riba dan lain-lain, menjadi lebih kecil, tepat dan 

sensitif. Di samping itu, mereka cenderung untuk bergerak ke arah frekuensi yang lebih tinggi 

dan mengguna pakai teknologi tanpa wayar yang terdedah kepada rosotan dan gangguan. Pada 

frekuensi yang lebih rendah, antenna adalah lebih besar, oleh itu pengecilan saiz diperlukan 

untuk membolehkannya dimuatkan ke peranti elektronik kecil itu. Secara umum, perambatan 

gelombang elektromagnet dicirikan oleh pelbagai arah serta banyak sudut polarisasi yang 

menyumbang kepada kerumitan isyarat pada akhir penerima. Walau bagaimanapun, kerumitan 

ini dapat dikurangkan dengan membangunkan penyerap MTM untuk menyerap sebarang 

isyarat yang tidak diingini. Ia boleh dikurangkan lagi dengan membangunkan pemantul MTM 

untuk memandu isyarat yang dihantar ke arah destinasi yang dimaksudkan. Tesis ini bertujuan 

untuk mendapatkan kelebihan sifat luar biasa yang ditawarkan oleh MTM untuk 

membangunkan penyerap MTM jalur-X dan pemantul AMC / MTM. Penyerap MTM dan 

pemantul MTM baru direka menggunakan substrat FR-4 dengan ketebalan 1.6 mm, 

kehilangan tangen 0.019 dan pemalar dielektrik 4.6. Penyerap MTM menampung isu saiz 

besar penyerap konvensional dan isu jalur lebar sempit yang berkaitan dengan penyerap MTM. 

Manakala pemantul MTM yang baru disediakan untuk arus imej tidak sefasa dan perambatan 

arus permukaan yang disokong oleh pengalir elektrik yang sempurna (PEC). Akhirnya, wayar 

tembaga digunakan sebagai suis untuk menunjukkan kebolehan konfigurasi semula dan 

kepadatan. Struktur pertama adalah berdasarkan struktur bulatan cincin (CR). Ia menyalun 

pada frekuensi 11.11 GHz dan telah diubahsuai untuk mempunyai empat lanjutan cincin bulat 

kecil untuk menunjukkan konsep pengurangan saiz dengan menekan frekuensi resonans. 

Struktur kedua berdasarkan pada penyerap corak "H" yang telah diubahsuai untuk mempunyai 

empat wayar tembaga sebagai suis bagi memanipulasi aliran cas bergerak secara bulatan. Ciri 

penyerapan dwijalur dengan kebolehan konfigurasi semula antara penyerapan satu jalur (7.20 

GHz) dan dua jalur (7.20 GHz dan 11.20 GHz). Struktur ketiga terdiri daripada empat tampal 

segi empat sama yang dipisahkan oleh bar menegak. Laluan aliran cas dimanipulasi dengan 

menyambung tampal segi empat sama individu ke bar menegak dengan wayar tembaga. 

Konsep menghubungkan resonans bersebelahan untuk mencapai penyerapan jalur lebar telah 

ditunjukkan. Hampir 100% penyerapan di seluruh rantau jalur-X (9.00 GHz hingga 13.00 

GHz) telah dicapai dan seterusnya, kebolehan berubah antara jumlah penyerapan dan jumlah 

pantulan pada 11.20 GHz ditunjukkan menggunakan wayar tembaga. Pantulan adalah lebih 

daripada 75%. Struktur keempat terdiri daripada dua penyalun cincin terpisah berbentuk quad 

berongga segi empat sama (QGSSSRR). Struktur ini juga mencapai hampir 100% penyerapan 

merentas seluruh rantau jalur-X (9.00 GHz hingga 13.00 GHz) dan ia juga menunjukkan 

kebolehan berubah  antara jumlah penyerapan dan jumlah pantulan pada 11.11 GHz. Semua 

reka bentuk yang dicadangkan telah diuji untuk sudut gelombang tuju (IWAs) dalam julat 0o 

hingga 60o di mana hampir semuanya dilakukan dengan kadar penyerapan minimum 

menghampiri 80% dan kadar pantulan menghampiri 75%. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Metamaterials (MTMs) are structures engineered artificially to exhibit 

extraordinary properties such as negative refractive index [1, 2], negative permeability 

and negative permittivity (artificial magnetism) [3, 4] which are not found in nature. 

One unique thing about MTMs is that they do not derive their properties from the 

original materials but rather from the newly designed structures. Veselago first 

envisaged the concept of MTM in 1963 [5] which was later validated by Pendry and 

Smith. MTMs are designed using periodic elements based on equivalent lumped 

circuits consisting of inductors and capacitors. The equivalent lump element circuit 

determines the resonance frequency and the dimensions of the lump elements are much 

smaller than that of operating wavelength [6].  

MTMs, based on their characteristics are divided into various categories which 

include artificial magnetic conductor (AMC) structures, electromagnetic bandgap 

(EBG), high impedance surface (HIS), Frequency selective surface (FSS), photonic 

crystal, left-handed metamaterials (LHM), etc. These categories have their own unique 

properties which are applicable to the development or enhancement of various 

electromagnetic devices. 

1.2 Background Study 

What are Electromagnetic waves (EMW) absorbers and EMW reflectors? It is 

worth mentioning that both are products of FSS, though some absorbers are realized 

by modifying some HIS. In details; 
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EMW absorbers are structures that can absorber incidental electromagnetic 

waves. They are designed to minimize reflection and transmission by maximizing 

energy loss within the structure. Other than the conventional electromagnetic absorber, 

other absorbers such as the Jaumann absorber [7-11], Salisbury screen [12-14], crossed 

grating absorbers [15, 16], Dallenbach layer [17, 18] and circuit analogue (CA) 

absorbers [19-22] are in existence, but they all have their various drawbacks. For 

instance, the Jaumann absorber and the Salisbury both use the concept of incidental 

electromagnetic waves cancellation. The Jaumann absorber came to existence due to 

the disadvantage of absorbing frequency associated with the Salisbury absorber as it 

operates at a quarter wavelength. It is worth noting that the Jaumann absorber offers 

only a single and narrow frequency band absorption. In addition to that also, both the 

Jaumann and Salisbury absorbers are thick in other to enable them to absorb 

electromagnetic waves of different frequencies. [23] 

EMW reflectors are sometimes called Artificial magnetic conductors (AMC)s. 

These are structures purposely designed with unusual boundary conditions. These 

boundaries conditions were made in such a way that the structure will be selective in 

supporting surface wave currents [24]. Initially, conventional metallic conductors and 

perfect electric conductor (PEC) were often used for antenna ground planes. These 

were limited by their drawbacks, which includes reversal or out of phase image 

currents and propagation of surface current, which is radiation caused by an infinite 

ground plane. AMCs counter these drawbacks and even exhibits the ability to reduce 

back-radiation as well as increase gain. [25].  

It is undeniable that MTM has offered more advantages than disadvantages, 

especially in the fields of electromagnetic structures. Therefore, researchers are at their 

heels, exploring all the benefits it offers. One of the areas in which researchers are 

focused on is the use of MTM structures for absorbers and reflectors. MTM structures 

will not only address the substrate thickness problem in the previous absorbers, but 

instead it will even advance further to enhance them in terms of portability and 

compactness as well as entitle them to the freedom of design structures (not fixed to 

quarter wavelength). 
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1.3 Problem statement 

With advancement in technology, electronic devices and communication 

devices such as pacemakers, infusion pumps, mobile phones, laptops and others as 

mentioned in [26, 27] [28], are becoming even more smaller, precise and even more 

sensitive [29, 30]. In addition to that also, they tend to move towards higher frequency 

and are adopting the wireless technology [31]. At lower frequencies, antennas are 

larger, therefore miniaturization is required to enable them fit into those tiny electronic 

devices while at higher frequencies, one of the prevalence challenges is the ability to 

receive a substantial amount of the transmitted signal at the receiver.  These challenges 

are caused by so many different factors. Amongst these factors are, interference caused 

by unwanted signals in the surroundings, the reflection of the transmitted signals by 

the surrounding elements [32]. The interference causes a rise in signal to noise ratio 

(SNR) which leads to high error rate or total loss of data whereas the reflection causes 

scattering, which results in multipath. 

However, this interference can be reduced if not eliminated by developing 

multiband or wideband MTM absorbers (MTMAbs) to absorb any unwanted 

surroundings electromagnetic waves [33] [34]. On the other hand, developing a MTM 

reflector (MTMRef) and placing it at a desired position can help in reducing the 

scattering or multipath caused by far distance surround elements [35]. With this two 

in place, interference will be reduced, and the signal be guided to the targeted 

destination, which will ensure the reception of ample amount of the transmitted signal. 

It is worth noting that multiband MTMAbs can absorb the unwanted 

electromagnetic waves for selected bands of operations with windows in-between. 

While the wideband MTMAbs can absorb can for a wider band without windows in-

between. In general, MTMAbs are capable of intercepting electromagnetic waves 

radiated daily by home appliances, cell phones, Wi-Fi, etc. which tends to be harmful 

to human and animals. Whereas MTMRefs are capable of improving gains when 

combined with other antennas. Besides, both combined interchangeably can provide 

enhanced stealth mode to avoid radar detection or reveal for warships, fighter jets, and 

tanks.  
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1.4 Research objectives 

The objectives of this project are: 

i. To study, understand MTMAbs and MTMRefs. 

ii. To design MTMAbs and MTMRef structures for X-band applications. 

iii. To fabricate the designed structures. 

iv. To measure and characterise the results in anechoic chamber. 

In essence, to design, simulate, fabricate, measure and analyze both the 

MTMAbs and the MTMRef. The proposed EMW MTMAbs and the MTMRef should 

be able reduce interference, and increase directivity of transmitted electromagnetic 

waves as well as demonstrate compactness when compared with the conventional 

absorbers. Also, the new structures should be to adapt to new surroundings/ 

environment and should be able to switch between total absorbance and total 

reflectance using copper wires as switches. 

1.5 Scope of Work 

The scope of this research includes using basic design concept for metamaterial 

absorber, and reflectors learned from literature review. Furthermore, it is limited to the 

availability of facilities and resources required for achieving the objectives of the 

research. 

First, an in-depth literature review was conducted to know the theoretical 

aspect, have a better understanding of both metamaterial absorbers and metamaterial 

reflectors as well as reconfigurable/ tunable structures from books, journals, 

conferences, and academicals or industrial research. 

The obtained knowledge of the ideology, the concept, and formulas of 

electromagnetic structures were used to calculate reference point parameters. These 
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parameters were then designed using CST and then optimized the structure for better 

results.  

The optimized designs were fabricated using FR4 fire Retardant-4 substrates. 

Due to the nature of the structure’s size and the designed frequency range, fabrication 

within the UTM facility was quite impossible. Therefore, it was outsourced to a 

company named “Jac Engineering”. 

Finally, the fabricated structures were measured in the anechoic chamber, and 

the results were compared with the simulated results. 

1.6 Thesis Outline 

Chapter 1 introduces the EMW from absorber and reflector’s perspectives, an 

overview of the research work, problem statements, objectives and scope of the 

project. 

Chapter 2 gives an overview of MTMs and basic intro to left-Handed 

Metamaterial (LHM), resonant elements and electromagnetic band gap (EBG). 

Absorption theories of metamaterial absorbers (MTMAbs) and reflection theories of 

AMC/metamaterial reflectors were discussed. Previous works related to MTMAbs and 

MTM reflectors were reviewed and summarized.  

Chapter 3 gives insight on design specifications, emphasis and details out 

research methodology and the flow of the research work. It further gives step by step 

guide to simulation setup, basic equations for MTMAbs and MTMRefs. The last part 

involves the fabrications of prototypes structures as well as measurement process flow.  

Chapter 4 describes the design process for Circular Ring and Split Ring 

Resonator MTMAbs. In this chapter, new designs of MTMAbs were presented, and 

their performance in terms of absorption and polarization were discussed. These 
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designs were divided into three categories, namely single band MTM Absorber, 

dual/multiband MTM Absorber and wideband MTM Absorber. In addition to that, 

other parametric studies were conducted and reported. 

Chapter 5 is divided into two sections; section one introduces a few new 

designs of MTMRefs based on resonant element “square patch”, it also presented their 

performances in terms of reflection, reflection phase, and polarizations. While section 

two adapted a few designs from chapter 4 and 5 and demonstrated switchability using 

copper wires. The structures were capable of switching between total absorption and 

total reflection. Their performances were tested based on absorption and reflection 

capabilities. 

Chapter 6 concludes the thesis and gives recommendations and suggestions for 

future work. 

 

 

 

 

 

 

 

 

 



192 

REFERENCES 

[1] D. R. Smith, J. B. Pendry, and M. C. Wiltshire, "Metamaterials and negative 

refractive index," Science, vol. 305, no. 5685, pp. 788-792, 2004. 

[2] F. Bilotti and L. Sevgi, "Metamaterials: Definitions, properties, applications, 

and FDTD‐based modeling and simulation," International Journal of RF and 

Microwave Computer‐Aided Engineering, vol. 22, no. 4, pp. 422-438, 2012. 

[3] D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, 

"Composite medium with simultaneously negative permeability and 

permittivity," Physical review letters, vol. 84, no. 18, p. 4184, 2000. 

[4] V. G. Veselago, "THE ELECTRODYNAMICS OF SUBSTANCES WITH 

SIMULTANEOUSLY NEGATIVE VALUES OF $\epsilon$ AND μ," Soviet 

Physics Uspekhi, vol. 10, no. 4, pp. 509-514, 1968/04/30 1968, doi: 

10.1070/pu1968v010n04abeh003699. 

[5] V. Veselago, "The electrodynamic properties of a mixture of electric and 

magnetic charges," Soviet Physics JETP, vol. 25, no. 4, 1967. 

[6] F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, 

"Equivalent-Circuit Models for the Design of Metamaterials Based on 

Artificial Magnetic Inclusions," IEEE Transactions on Microwave Theory and 

Techniques, vol. 55, no. 12, pp. 2865-2873, 2007, doi: 

10.1109/TMTT.2007.909611. 

[7] M. Hyde, A. E. Bogle, and M. Havrilla, "Nondestructive characterization of 

Salisbury screen and Jaumann absorbers using a clamped rectangular 

waveguide geometry," Measurement, vol. 53, 07/01 2014, doi: 

10.1016/j.measurement.2014.03.025. 

[8] L. J. du Toit and J. H. Cloete, Advances in the design of Jaumann absorbers. 

1990, pp. 1212-1215 vol.3. 

[9] L. Ke, Z. Xin, H. Xinyu, and Z. Peng, "Analysis and design of multilayer 

Jaumann absorbers," 05/01 2011, doi: 10.1109/ICMTCE.2011.5915168. 

[10] M. A. Ramkumar and C. Sudhendra, "Novel Ultra Wide Band Polarisation 

Independent Capacitive Jaumann Radar Absorber," Defence Science Journal, 

vol. 68, p. 64, 12/18 2017, doi: 10.14429/dsj.68.12025. 

[11] J. R. Nortier, C. A. Van der Neut, and D. E. Baker, "TABLES FOR THE 

DESIGN OF JAUMANN MICROWAVE ABSORBER," vol. 30, pp. 219-222, 

09/01 1987. 

[12] R. L. Fante and M. T. Mccormack, "Reflection properties of Salisbury screen," 

Antennas and Propagation, IEEE Transactions on, vol. 36, pp. 1443-1454, 

11/01 1988, doi: 10.1109/8.8632. 

[13] Z. Zhou, K. Chen, J. Zhao, Y. Feng, and Y. Li, Expanding Microwave 

Absorption Bandwidth with Metasurface Salisbury Screen. 2018, pp. 440 (4 

pp.)-440 (4 pp.). 

[14] F. Che Seman, R. Cahill, and V. F. Fusco, "Salisbury screen with reduced 

angular sensitivity," Electronics Letters, vol. 45, pp. 147-149, 03/01 2009, doi: 

10.1049/el:20092811. 

[15] X. Mao and L. Zeng, "Design and fabrication of crossed gratings with multiple 

zero-reference marks for planar encoders," Measurement Science and 

Technology, vol. 29, 11/27 2017, doi: 10.1088/1361-6501/aa9d5e. 



 

193 

[16] E. Popov, D. Maystre, R. McPhedran, M. Nevière, M. C Hutley, and G. H 

Derrick, "Total absorption of unpolarized light by crossed gratings," Optics 

express, vol. 16, pp. 6146-55, 05/01 2008, doi: 10.1364/OE.16.006146. 

[17] F. Li, P. Chen, Y. Poo, and R.-X. Wu, Achieving Perfect Absorption by the 

Combination of Dallenbach Layer and Salisbury Screen. 2018, pp. 1507-1509. 

[18] D. L. Jaggard, N. Engheta, and J. Liu, "Chiroshield: A Salisbury/Dallenbach 

Shield Alternative," Electronics Letters, vol. 26, pp. 1332-1334, 09/16 1990, 

doi: 10.1049/el:19900859. 

[19] B. A. Munk, P. Munk, and J. Pryor, "On Designing Jaumann and Circuit 

Analog Absorbers (CA Absorbers) for Oblique Angle of Incidence," Antennas 

and Propagation, IEEE Transactions on, vol. 55, pp. 186-193, 02/01 2007, doi: 

10.1109/TAP.2006.888395. 

[20] E. J. Riley, E. Lenzing, and R. Narayanan, "X-Band Circuit-Analog Absorbers 

using Unidirectional Carbon-Fiber Laminas," IEEE Antennas and Wireless 

Propagation Letters, vol. PP, pp. 1-1, 04/30 2018, doi: 

10.1109/LAWP.2018.2831909. 

[21] L. M. V. Abdulhakim and A. C K, "A Novel Polarization Independent 

Wideband Circuit Analog Absorber Using Crossed Loops," Radioengineering, 

vol. 27, pp. 738-745, 09/14 2018, doi: 10.13164/re.2018.0738. 

[22] B. A. Munk, "Jaumann and Circuit Analog Absorbers," 2005, pp. 315-335. 

[23] C. M. Watts, X. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave 

absorbers," Advanced materials, vol. 24, no. 23, pp. OP98-OP120, 2012. 

[24] M. Hiranandani, A. Yakovlev, and A. Kishk, "Artificial magnetic conductors 

realised by frequency-selective surfaces on a grounded dielectric slab for 

antenna applications," IEE Proceedings-Microwaves, antennas and 

propagation, vol. 153, no. 5, pp. 487-493, 2006. 

[25] B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, "Switchable metamaterial 

reflector/absorber for different polarized electromagnetic waves," Applied 

Physics Letters, vol. 97, no. 5, p. 051906, 2010. 

[26] N. Badizadegan, S. Greenberg, H. Lawrence, and K. Badizadegan, 

"Radiofrequency Interference in the Clinical Laboratory: Case Report and 

Review of the Literature," American journal of clinical pathology, vol. 151, 

01/21 2019, doi: 10.1093/ajcp/aqy174. 

[27] E. Vagdatli, V. Konstandinidou, N. Adrianakis, I. Tsikopoulos, A. 

Tsikopoulos, and K. Mitsopoulou, "Effects of Electromagnetic Fields on 

Automated Blood Cell Measurements," Journal of laboratory automation, vol. 

19, 01/24 2014, doi: 10.1177/2211068213520492. 

[28] R. Togt, E. Lieshout, R. Hensbroek, E. Beinat, J. Binnekade, and P. Bakker, 

"Electromagnetic Interference From Radio Frequency Identification Inducing 

Potentially Hazardous Incidents in Critical Care Medical Equipment," JAMA : 

the journal of the American Medical Association, vol. 299, pp. 2884-90, 06/01 

2008, doi: 10.1001/jama.299.24.2884. 

[29] L. Goldberg, "When is a medical device not a medical device?," vol. 285, 08/24 

2010. 

[30] A. Louis, "Powering miniaturized medical devices: Advanced lithium battery 

chemistries enable self-powered medical devices to become smaller while 

delivering uncompromised performance," vol. 57, 08/01 2015. 

[31] D. Kissinger and J. C. Chiao, "Medical Applications of Radio-Frequency and 

Microwaves-Sensing, Monitoring, and Diagnostics [From the Guest Editors' 



194 

Desk]," Microwave Magazine, IEEE, vol. 16, pp. 34-38, 05/01 2015, doi: 

10.1109/MMM.2015.2398593. 

[32] M. Fujii, "A new mode of radio wave diffraction via the terrestrial surface 

plasmon on mountain range: TERRESTRIAL SURFACE PLASMON," Radio 

Science, vol. 51, 08/01 2016, doi: 10.1002/2016RS006068. 

[33] L. Hualiang, Y. Guo, G. Ji, Y. Zhao, and Z. Xu, "Interface Polarization Strategy 

to Solve Electromagnetic Wave Interference Issue," ACS Applied Materials & 

Interfaces, vol. 9, 01/24 2017, doi: 10.1021/acsami.6b16223. 

[34]  J. Chiappe, "Additional techniques to reduce heatsink emissions utilizing RF 

absorbers," in 2012 IEEE International Symposium on Electromagnetic 

Compatibility, 6-10 Aug. 2012 2012, pp. 56-63, doi: 

10.1109/ISEMC.2012.6351750.  

[35] X. Begaud, A. Lepage, S. Varault, M. Soiron, and A. Barka, "Ultra-Wideband 

and Wide-Angle Microwave Metamaterial Absorber," Materials, vol. 11, p. 

2045, 10/20 2018, doi: 10.3390/ma11102045. 

[36]  A. Lakhtakia, W. S. Weiglhofer, and I. J. Hodgkinson, "Complex mediums II: 

Beyond linear isotropic dielectrics," in Complex Mediums II: Beyond Linear 

Isotropic Dielectrics, 2001, vol. 4467.  

[37] A. Sihvola, "Metamaterials in electromagnetics," Metamaterials, vol. 1, no. 1, 

pp. 2-11, 2007. 

[38] A. Sihvola, "Metamaterials: A Personal View," Radioengineering, vol. 18, no. 

2, 2009. 

[39] M. Lapine and S. Tretyakov, "Contemporary notes on metamaterials," IET 

microwaves, antennas & propagation, vol. 1, no. 1, pp. 3-11, 2007. 

[40] Y. J. Kim, Y. J. Yoo, J. S. Hwang, and Y. P. Lee, "Ultra-broadband microwave 

metamaterial absorber based on resistive sheets," Journal of Optics, vol. 19, 

no. 1, p. 015103, 2016/12/09 2016, doi: 10.1088/2040-8986/19/1/015103. 

[41] S. Islam Sikder, R. Iqbal Faruque Mohammad, and T. Islam Mohammad, 

"Design and absorption analysis of a new multiband split-S-shaped 

metamaterial," in Science and Engineering of Composite Materials vol. 24, ed, 

2017, p. 139. 

[42] M. J. Hossain, M. R. I. Faruque, and M. T. Islam, "Design and analysis of a 

new composite double negative metamaterial for multi-band communication," 

Current Applied Physics, vol. 17, no. 7, pp. 931-939, 2017/07/01/ 2017, doi: 

https://doi.org/10.1016/j.cap.2017.04.008. 

[43] H. Chen, B. I. Wu, and J. A. Kong, "Review of Electromagnetic Theory in 

Left-handed Materials," Journal of Electromagnetic Waves and Applications, 

vol. 20, no. 15, pp. 2137-2151, 2006/01/01 2006, doi: 

10.1163/156939306779322585. 

[44] V. Veselago, L. Braginsky, V. Shklover, and C. Hafner, Negative Refractive 

Index Materials. 2006, pp. 189-218. 

[45] S. N. Burokur, M. Latrach, and S. Toutain, "Analysis and Design of 

Waveguides Loaded with Split-Ring Resonators," Journal of Electromagnetic 

Waves and Applications, vol. 19, no. 10, pp. 1407-1421, 2005/01/01 2005, doi: 

10.1163/156939305775525864. 

[46] C. Chan, J. Li, and K. H. Fung, "On extending the concept of double negativity 

to acoustic waves," Journal of Zhejiang University SCIENCE A, vol. 7, pp. 24-

28, 01/01 2006, doi: 10.1631/jzus.2006.A0024. 

[47] S. Islam, M. R. Faruque, M. Islam, and T. Alam, A new mu-negative 

metamaterial. 2015. 



 

195 

[48] S.-Y. Chen, R. Ouedraogo, A. Temme, A. Diaz, and E. Rothwell, MNG-

metamaterial-based efficient small loop antenna. 2009, pp. 1-4. 

[49] H. Kondori, M. Mansouri-Birjandi, and S. Tavakoli, "Effects of an MNG 

metamaterial on a microstrip patch antenna," International Journal on 

Communications Antenna and Propagation, vol. 2, 06/01 2012. 

[50] L. Guo, "A high-gain and frequency-tunable bow tie antenna with epsilon-

negative metasurface," Journal of Electromagnetic Waves and Applications, 

vol. 29, pp. 693-702, 07/31 2018. 

[51] M. Gajibo, M. K. A. Rahim, B. Bala, and H. Majid, "Reconfigurable epsilon 

negative metamaterial antenna," pp. 265-267, 02/17 2015, doi: 

10.1109/APACE.2014.7043797. 

[52] I. A. Buriak, V. O. Zhurba, G. S. Vorobjov, V. R. Kulizhko, O. K. Kononov, 

and O. Rybalko, "Metamaterials: Theory, Classification and Application 

Strategies (Review)," Journal of Nano- and Electronic Physics, vol. 8, pp. 

04088-1, 12/01 2016, doi: 10.21272/jnep.8(4(2)).04088. 

[53] K. Y. e. Bliokh and Y. P. Bliokh, "What are the left-handed media and what is 

interesting about them?," Physics-Uspekhi, vol. 47, no. 4, pp. 393-400, 2004. 

[54] J. B. Pendry, A. Holden, W. Stewart, and I. Youngs, "Extremely low frequency 

plasmons in metallic mesostructures," Physical review letters, vol. 76, no. 25, 

p. 4773, 1996. 

[55] R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a 

negative index of refraction," science, vol. 292, no. 5514, pp. 77-79, 2001. 

[56] C. Parazzoli, R. Greegor, K. Li, B. Koltenbah, and M. Tanielian, "Experimental 

verification and simulation of negative index of refraction using Snell’s law," 

Physical Review Letters, vol. 90, no. 10, p. 107401, 2003. 

[57] R. A. Shelby, D. R. Smith, S. Nemat-Nasser, and S. Schultz, "Microwave 

transmission through a two-dimensional, isotropic, left-handed metamaterial," 

Applied Physics Letters, vol. 78, pp. 489-491, 01/22 2001, doi: 

10.1063/1.1343489. 

[58] C. Caloz and T. Itoh, Electromagnetic metamaterials: transmission line theory 

and microwave applications. John Wiley & Sons, 2005. 

[59] N. Engheta and R. W. Ziolkowski, Metamaterials: physics and engineering 

explorations. John Wiley & Sons, 2006. 

[60] R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of 

negative index of refraction," Science, vol. 292, 01/01 2001. 

[61] V. Sharma, S. Pattnaik, T. Garg, and S. Devi, "A microstrip metamaterial split 

ring resonator," International Journal of the Physical Sciences, vol. 6, pp. 660-

663, 01/18 2011. 

[62] H. Imtiaz, T. Ejaz, T. Zaidi, and Z. Nisha Khan, Design And Analysis Of Dual 

Split Ring Resonator. 2019. 

[63] S. Llewellyn Smith and A. M. J. Davis, "The split ring resonator," Proceedings 

of The Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 

466, 09/27 2010, doi: 10.1098/rspa.2010.0047. 

[64] M. Yoo and S. Lim, "Switchable Electromagnetic Reflector/Absorber with 

Electric-Field-Coupled LC Resonator," Electromagnetics, vol. 34, 06/16 2014, 

doi: 10.1080/02726343.2014.910375. 

[65] B. Bala, M. K. A. Rahim, N. Murad, and M. H Mokhtar, "Compact Triple Band 

Metamaterial Antenna Based on Modified Electric- field Coupled-LC 

Resonator," Jurnal Teknologi, vol. 701, pp. 2180-3722, 08/01 2014, doi: 

10.11113/jt.v70.2914. 



196 

[66] B. Bala, M. K. A. Rahim, and N. Murad, "Small electrical metamaterial 

antenna based on coupled electric field resonator with enhanced bandwidth," 

Electronics Letters, vol. 50, pp. 138-139, 01/30 2014, doi: 

10.1049/el.2013.3884. 

[67] D. Pal, V. Jindal, A. K. Bandyopadhyay, L. Kumar Verma, and R. Singhal, 

Performance enhancement of coupled-fed printed log-periodic antenna using 

complimentary split ring resonator. 2017, pp. 2817-2821. 

[68] P. Garg and P. Jain, "Design and Analysis of Complimentary Split Ring 

Resonator Backed Microstrip Transmission Line Using Equivalent Circuit 

Model," Journal of Communications Technology and Electronics, vol. 63, pp. 

1424-1430, 12/01 2018, doi: 10.1134/S1064226918120069. 

[69] T. H. Hand, J. Gollub, S. Sajuyigbe, D. Smith, and S. Cummer, 

"Characterization of complementary electric field coupled resonate surface," 

Applied Physics Letters, vol. 93, pp. 212504-212504, 12/01 2008, doi: 

10.1063/1.3037215. 

[70] Y. Torabi, G. Dadashzadeh, and H. Oraizi, "Miniaturized sharp band-pass filter 

based on complementary electric-LC resonator," Applied Physics A, vol. 122, 

04/01 2016, doi: 10.1007/s00339-016-9787-2. 

[71] 刘. Liu Yao and 陈. Chen Yuegang, "Resonance of I-Shaped Metamaterials," 

Acta Optica Sinica, vol. 38, p. 0324001, 03/10 2018, doi: 

10.3788/AOS201838.0324001. 

[72] Y. Sun, Z. Du, J. Du, Y. Liu, and M. Basit, "Enhanced gain and broadband of 

endfire antenna by using I‐shaped resonator structures," International Journal 

of RF and Microwave Computer-Aided Engineering, vol. 28, 09/01 2018, doi: 

10.1002/mmce.21519. 

[73] M. Labidi, R. Salhi, and F. Choubani, "A design of metamaterial multi-band 

bowtie antenna based on omega-shaped resonator," Applied Physics A, vol. 

123, 04/06 2017, doi: 10.1007/s00339-017-0924-3. 

[74] Paras, D. Pandey, and S. Kumar, "Multiband Metamaterial Antenna with 

Omega Shaped SRR Structure for Wireless Communication," 11/05 2018. 

[75] Y.-X. Zhang, S. Qiao, W. Huang, W. Ling, L. Li, and S.-g. Liu, Asymmetric 

single-particle triple-resonant metamaterial in terahertz band. 2011, pp. 

073111-073111. 

[76] S. Rout, "Active Metamaterials for Terahertz Communication and Imaging," 

2016.  

[77] E. A. Hajlaoui and H. Trabelsi, "Improvement of Circularly Polarized Slot-

Patch Antenna Parameters by Using Electromagnetic Band Gap Structures," 

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 

vol. 15, no. 4, pp. 428-440, 2016. 

[78] M. Fouad, A.-H. Shaalan, and K. Awadalla, Design and simulation of a single 

fed multi-band circularly polarized microstrip antenna with slots. 2015, pp. 

71-79. 

[79] E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and 

Electronics," Physical Review Letters, vol. 58, no. 20, pp. 2059-2062, 05/18/ 

1987, doi: 10.1103/PhysRevLett.58.2059. 

[80] V. Radisic, Y. Qian, R. Coccioli, and T. Itoh, Novel 2-D Photonic Bandgap 

Structure for Microstrip Lines. 1998, pp. 69-71. 

[81] M. Islam and M. S. Alam, Design of High Impedance Electromagnetic 

Surfaces for Mutual Coupling Reduction in Patch Antenna Array. 2013, pp. 

143-155. 



 

197 

[82] G. Niyomjan and Y. Huang, An Accurate and Simple Design of High 

Impedance Surface Structure Using an Enhanced Effective Medium Method. 

2007, pp. 372-375. 

[83] F. Yang and Y. Rahmat-Samii, Microstrip Antennas Integrated with 

Electromagnetic Band-Gap (EBG) Structures: A Low Mutual Coupling Design 

for Array Applications. 2003, pp. 2936-2946. 

[84]  M. R. Abkenar and P. Rezaei, "Design of a novel EBG structure and its 

application for improving performance of a low profile antenna," in 2011 19th 

Iranian Conference on Electrical Engineering, 17-19 May 2011 2011, pp. 1-5.  

[85] A. Abdelraheem, M. Abdalla, M. Hessen, and A. Abdelsallam, Surface Wave 

and Mutual Coupling Reduction Between Two Element Array MIMO Antenna. 

2013. 

[86] D. Sievenpiper, L. Zhang, R. F. Broas, N. G. Alexopolous, and E. 

Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden 

frequency band," IEEE Transactions on Microwave Theory and techniques, 

vol. 47, no. 11, pp. 2059-2074, 1999. 

[87] Sievenpiper and D. Frederic, High-impedance electromagnetic surfaces. 2019. 

[88] C. Watts, X. Liu, and W. Padilla, Metamaterial Electromagnetic Wave 

Absorbers. 2012, pp. OP98-120, OP181. 

[89] A. Dubey and T. C. Shami, Metamaterials in Electromagnetic Wave 

Absorbers. 2012, pp. 261-268. 

[90] R. C Jain, Understanding Electromagnetic Wave Absorbers. 2015, pp. 35-43. 

[91] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. J. P. r. l. Padilla, 

"Perfect metamaterial absorber," vol. 100, no. 20, p. 207402, 2008. 

[92] K. Hatakeyama and T. Inui, "Electromagnetic wave absorber using ferrite 

absorbing material dispersed with short metal fibers," IEEE Transactions on 

Magnetics, vol. 20, no. 5, pp. 1261-1263, 1984, doi: 

10.1109/TMAG.1984.1063424. 

[93] X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, "Infrared Spatial and Frequency 

Selective Metamaterial with Near-Unity Absorbance," Physical Review 

Letters, vol. 104, no. 20, p. 207403, 05/19/ 2010, doi: 

10.1103/PhysRevLett.104.207403. 

[94] B. Munk, "Frequency selective surfaces : theory and design," (in English), 

2000. [Online]. Available: 

http://public.eblib.com/choice/publicfullrecord.aspx?p=226559. 

[95] X. Fang, C. Y. Zhao, and H. J. F. i. E. Bao, "Design and analysis of Salisbury 

screens and Jaumann absorbers for solar radiation absorption," journal article 

vol. 12, no. 1, pp. 158-168, March 01 2018, doi: 10.1007/s11708-018-0542-6. 

[96] A. Motevasselian and B. L. G. Jonsson, Partially Transparent Jaumann-Like 

Absorber Applied to a Curved Structure. 2011. 

[97] D. Schurig, J. J. Mock, and D. R. Smith, Electric-Field-Coupled Resonators 

for Negative Permittivity Metamaterials. 2006, pp. 041109-041109. 

[98] J. Batchelor, B. Sanz-Izquierdo, E. A. Parker, and J.-B. Robertson, "Tuneable 

frequency selective surface," 2014.  

[99] D. Song Wang, S.-W. Qu, and C. Hou Chan, "Frequency Selective Surfaces," 

2016. 

[100] N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. 

Padilla, "Design, theory, and measurement of a polarization-insensitive 

absorber for terahertz imaging," Physical Review B, vol. 79, no. 12, p. 125104, 

03/05/ 2009, doi: 10.1103/PhysRevB.79.125104. 



198 

[101] D. Smith, D. Vier, T. Koschny, and C. J. P. r. E. Soukoulis, "Electromagnetic 

parameter retrieval from inhomogeneous metamaterials," vol. 71, no. 3, p. 

036617, 2005. 

[102] F. Bagci and B. Akaoglu, Consequences of Unit Cell Design in Metamaterial 

Perfect Absorbers. 2016, pp. 792-796. 

[103] O. Ayop, M. K. A. Rahim, N. A. Murad, and H. A. J. A. P. A. Majid, 

"Metamaterial absorber based on circular ring structure with and without 

copper lines," vol. 117, no. 2, pp. 651-656, 2014. 

[104] B. Ma, S. Liu, X.-K. Kong, Y. Jiang, J. Xu, and H. Yang, "A Novel Wide-band 

Tunable Metamaterial Absorber Based On Varactor Diode/Graphene," Optik - 

International Journal for Light and Electron Optics, vol. 127, 12/01 2015, doi: 

10.1016/j.ijleo.2015.11.168. 

[105] J. Wang et al., "Three dimensional microwave metamaterials absorbers 

composed of coplanar electric and magnetic resonators," Progress in 

Electromagnetics Research Letters, vol. 7, pp. 15-24, 01/01 2009, doi: 

10.2528/PIERL09012003. 

[106] J. Song, L. Wang, M. Li, and J. Dong, "A dual-band metamaterial absorber 

with adjacent absorption peaks," Journal of Physics D: Applied Physics, vol. 

51, no. 38, p. 385105, 2018/08/21 2018, doi: 10.1088/1361-6463/aad7e1. 

[107] A. Hoque, M. Tariqul Islam, A. F. Almutairi, T. Alam, M. Jit Singh, and N. 

Amin, "A Polarization Independent Quasi-TEM Metamaterial Absorber for X 

and Ku Band Sensing Applications," vol. 18, no. 12, p. 4209, 2018. [Online]. 

Available: http://www.mdpi.com/1424-8220/18/12/4209. 

[108] O. Ayop, M. K. A. Rahim, N. Murad, N. A. Samsuri, and R. Dewan, "Triple 

Band Circular Ring-Shaped Metamaterial Absorber for X-Band Applications," 

Progress In Electromagnetics Research M, vol. 39, pp. 65-75, 10/06 2014, doi: 

10.2528/PIERM14052402. 

[109] H. Li, L. Hua Yuan, B. Zhou, X. Peng Shen, Q. Cheng, and T. Jun Cui, 

"Ultrathin multiband gigahertz metamaterial absorbers," Journal of Applied 

Physics, vol. 110, pp. 014909-014909, 07/12 2011, doi: 10.1063/1.3608246. 

[110] W. Zuo, Y. Yang, X. He, C. Mao, T. J. I. A. Liu, and W. P. Letters, "An 

Ultrawideband Miniaturized Metamaterial Absorber in the Ultrahigh-

Frequency Range," vol. 16, pp. 928-931, 2017. 

[111] D. Sood and C. C. Tripathi, A compact ultrathin ultra-wideband metamaterial 

microwave absorber. 2017, pp. 514-528. 

[112] T. T. Nguyen and S. Lim, "Design of Metamaterial Absorber using Eight-

Resistive-Arm Cell for Simultaneous Broadband and Wide-Incidence-Angle 

Absorption," Scientific Reports, vol. 8, 12/01 2018, doi: 10.1038/s41598-018-

25074-8. 

[113] M. Yoo and S. Lim, "Switchable Electromagnetic Reflector/Absorber with 

Electric-Field-Coupled LC Resonator," Electromagnetics, vol. 34, no. 5, pp. 

421-429, 2014/07/04 2014, doi: 10.1080/02726343.2014.910375. 

[114] B. Slovick, Z. G. Yu, M. Berding, and S. J. P. R. B. Krishnamurthy, "Perfect 

dielectric-metamaterial reflector," vol. 88, no. 16, p. 165116, 2013. 

[115] L. Akhoondzadeh-Asl, J. Nourinia, C. Ghobadi, and P. Hall, "Influence of 

element shape on the bandwidth of artificial magnetic conductors," Journal of 

Electromagnetic Waves and Applications, vol. 21, no. 7, pp. 929-946, 2007. 

[116] M. M. Hasan, M. R. I. Faruque, S. S. Islam, and M. T. Islam, "A New Compact 

Double-Negative Miniaturized Metamaterial for Wideband Operation," (in 

eng), Materials (Basel), vol. 9, no. 10, p. 830, 2016, doi: 10.3390/ma9100830. 



 

199 

[117] R. M. Walser, A. P. Valanju, W. Win, M. Becker, R. W. Bene, and A. B. 

Buckman, New smart materials for adaptive microwave signature control. 

1993. 

[118] I. Lindell and A. Sihvola, Electromagnetic Boundaries with PEC/PMC 

Equivalence. 2016. 

[119] R. Dewan et al., Artificial magnetic conductor for various antenna 

applications: An overview. 2017. 

[120] R. Sadaf Anwar and H. Ning, Frequency Selective Surfaces: A Review. 2018, 

p. 1689. 

[121] A. Kaur and G. Saini, Review of Various Designs of Periodic Structures for 

Frequency Selective Surfaces. 2016, pp. 246-250. 

[122] N. K. Chahat Jain, G. J. I. J. o. E. T. Kaur, and A. Engineering, "Artificial 

magnetic conductor for miniaturized antenna applications-A Review," 2012. 

[123] K. k. Varikuntla and R. Singarav, Review on Design of Frequency Selective 

Surfaces based on Substrate Integrated Waveguide Technology. 2018, pp. 101-

110. 

[124] M. Abu and M. K. A. Rahim, Single-band and Dual-band Artificial Magnetic 

Conductor Ground Planes for Multi-band Dipole Antenna. 2012, pp. 999-

1006. 

[125] E. Hussin, Designing Artificial Magnetic Conductor at 2.45 GHz for Metallic 

Detection in RFID Tag Application. 2014, pp. 427-435. 

[126] F. Yang and Y. Rahmat-Samii, Reflection Phase Characterizations of the EBG 

Ground Plane for Low Profile Wire Antenna Applications. 2003, pp. 2691-

2703. 

[127] B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, Switchable Metamaterial 

Reflector/Absorber for Different Polarized Electromagnetic Waves. 2010. 

[128] S. P. Rea, D. Linton, E. Orr, and J. McConnell, Broadband high-impedance 

surface design for aircraft HIRF protection. 2006, pp. 307-313. 

[129] W. Ramos, R. Mesquita, and E. Silva, Design of the artificial magnetic 

conductors with meander line elements: Reduction in the first and second 

resonant frequencies. 2017, p. 075801. 

[130] J. Li, H. Huo, J. Chen, S. Zhu, H. Shi, and A. Zhang, "Miniaturised artificial 

magnetic conductor and its application in unidirectional circularly polarised 

slot antenna design," IET Microwaves, Antennas & Propagation, vol. 12, no. 

12, pp. 1885-1889, 2018, doi: 10.1049/iet-map.2018.0108. 

[131] H. Liu, K. L. Ford, and R. J. Langley, "Miniaturised artificial magnetic 

conductor design using lumped reactive components," Electronics Letters, vol. 

45, no. 6, pp. 294-295, 2009, doi: 10.1049/el.2009.3369. 

[132]  C. Ma et al., "Antenna reflector based on air loaded AMC strucuture," in 2017 

International Applied Computational Electromagnetics Society Symposium 

(ACES), 1-4 Aug. 2017 2017, pp. 1-2.  

[133] N. Ojaroudi Parchin, H. Jahanbakhsh, Y. Al-Yasir, R. Abd-Alhameed, A. 

Abdulkhaleq, and J. Noras, Recent Developments of Reconfigurable Antennas 

for Current and Future Wireless Communication Systems. 2019, p. 128. 

[134] T. Song, Y. Lee, D. Ga, and J. Choi, A Polarization Reconfigurable Microstrip 

Patch Antenna using PIN Diodes. 2012, pp. 616-618. 

[135] D. Niture, S. S. Gurame, and S. P. Mahajan, A Pattern and Polarization 

Reconfigurable Antenna For WLAN Application. 2018, pp. 303-308. 

[136] F. Dicandia, S. Genovesi, and A. Monorchio, Characteristic modes analysis 

for pattern reconfigurable antenna design. 2016, pp. 417-418. 



200 

[137] J. P. Turpin, J. A. Bossard, K. L. Morgan, D. H. Werner, and P. L. Werner, 

Reconfigurable and Tunable Metamaterials: A Review of the Theory and 

Applications. 2014, pp. 1-18. 

[138] B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. J. A. P. L. Jiang, "Switchable 

metamaterial reflector/absorber for different polarized electromagnetic 

waves," vol. 97, no. 5, p. 051906, 2010. 

[139] D. Lee, H. Jeong, and S. J. S. R. Lim, "Electronically switchable broadband 

metamaterial absorber," vol. 7, no. 1, p. 4891, 2017. 

[140] M. D. Gregory et al., "A Low Cost and Highly Efficient Metamaterial 

Reflector Antenna," IEEE Transactions on Antennas and Propagation, vol. 66, 

no. 3, pp. 1545-1548, 2018, doi: 10.1109/TAP.2017.2781151. 

[141] H. Wakatsuchi, S. Greedy, C. Christopoulos, and J. Paul, Customised 

broadband metamaterial absorbers for arbitrary polarisation. 2010, pp. 

22187-98. 

[142] A. Chandra Kundu and I. Awai, Control of attenuation pole frequency of a 

dual-mode microstrip ring resonator bandpass filter. 2001, pp. 1113-1117. 

[143] H. Y Chen, X. Y Hou, and L. J Deng, A Novel Microwave Absorbing Structure 

Using FSS Metamaterial. 2019. 

[144] M. Agarwal and M. K. Meshram, "Metamaterial-based dual-band microwave 

absorber with polarization insensitive and wide-angle performance," AIP 

Advances, vol. 8, no. 9, p. 095016, 2018, doi: 10.1063/1.5020702. 

[145] J. Shaw, Radiometry and the Friis transmission equation. 2013, pp. 33-37. 

[146] P. Eskelinen, "Modern millimeter-wave technologies [Book Review]," IEEE 

Aerospace and Electronic Systems Magazine, vol. 17, no. 7, pp. 38-39, 2002, 

doi: 10.1109/MAES.2002.1017794. 

[147] T. Li, H. Zhai, C. Liang, and Q. Li, "Study of coupling properties of the square 

split ring resonator," Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian 

University, vol. 40, pp. 26-29+35, 02/01 2013, doi: 10.3969/j.issn.1001-

2400.2013.01.005. 

[148] C. Saha, J. Siddiqui, D. Guha, and Y. M. M. Antar, Square Split Ring 

Resonators: Modelling of resonant frequency and polarizability. 2008, pp. 1-

3. 

[149] Q. Wu, F. Lan, Y. Zhang, H. Zeng, Z. Yang, and X. Gao, "Polarization 

insensitivity in square split-ring resonators with asymmetrical arm widths," 

Chinese Optics Letters, vol. 13, pp. 101601-101605, 10/10 2015, doi: 

10.3788/COL201513.101601. 

[150] X. Shen, T. Jun Cui, J. Zhao, H. Feng Ma, W. X. Jiang, and H. Li, Polarization-

independent wide-angle triple-band metamaterial absorber. 2011, pp. 9401-7. 

[151] K. B. Alici, F. Bilotti, L. Vegni, and E. J. J. o. A. P. Ozbay, "Experimental 

verification of metamaterial based subwavelength microwave absorbers," vol. 

108, no. 8, p. 083113, 2010. 

[152] H. Luo, Y. Cheng, and R. Z. Gong, "Numerical study of metamaterial absorber 

and extending absorbance bandwidth base on multi square patches," The 

European Physical Journal B - Condensed Matter and Complex Systems, vol. 

81, pp. 387-392, 06/01 2011, doi: 10.1140/epjb/e2011-20115-1. 

[153] H. Torun, S. Sadeghzadeh, H. Bilgin, and A. Yalcinkaya, "A Suspended Array 

of Square Patch Metamaterial Absorbers for Terahertz Applications," Procedia 

Engineering, vol. 120, pp. 20-25, 12/31 2015, doi: 

10.1016/j.proeng.2015.08.557. 



 

201 

[154] M. Hosseinipanah and Q. Wu, Equivalent Circuit Model for Designing of 

Jerusalem Cross-Based Artificial Magnetic Conductors. 2009. 

[155] M. Hosseini and M. Hakkak, Characteristics Estimation for Jerusalem Cross-

Based Artificial Magnetic Conductors. 2008, pp. 58-61. 

[156] Q. Luo, H. Tian, Z. Huang, X. Wang, Z. Guo, and Y. Ji, "Unidirectional Dual-

Band CPW-Fed Antenna Loaded with an AMC Reflector," International 

Journal of Antennas and Propagation, vol. 2013, pp. 1-10, 11/18 2013, doi: 

10.1155/2013/875281. 

 

  



202 

Appendix A: LIST OF PUBLICATIONS 

 

• Journal Papers: 

• M. Gajibo, M. K. A. Rahim, N. Murad, O. Ayop, H. Majid, D. Raimi " Entire 

X-band region metamaterial absorber and reflector with a microstrip patch 

switch for X-band application," Indonesian Journal of Electrical Engineering 

and Computer Science, vol. 15, no. 3 , p. 35~29, 03/09/2019  
  

• M. Gajibo, M. K. A Rahim, N. Murad, O. Ayop, and H. Majid, "Switchable 

Wideband Metamaterial Absorber and AMC reflector for X-band Applications 

and Operations," Telkomnika (Telecommunication Computing Electronics and 

Control), vol. 16, pp. 1535-1541, 08/01 2018 
 

• M. Gajibo, M. K. A. Rahim, N. Murad, O. Ayop, B. Bala, and H. Majid, "X-

band Operations Metamaterial Absorber with Extended Circular Ring 

Topology for Size Reduction," Indonesian Journal of Electrical Engineering 

and Computer Science, vol. 6, p. 180, 04/01 2017   

 
 

• Conferences Papers: 
o International Conference on Electrical, Electronic, Communication 

and Control Engineering (ICEECC) 28th – 30th November, 2018, Johor 
Bahru, Malaysia. 

▪ Entire X-band Region Metamaterial Absorber and Reflector 
with a Microstrip Patch Switch for X-band Applications 

o IEEE Asia Pacific Microwave Conference (APMC) 13th - 16th 
November, 2018, Kuala Lumpur, Malaysia.  

▪ A Single and dual band selectable MTM absorber or 
Reflector 

o International Symposium on Antennas and Propagation (ISAP) 23rd 
- 26th October 2018, Busan, Korea.  

▪ X-Band Directivity Improvement Using Reflector 

o Regional Conference on Electrical and Electronics Engineering 
(RCEEE), 14th to 15th August, 2018, Pulau Pinang, Malaysia.  

▪ Switchable X-band Reflector/ Wideband Absorber 

o International Conference on Electrical, Electronic, Communication 
and Control Engineering (ICEECC) 5th – 6th December, 2017, Kuala 
Lumpur, Malaysia. 

▪ Switchable Wideband Metamaterial Absorber and AMC 
reflector for X-band Applications and Operations 

o International Symposium on Antennas and Propagation (ISAP) 30th 
Oct. – 2nd Nov. 2017, Phuket, Thailand.  

▪ Single / Dual Band selectable MTM Absorber 

o META 2017, International Conference on Metamaterials, Photonic 
Crystals and Plasmonics, 25th – 28th, July, 2017, Incheon - Seoul, South 
Korea. 
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▪ 9.5GHz MTM Reflector for X-band applications and 
operations. 

o International Conference on Electrical, Electronic, Communication 
and Control Engineering (ICEECC) 18th – 19th December, 2016, Johor 
Bharu, Malaysia. 

▪ X-band Operations Metamaterial Absorber with Circular 
Rings for Size Reduction 

o META 2016, International Conference on Metamaterials, Photonic 
Crystals and Plasmonics, 25th – 28th, July, 2016, Torremolinos 
(Malaga), Spain. 

▪ Switchable Metamaterial Absorber/ Reflector for X-band 
Applications operating at 10.7GHz. 

o IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE) 
8 - 10 December, 2014 at Johor Bahru, Johor, Malaysia. 

▪ Frequency Reconfigurable Epsilon Negative Metamaterial 
Antenna. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


