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ABSTRACT

The top quark was first discovered at the Tevatron proton-antiproton collider

in 1995 and was first observed in proton-proton collisions at the LHC by both the

ATLAS and CMS experiments in 2010. The top quark is the most massive elementary

particle in the framework of the Standard Model, which has a large coupling to the

Higgs boson and unique role in the electroweak symmetry breaking. Moreover, the

top quark is an important background for several analyses involving the Higgs boson

and searches for new physics. Therefore, having an accurate understanding and value

of inclusive production cross-section of tt̄ is vital. The analysis developed by the

candidate and presented in this dissertation has been subject of the first publication

of the ATLAS experiment on top quark physics: the measurement of the top-antitop

(tt̄) total production cross-section. The analysis is updated here with the full dataset,

corresponding to a data sample of 139 fb−1, of 13 TeV proton-proton collisions collected

from LHC Run 2 with ATLAS detector. This measurement uses two kinds of events:

first, events with an opposite-charge electron-muon pair in the final states and jets

are selected with no missing energy, requiring at least one of the jets to be tagged as

coming from the hadronisation of a b-quark. Second, events with an opposite-charge

same lepton pair (ee/µµ) in the final states and jets are selected with missing energy,

requiring at least one of the jets to be tagged as coming from the hadronisation of a

b-quark. The cross-section is extracted, using a cut and count method for which an

accurate background estimation is crucial, to be σtt̄ = 816 ± 1 (stat) ± 59 (th. syst) ±
29 (exp. syst) pb and σtt̄ = 799 ± 2 (stat) ± 84 (th. syst) ± 33 (exp. syst) pb in

eµ channel and combined ee/µµ channel, respectively. The result of eµ channel is in

excellent agreement with theoretical predictions and measurements done by ATLAS

and CMS experiments, and eµ channel is considered as the cleanest and best channel

for tt̄ production cross-section measurement. Besides, a test of the Standard Model

is performed by comparing Monte Carlo simulated samples with the experimental

results. The Standard Model turned out to be extremely successful in describing the

experimental results.
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ABSTRAK

Zarah top telah dijumpai untuk pertama kali di pelanggar Tevatron proton-

antiproton pada 1995 dan telah berjaya dihasilkan semula melalui pelanggaran

proton-proton di Pelanggar Hadron Besar (LHC) menggunakan pengesan ATLAS

and CMS pada tahun 2010. Zarah top merupakan zarah yang terberat dalam

kalangan model asas (Standard Model) yang juga mempunyai tugas unik dalam

menjelaskan penemuan, zarah Higgs dan fenomena pemecahan simetri elektroweak.

Tambahan pula, zarah top merupakan latarbelakang utama untuk analisa melibatkan

zarah Higgs dan menyumbang kepada fizik baru yang melampaui model asas.

Hubungkait ini menunjukkan kepentingan memahami dan menyelidik nilai keratan

rentas penghasilan pasangan tt̄. Kajian ini merupakan penerbitan pertama dari

eksperimen ATLAS untuk pengukuran nilai keratan rentas penghasilan pasangan tt̄.

Analisa ini merangkumi pengukuran dari tahun 2015 hingga 2018 untuk sampel

data 2 yang mempunyai kadar luminous 139 fb−1 dari pelanggaran 13 TeV proton-

proton dalam eksperimen ATLAS. Analisa nilai keratan rentas penghasilan tt̄ di

tentukan menggunakan kaedah pilih dan kira peristiwa pengukuran dua pasangan iaitu

pasangan electron-muon dan b-jet serta pasangan elektron-elektron atau muon-muon

beserta b-jet. Anggaran bacaan latarbelakang yang jitu amat penting bagi kedua-

dua peristiwa, iaitu σtt̄ = 816 ± 1 (stat) ± 59 (th. syst) ± 29 (exp. syst) pb dan

σtt̄ = 799 ± 2 (stat) ± 84 (th. syst) ± 33 (exp. syst) pb dalam eµ dan gabungan

pasangan ee/µµ, secara berasingan. Bacaan dari pasangan eµ adalah selari dengan

anggaran teori dan pengukuran dari eksperimen CMS, dan pasangan eµ merupakan

cara terbaik untuk pengiraan nilai keratan rentas tt̄ disebabkan keadaan semulajadi

pasangan eµ. Simulasi Monte Carlo terhadap model asas juga menunjukkan hasil yang

sama bagi menjelaskan data dari eksperimen ATLAS.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

In 1973, Kobayashi and Maskawa predicted the existence of top quark [1] during

their explanation of the observed CP violation. In 1995 D∅ and CDF experiments at

the Tevatron collider at Fermilab confirmed this prediction [2, 3]. This discovery gave

birth to a new field of physics, so-called top quark physics. Properties of the top quark,

such as its inclusive production cross-section, its mass, have been obtained at Tevatron

during its Run 1 and Run 2 [4]. Moreover, starting from the Tevatron Run 2, the

quest for physics beyond the Standard Model (BSM) in the top quark sector began [4].

However, due to the limited amount of top quark data collected, the accuracy of these

inspections was limited.

On the other hand, the Large Hadron Collider (LHC) is considered a top quark

factory. The LHC began taking data in 2010, at centre-of-mass energy
√

s = 7 TeV,

and after three years the ATLAS and CMS detectors, the two multipurpose particle

detectors at the LHC, accumulated almost one million events of top quark [4]. The

ATLAS and CMS collaborations published the first measurement of the tt̄ production

cross-section in 2010 [5, 6] using the collected proton-proton collision data. The total

dataset collected during Run 1 of LHC was used for various precision measurements

of the top quark where the LHC operated at a centre-of-mass collision energy of 7 TeV

corresponding to an integrated luminosity of 35 pb−1 in 2010 and 5 fb−1 in 2011, and 8

TeV corresponding to an integrated luminosity of 20 fb−1. After two years of shutdown

for the upgrades and maintenance of the accelerator system and of the detectors, the

LHC resumed its operation in 2015 (Run 2) at centre-of-mass energy
√

s = 13 TeV.

The measurement of the tt̄ production cross-section was the first publication of LHC

Run 2 related to top quark physics in 2016 [4].
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There are many reasons behind the importance of top quark physics, owing to its

very short lifetime and its mass being comparable to the scale of electroweak symmetry

breaking, motivating its unique role in searches for many types of new physics. Studies

of top quark allow us to probe the strong interaction at 13 TeV, allowing important tests

of the Standard Model at this centre-of-mass energy. Tests of the strong interaction

either in perturbative or non-perturbative regimes can be performed, and a precise

determination of its properties, such as its mass, its couplings and decay branching

ratios, is crucial to for the full understanding of the fundamental interactions at the

electroweak symmetry-breaking scale and beyond.

The mass of the top quark is mt = 173.34 ± 0.27 ± 0.71 GeV [7] making

it the heaviest known fundamental particle. It is almost 185 times heavier than the

proton. With such a great mass, the top quark is the fermion interacting most strongly

with the Higgs boson, with a Yukawa coupling close to unity yt =
mt

υ . Thus, it has

been conjectured that the top quark has a unique role in the electroweak symmetry

breaking. Because the mass of the top quark is of the order of the electroweak scale,

it is particularly interesting for searches BSM. Searches for BSM can be done by

measuring properties of the top quark or by searching for tops that are decay products

from a heavier particle/state.

Top quark has a very short lifetime. Because the hadronisation time is longer

compared to the lifetime of the top quark, it decays, semi-weakly to a W boson and a

b-quark about 100% of the time, before forming hadrons. All quarks, when created in

collisions, hadronise into jets of particles, except the top quark. Thus, the top quark

gives a distinctive possibility to investigate the properties of a bare quark that exists for

a short time and decays into its final states.

Besides its unique role in the electroweak symmetry breaking mechanism, the

study of a bare quark, tests of the SM and its potential link to physics beyond the SM,

the top quark appears as an important background in searches of new particles, such

as particles predicted by supersymmetry (SUSY) theory. Therefore, this dissertation

aims to obtain the production cross-section of top-antitop quark (tt̄) pairs at 13 TeV

with LHC Run 2 full dataset accumulated by the ATLAS detector, and examine how
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the statistical uncertainty changes with the increased amount of integrated luminosity

this study will use.

1.2 Problem Statement

ATLAS is one of the two large multipurpose detectors at LHC, designed for a

variety of physics. One of the key areas of the ATLAS physics programme concerns

studies of the top quark, where one of the main goals is the precision measurement of the

tt̄ production cross-section. The ATLAS and CMS experiments have been performing

this measurement since 2010, using events in different final state topologies. The most

precise measurements by the ATLAS collaboration are performed, at three different

centre-of-mass energies, 7, 8 and 13 TeV, in the eµ channel, reaching or even exceeding

the precision of the theoretical predictions [8, 9]. However, the precision could be still

improved, since the full data accumulated by the ATLAS in Run 2 between 2015 and

2018 is not used for this analysis yet. Using the LHC Run 2 full dataset collected by the

ATLAS detector and with the better understanding of the detector, the contribution of

the systematic uncertainty sources in the tt̄ production cross-section measurement will

decrease. Over the years, a vast amount of data has been accumulated by the ATLAS

detector, and Monte Carlo (MC) simulation has been used to generate tt̄ signal samples

and its corresponding backgrounds, needed for the extraction of the experimental result.

It is expected to have an improved production cross-section measurement by using the

whole experimental data accumulated by the ATLAS detector in Run 2 as well as the

most recent simulated MC results for this analysis, and events in the eµ channel rather

than ee and µµ channels, where larger backgrounds contaminate the selection.

It is also important to validate the simulation samples by comparing them

with experimental data. In the past ATLAS tt̄ cross-section measurements have been

consistent with the Standard Model predictions. However, statistical and systematic

uncertainties were large. Thanks to the more integrated luminosity and high centre-of-

mass energy in the Run 2, more accurate validation of the model can be performed.
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1.3 Objectives

i. To determine the production cross-section of tt̄ and effects of the statistical

uncertainty and systematic uncertainty sources in eµ channel at 13 TeV using

LHC Run 2 full dataset collected by ATLAS detector.

ii. To determine the production cross-section of tt̄ and effects of the statistical

uncertainty and systematic uncertainty sources in ee and µµ channels at 13 TeV

using LHC Run 2 full dataset collected by ATLAS detector.

iii. To verify the advantage of eµ channel over the ee and µµ channels for

measurement of the production cross-section of tt̄ in dilepton channel and to

compare the experimental results with theoretical predictions and Monte Carlo

simulation.

1.4 Scope of the Study

This research uses the full experimental data produced at centre-of-mass energy
√

s = 13 TeV in Run 2 of LHC, accumulated by the ATLAS detector [10]. This data is

recorded in the condition where all the subsystems were operational. These raw data are

then passed to the reconstruction algorithms and made accessible from laboratories all

over the world, thanks to the CERN grid system. After further processing and skimming

are performed by the ATLAS collaboration, the data is saved in the analysis format to

be used for further analyses and measurements. For this analysis, the data comprises

those events which have passed either a single-electron or single muon trigger, with

the lepton transverse momentum pT > 25 GeV. In this dissertation, data Ntuples are

produced at the INFN computing farm in Trieste, Italy, using the data shared in the

CERN grid system.

In order to optimise the analysis, to compare with the experimental data, and to

study the efficiency and uncertainties of signal and background, simulated events are
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required. Therefore, MC simulation is used to generate and process such samples [9]

by the ATLAS collaboration.

This research used the full dataset collected by the ATLAS detector and MC

simulation to perform the analysis. The research presented in this dissertation entailed

defining and optimising cuts to be applied on both the experimental data and MC

simulated samples to suppress the background events and increase the significance

of the tt̄ signal in the sample. The production cross-section of tt̄ and the estimation

of the statistical uncertainty and systematic uncertainty are calculated using the event

yields. The fake lepton background estimation is also done in this research using both

experimental data and MC simulated samples. One of the most critical aspects of this

analysis is the choice of a channel and selection criteria, in order to reduce as much

as possible, the contribution from the background. Dilepton channel comprises three

sub-channels such as ee, µµ and eµ channels. Events in the eµ channel are chosen,

in this research, to obtain the production cross-section of tt̄ due to its characteristic

of having a considerable amount of signal and less contribution of backgrounds after

analysis cuts are applied.

The ROOT framework based on the C++ programming language is used to

perform the analysis on experimental data events, tt̄ simulated events and background

events, and to plot the histograms of the observables. The same analysis cut chains are

applied in both simulated and experimental events since experimental data is polluted

with the backgrounds and measuring any physical observable without purification will

lead to the wrong result. Therefore, cuts are applied to enhance the significance of the

signal over the backgrounds and purify the data as much as possible to obtain the tt̄

production cross-section with high accuracy.

1.5 Significance of the Study

The purpose of this research is to obtain the tt̄ production cross-section at
√

s = 13 TeV using the events in eµ channel. This measurement is of great significance
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for the validation of the SM, calculation of top quark mass, and possible discovery

of new physics. Moreover, tt̄ is an important background in several analyses such

as those involving the Higgs boson and searches for new heavy particles. Therefore,

having an accurate understanding and value of inclusive production cross-section of tt̄

is vital. Besides, the advantages of the eµ channel over the ee and µµ channels, for

this measurement, are discussed in this dissertation. Despite many measurements over

the last two decades, the precision can be further improved, and the most recent data

should be used.

1.6 Dissertation Outline

This dissertation reports the extraction of tt̄ production cross-section in eµ

channel using the LHC Run 2 full dataset collected by ATLAS detector. A cut and

count method is applied to obtain the tt̄ production cross-section.

Chapter 1 provides a brief introduction to the background of the top quark.

Also, problem statement, objectives, the scope of the study and significance of the

study are covered in this chapter.

Chapter 2 describes the Standard Model theory. A detailed literature review

of top-antitop quark and its production cross-section measurement is reported in this

chapter. Moreover, a comprehensive description of LHC, ATLAS detector, collision

data and MC simulation is provided.

Chapter 3 describes the methodology of object reconstruction in ATLAS,

extraction of cross-section, determination of effects of statistical uncertainty and some

systematic uncertainty sources in the final result. The reconstruction and object

selection criterion are described. In addition, analysis setup, which includes the event

selection and fake lepton estimation are also described in this chapter.

6



Chapter 4 reports the results of the tt̄ production cross-section measurements

in pretag and b-tag samples of eµ channel, and combined ee/µµ channel. The result of

a pretag and b-tag sample of each channel is discussed, and a comparison between the

eµ channel and ee and µµ channels is made.

Chapter 5 concludes the entire research, which was to fulfil all the purposed

objectives. During this research, we recognised some of the points that could improve

the results of this measurement in future works. Those points are mentioned as future

directions in this chapter.
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