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ABSTRACT

Carbon fiber-reinforced polymer (CFRP) composite laminates used as load- 
bearing structures, such as skin of aircraft wings and wind turbine blades, are likely to 
experience fatigue loading. The resulting complex stresses could cause fatigue damage 
in the laminas in the form of matrix cracking, interface delamination, and fiber 
fracture. The prediction of the reliability of these structures requires an accurate 
constitutive damage model of the composite material. However, the previous available 
damage models are based on stress control condition and limited to low cycle fatigue 
loading conditions. In this respect, the research proposes and examines a new universal 
damage-based material fatigue model of unidirectional lamina. The mesoscale model 
incorporates the observed degradation of the lamina strength and stiffness properties 
in defining the material damage under cyclic loading conditions. Hashin’s stress-based 
criteria for damage under monotonic loading are extended and used to describe the 
fatigue damage accumulation process. The normalized model is employed to describe 
the fatigue degradation of the strength and stiffness properties. The model 
acknowledges the effects of mean stress on the damage and fracture process. It is 
observed that the shear strength of the CFRP composite lamina is the first to degrade 
when compared to other properties. The predicted fatigue damage evolution 
characteristics are examined for a typical material point in the CFRP composite lamina 
throughout the fatigue loading. For this purpose, a finite element (FE) model of a 
CFRP composite laminate plate with a through central hole is subjected to tension- 
tension cyclic stressing ( k = 0.1) in transverse fiber direction. Since cycle-by-cycle life 
calculations are impractical given the large number of anticipated fatigue cycles 
involved, a load-cycle block sequence is introduced to address the computational 
efficiency of the fatigue life prediction routine. The number of load cycles represented 
by each block is dictated by the rate o f the property degradation. The size of a load 
cycle block is determined by the residual property curve that exhibits the shortest 
fatigue life, Nf under the operating fluctuating load cycles. Nonlinear characteristic 
evolution of the fatigue damage with the applied stress cycles is demonstrated. The 
critical level of the fatigue damage, determined based on the total dissipated energy of 
fracture, denotes the nucleation of the fatigue crack through the separation of the 
material point. From the case study, with the operating stresses of a22max=18.85 MPa 
and T12max =1.30 MPa, the accumulated matrix tension fatigue damage at the critical 
point reaches g MT =  1.0 after n d = 1.93x103 cycles have elapsed. The collection of 
the separated material points throughout the applied fatigue cycles represents the 
propagated fatigue crack. The calculation routine is readily implemented in any 
standard FEA software for damage-based fatigue life prediction of fiber-reinforced 
polymer (FRP) composite laminate structures. The unified fatigue damage model 
developed in this thesis is significant for industrial sectors, dealing with FRP 
composite design, fabrication, reliability prediction, and failure analysis of load- 
bearing structures.
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ABSTRAK

Lapisan komposit polimer yang diperkuat dengan gentian karbon (CFRP) yang 
digunakan sebagai struktur penahan beban, seperti kulit sayap pesawat dan bilah turbin 
angin, cenderung untuk mengalami kelesuan. Tegasan kompleks yang terhasil boleh 
menyebabkan kerosakan akibat kelesuan dalam lapisan lamina dalam bentuk 
keretakan matriks, pelekangan antara muka, dan keretakan gentian. Ramalan 
kebolehharapan struktur komposit ini memerlukan model konstitutif kerosakan yang 
tepat. Walau bagaimanapun, model kerosakan yang tersedia sebelum ini adalah 
berdasarkan keadaan kawalan tegasan dan terhad kepada keadaan pembebanan 
kelesuan kitaran rendah. Dalam hal ini, penyelidikan mencadangkan dan meneliti 
model baru semesta kelesuan bahan yang dibangunkan berasaskan kerosakan dari 
ekaarah lamina. Model skala meso menggabungkan penurunan kekuatan lamina dan 
sifat kekukuhan yang diperhatikan dalam menentukan kerosakan bahan dalam keadaan 
pembebanan berkitar. Kriteria Hashin yang berdasarkan tegasan di bawah 
pembebanan berkitar dikembangkan dan digunakan untuk menggambarkan proses 
penumpukan kerosakan akibat kelesuan. Model ternormal digunakan untuk 
menggambarkan penurunan sifat kekuatan dan kekukuhan akibat kelesuan. Model ini 
merangkumi kesan tegasan min terhadap proses kerosakan dan kepatahan. Telah 
diperhatikan bahawa kekuatan ricih pada CFRP komposit lamina adalah yang pertama 
merosot jika dibandingkan dengan sifat lain. Ciri-ciri evolusi kerosakan kelesuan yang 
diramalkan diperiksa pada titik tertentu pada bahan dalam lamina CFRP komposit 
sepanjang pembebanan kelesuan. Untuk tujuan ini, model FE dari plat CFRP komposit 
lamina berserta lubang pada tengah plat dikenakan tegasan tegangan-tegangan berkitar 
(k = 0.1) pada arah melintang gentian. Oleh kerana pengiraan jangka hayat kitaran demi 
kitaran tidak praktikal memandangkan bilangan besar kitaran kelesuan yang terlibat, 
urutan blok kitaran beban diperkenalkan untuk menangani kecekapan rutin komputasi 
untuk ramalan jangka hayat akibat kelesuan. Jumlah kitaran beban yang ditunjukkan 
oleh setiap blok ditentukan oleh kadar penurunan sifat kekuatan bahan. Blok kitaran 
beban ditentukan oleh baki kekuatan bahan dengan jangka hayat terpendek (Nf) di 
bawah bebanan kelesuan. Evolusi tidak lelurus menggambarkan kerosakan akibat 
kelesuan dengan kitaran tegasan yang berlaku ditunjukkan. Tahap kritikal kerosakan 
kelesuan, ditentukan berdasarkan jumlah tenaga patah yang hilang, menunjukkan 
penukleusan retak akibat kelesuan. Daripada kajian kes di bawah operasi tegasan 
o’22max= 18.85 MPa dan %12max= 1.30 MPa, kerosakan kelesuan dalam bentuk 
tegangan matriks terkumpul pada titik kritikal memenuhi persamaan g MT = 1.0 
selepas melalui n d=1.93 x103 kitaran. Pengumpulan titik bahan yang terpisah 
sepanjang kitaran kelesuan yang berlaku mewakili retakan akibat kelesuan tersebar. 
Rutin pengiraan mudah dilaksanakan dalam mana-mana perisian standard FEA untuk 
ramalan yang tepat bagi j angka hayat bahan daripada struktur komposit polimer lamina 
bertetulang gentian (FRP) akibat kelesuan. Model kerosakan bersatu akibat kelesuan 
yang dibangunkan dalam tesis ini adalah penting untuk sektor perindustrian yang 
berkaitan dengan industri pembuatan FRP komposit, fabrikasi dan analisis kegagalan 
struktur penahan beban.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

FRP composite material is used for applications in various industries, such as 

aeronautical, automotive, marine, and advanced engineering applications. This is due 

to the high strength-to-weight ratio of FRP composite that makes them desirable for 

structural applications than conventional material. In the aerospace and automotive 

industries, the aim can be accomplished by substituting metal-based alloys with lighter 

materials such as carbon fiber-reinforced polymer (CFRP) composite. This may 

explain the significant increase in the use of CFRP composite material which is less 

than 20% in 1987 (A320), to over 50% in 2013 (A3 50 XWB) [1]. Besides, FRP 

composite material provides corrosion resistance in the marine environment and 

therefore requires less maintenance. Nowadays, racing powerboats such as 

superyachts made of composite are becoming more common for long-lasting 

performance and safety. The 48M Supersport is the largest superyacht constructed out 

of FRP composite which the fuel efficiency is optimized by 50% due to weight 

reduction[2]. Apart from that, CFRP composites provide design flexibility through the 

sequencing of pre-impregnated laminates for tailored strength and stiffness properties 

in particular loading directions. Thanks to these advantages, the wind industry is 

growing rapidly during the last half of the twentieth century and continues to grow to 

meet the demand for larger wind turbine rotor blades.

The fact that could not be avoided is that the composite components are 

subjected to different loading types, both static and fatigue, as well as the harsh 

operating environment. This necessitates investigations, particularly into fatigue and 

fracture analysis of the structure. Fatigue is the most frequent cause of structural 

failures and should be accounted for in any structural design process. In fact, in the 

last decades, fiber-reinforced polymer (FRP) composite has attracted increasing
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attention, especially in fatigue [3]. Under fatigue loading conditions, the FRP 

composite laminate simultaneously experiences multiple damage mechanisms, 

including intra- and interlaminar. The laminate consists of plies of the lamina and the 

interfaces between the laminas. In order to reduce the complexity, the effect of fatigue 

loading is treated separately in laminas and interfaces. Therefore, it is of paramount 

importance to understand the mechanism associated with fatigue damage and 

introduce a predictive model to predict the damage in FRP composite laminate.

Fatigue damage models are necessary to be well developed by adapting the 

damage mechanics approach to predict damage development in the laminated 

composite structure during service lifetime. In the FRP composite laminates, the 

development of damage is depicted through the degradation of material properties. 

However, the variety of laminate design configurations makes it impractical to 

determine degradation properties through experimentation alone. Thus, it is more 

desirable to predict the material performance during fatigue loading conditions by 

modeling behavior in response to the applied load. An accurate fatigue damage model 

for the laminated composite could facilitate design improvement of FRP composite 

structure. The fatigue model should be able to predict the fatigue behavior of the 

laminate for any layup configuration for structural reliability assessment.

Consequently, this research work complements the development of damage- 

based fatigue model for FRP composite laminates. The emphasis is on the fatigue 

failure of the laminas. The fatigue model of the interfaces is being addressed 

separately. Ultimately, the fatigue damage model for lamina and interface is 

implemented in the reliability prediction of FRP composite laminates, where the 

interaction of interface and lamina damage is captured under general loading 

conditions.
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1.2 Statement of Research Problem

The damage development during fatigue loading conditions in a FRP 

composite lamina is predicted using a damage model. In this study, the unified damage 

model is developed based on the degradation of mechanical properties of the material. 

The evolution of fatigue damage is described through the degradation of fracture 

energy. The modeling concept for the FRP composite laminates has been studied and 

available the open literature [4, 5] based on stress controlled condition. However, the 

approach presented in this thesis is illustrated for constant displacement during the 

fatigue loading. It follows that the effect of damage is observed through the level of 

stress diminishing during the loading cycles. In addition, in a multidirectional 

laminate, the significant failure mechanism is addressed by the competition between 

the weak interfaces and continuously degrading matrix properties of the lamina. The 

approach is to address the issues separately. In this study, the damage-based fatigue 

model is developed for the quantitative and physically-based description of fatigue 

damage development of the lamina. Developing a unified damage model allows a 

better prediction of fatigue behavior of the laminate, particularly for the lamina. Such 

model caters for the damage prediction in any layup configuration of the laminates. 

Since the model is accounts for the non-linear properties degradation, an incremental 

calculation procedure is introduce to address the accumulated damage throughout the 

fatigue loading. This approach addresses the central question of “How to correctly and 

efficiently predict the reliability andfailure response o f  CFRP composite lamina under 

cyclic loading condition. ”

1.3 Research Objectives

This research aims to develop a new damage-based fatigue model of 

unidirectional FRP composite lamina. The specific objectives are:

(a) To establish characteristic residual properties of the lamina due to fatigue

loading conditions.

3



(b) To develop a new damage model for fatigue of UD lamina based on cyclic 

property degradation.

(c) To quantify the characteristic evolution of the lamina damage under cyclic 

loading conditions

1.4 Scope of Study

The scopes of study cover the following:

1. Lamina damage model is developed based on equivalent UD lamina at 

mesoscale.

2. Mechanical destructive tests are conducted on CFRP composite lamina [0°]s 

for properties extraction. The tests are conducted according to American 

Society for Testing and Materials (ASTM) standards. These tests are conducted 

at room temperature and laboratory air/humidity environment under static 

loading.

3. Property degradation modes are developed. Test data in item 2 are used in the 

model.

4. Incremental fatigue damage is calculated based on load cycle-block approach.

5. Fatigue damage evolution characteristic is illustrated through a case example 

of 16-ply CFRP composite laminate with a straight-through hole. 

Computational efficiency is considered in fatigue damage calculations. This 

would be practical in addressing reliability of composite structures.

6. FE simulation using SIMULIA Abaqus ver. 6.12 commercial software.

4



1.5 Significance of the Outcomes

The degradation of residual fatigue properties dictates the fatigue damage 

accumulation in the FRP composite lamina. The properties degradations are obtained 

through the normalization of residual properties to the static properties. Thus, the 

developed methodology can be extrapolated to any set of properties for carbon-based 

FRP composite under various stress ratios without reproducing the experimental tests. 

In addition, the methodology can be adopted for any FRP composite laminate layup 

configuration. Due to the high number of fatigue cycles involved, a load-cycle block 

approach is introduced to address the efficiency issue in fatigue damage prediction. 

The establishment of methodology and predictive model will fulfill the industrial 

requirement, especially reducing the number of experimental tests. This is significant 

for all industrial sectors, including aerospace, automotive, marine, and advanced 

engineering applications.

1.6 Thesis Layout

All chapters in this thesis had been arranged to establish a model for predicting 

fatigue damage in FRP composite lamina. The methodology for predicting the fatigue 

lamina damage was explained in this thesis. Therefore, the content of each chapter had 

been specified to explain the objectives and scope of the research as follows.

Chapter 1 describes a summary background of composite laminates. Then the 

problem statement, scope, and objectives of the research are defined. The limits of 

what this study is restricted to are being highlighted.

Chapter 2 summarizes previous researchers' findings and literature regarding 

CFRP composite laminates properties and behavior under static and fatigue loading. 

This includes the previous research on related static and fatigue damage models for 

FRP composite laminate. A review of existing damage models for cyclic loading 

applications is presented to bring the reader up to date with the current literature on 

the topic.

5



Chapter 3 details about research methodology of the current work. A 

methodology on process of constructing the new lamina fatigue damage model is 

explained. The foundation of extracting fatigue degradation properties through quasi

static tests is elaborated. The details on the finite element (FE) simulation for the case 

study are described.

Chapter 4 describes the characteristic of the cyclic degradation properties. The 

normalized strength approach is adapted in order to obtain properties degradation for 

fatigue loading. Also, the applicability of this method for carbon-based material is 

presented in this chapter. As a result, nine normalized properties degradation curves 

are generated, including residual strength and stiffness properties.

Chapter 5 elaborates the extended theory for the lamina damage model for 

CFRP composite laminates under cyclic loading conditions. A set of new fatigue 

damage criteria is proposed to predict damage specifically in a FRP composite lamina. 

The characteristic of the damage model for lamina damage is explained here.

Chapter 6 discuss the fatigue damage evolution in CFRP composite lamina 

based specific case study. The newly developed fatigue damage model for the lamina 

is explained through the numerical value resulted from the case study. Detailed 

analysis of damage calculation is given in this chapter. The energy-based concept is 

used to discuss the evolution of fatigue damage to nucleation at a material point.

Chapter 7 summarizes the main conclusion related to the methodology to 

obtain the damage parameters and the newly extended lamina damage model under 

cyclic damage conditions. The main contributions that have been addressed in the form 

of research objectives were concluded in this chapter. Additional work was 

recommended for further advanced research.

6
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