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ABSTRACT 

Movement by humans in healthcare facilities is unpreventable, especially among 

medical staff performing surgical procedures in an operating room. The movements can 

generate a secondary airflow that interrupts air supplies from ceiling-mounted diffuser, 

that serves to remove airborne particles from surgical zone. Consequently, the movement 

of particles in the surgical zone is affected, and the tendency of particles to fall onto 

patient’s wound is increased. This situation could elevate the chances of a patient 

contracting surgical site infections and could increase the risk of death. The present study 

aims to examine the effects of medical staff’s turning movements on the number of 

particles falling onto a patient. A simplified computational fluid dynamics (CFD) model 

of the operating room was developed and validated based on published data. A Re-

Normalisation Group k-ε turbulence model based on the Reynolds-Averaged Navier-

Stokes equations was used to simulate airflow, while a discrete phase model was used to 

simulate movement of airborne particles. The medical staff’s turning movements were 

controlled by integrating a user-defined function code and using a dynamic mesh method. 

Results show that medical staff’s turning movements have a significant influence on the 

airflow velocity distribution and the airborne particle concentration around the patient. 

Replacing the turning bent-forearm medical staff with the stationary bent-forearm medical 

staff reduced the number of particles that settled on a patient by 60.9 %, while substituting 

the turning straight-forearm medical staff with the stationary straight-forearm medical 

staff lowered the settlement of particles by 37.5 %. Results also indicated that employing 

single large diffuser (SLD) ventilation in the operating room, it reduced the number of 

particles that move into the surgical zone under the influence of medical staff’s turning 

movements. The particles that settled on the patient were reduced by 41 % and 39 % when 

using the SLD 1 and SLD 2 ventilation, respectively. Present work confirmed that 

integrating the medical staff’s turning movement in the vicinity of surgical zone is 

important as it reflects a more realistic condition. Considering only the stationary medical 

staff in simulation could underestimate the number of particles move into the surgical site 

and settling on a patient. 
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ABSTRAK 

Pergerakan kakitangan perubatan di dalam bilik bedah tidak dapat dielakkan, 

terutamanya semasa mereka sedang melakukan prosedur pembedahan. Pergerakan 

mereka boleh menyebabkan gangguan kepada aliran udara yang dibekalkan oleh 

penyebar udara di siling, yang berfungsi untuk mengeluarkan zarah di udara dari ruang 

bedah. Akibatnya, pergerakan zarah dalam ruang pembedahan terjejas dan 

kecenderungan untuk ia jatuh ke atas luka pesakit meningkat. Keadaan ini boleh 

meningkatkan peluang pesakit mengalami jangkitan yang disebabkan oleh 

pembedahan, dan meningkatkan risiko kematian. Kajian ini bertujuan untuk 

menganalisa kesan pergerakan manusia terhadap bilangan zarah yang jatuh ke atas 

pesakit. Model dinamik bendalir berkomputer (CFD) bilik bedah dibangunkan dan 

disahkan menggunakan data hasil kerja yang telah diterbitkan. Model Re-

Normalisation Group k-ε berdasarkan persamaan Navier-Stokes Reynolds-Averaged 

telah digunakan untuk mensimulasi aliran udara, manakala model fasa penuh 

digunakan untuk mensimulasi pergerakan zarah. Pergerakan manusia dikawal oleh 

kod fungsi takrifan pengguna dan kaedah jaringan dinamik. Hasil kajian menunjukkan 

bahawa pergerakan manusia mempunyai pengaruh yang ketara ke atas halaju aliran 

udara dan bilangan zarah di sekitar pesakit. Dengan menggantikan lengan bengkok staf 

dengan lengan bengkok pegun, bilangan zarah yang jatuh ke atas pesakit berkurang 

sebanyak 60.9%, manakala menggantikan lengan lurus staf dengan lengan lurus 

pegun, bilangan zarah dapat dikurangkan sebanyak 37.5%. Hasil kajian juga 

menunjukkan bahawa dengan menggunakan pengudaraan penyebar besar tunggal 

(SLD), ia mampu mengurangkan bilangan zarah dalam zon bedah. Bilangan zarah 

yang jatuh ke atas pesakit dapat dikurangkan masing-masing sebanyak 41% dan 39% 

apabila menggunakan pengudaraan SLD 1 dan SLD 2. Kajian ini mengesahkan bahawa 

penyepaduan pergerakan kakitangan perubatan di sekitar zon pembedahan adalah 

penting kerana ia mencerminkan keadaan yang lebih realistik. Mengandaikan bahawa 

semua kakitangan perubatan dengan keadaan pegun untuk simulasi dapat 

mengurangkan anggaran bilangan zarah bergerak ke tapak pembedahan dan menetap 

pada pesakit. 
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1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

An operating room (OR), also known as an operating theatre, is a healthcare 

facility that enables surgeons to carry out surgical operations. The majority of ORs 

worldwide employ cleanroom technology to provide a highly controlled and clean 

environment for both the patients and the hospital's personnel. It is necessary to 

maintain a contaminant-free environment for the patient during surgical procedures. 

Recent studies concluded that 98 % of surgical site infections (SSI) were due to the 

settlement of airborne particles on the patients’ wounds (Chauveaux, 2015; Talon et 

al., 2006). A study conducted by Karlatti and Havannavar (2016) found that post-

operational SSI rates were increased when the surgery was performed in unclean 

surroundings. It has been estimated that nearly 3 % to 5 % of patients who underwent 

surgery in clean environments developed SSIs (Singh, Singla and Chaudhary, 2014), 

whereas surgical procedures performed in ultra clean environments were associated 

with an SSI incidence rate as low as 1 % (Olsen et al., 2016). 

SSI is defined as any infection that follows an operative procedure which 

occurs at or near the surgical incision site within 30 days of the procedure (Karlatti et 

al., 2016; Mangram et al., 1999). SSIs are ranked third amongst the most common 

hospital associated infections (HAI). They make up 13- 17 % (Anderson et al., 2014; 

Birgand et al., 2015) and 10- 40 % (Singh et al., 2014) of the total HAI cases reported 

in Europe and the USA, respectively. Singh et al. (2014) found that in over 27 million 

operations performed annually in the USA, SSIs were reported in approximately 

300,000 cases, of which 8,000 ended in mortality (Singh et al., 2014). SSIs are 

associated with an increased risk of death, additional treatment costs and prolonged 

hospital stays. The rate of post-operative morbidity has increased from 65 % to 80 % 

due to the increment in the number of SSI cases (Chow and Wang, 2012) and has 
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caused a rise of hospitalisation costs by 3,000 USD to 29,000 USD per case depending 

on the type of surgical procedure performed (Magill et al., 2012). One valid example 

is a case study presented by Chow et al. (2012), where the medical care expenses for 

a patient with a prosthetic joint SSI reached 100,000 USD. On average, the infected 

patient will need to extend his/her hospital stay by about 7 to 10 days for additional 

treatment (Ata et al., 2010; Magill et al., 2012). 

To promote a highly conducive environment in the OR, aseptic techniques such 

as room cleaning, disinfection and sterilisation are conducted upon the completion of 

each surgical procedure. Also, the ventilation system inside the OR is specially 

designed to produce a particle- and sediment-free environment. The principal use of 

this system is to filter unwanted residues from the outdoors and prevent them from 

entering the OR and to remove the existing particles in the adjacent area. Standard 

(2008) proposed that the air supply diffuser should extend a minimum of 305 mm 

beyond the footprint of the operating table on each side. The zone bounded by the 

footprint area is assumed to be the surgical zone, as surgical procedures are performed 

within the region. The direction of the airflow and the rate of air change in the OR are 

the main factors in determining the amount of airborne particle settlement 

(Memarzadeh, 2003). Air change rate is defined as the measure of the volume of air 

supply added to a confined space in an hour. Under adequate air exchange conditions, 

the contaminated air could effectively be replaced by fresh clean air. Standard (2008) 

recommends that practitioners employ a unidirectional airflow ventilation in the OR. 

The supply air diffuser is located on the ceiling, while the air is exhausted to the 

adjacent area through exhaust grilles near the floor. This unidirectional airflow is 

capable of reducing the number of airborne bacteria and the risk of surface 

contamination at the surgical sites (Sadrizadeh and Holmberg, 2015). A proper air 

change rate could further reduce the number of particles inside the OR. Many studies 

have been carried out to ascertain the appropriate air change rate. The proposed air 

change rate is in the range of 8/h to 20/h (Li, Zou and Wang, 2014; Memarzadeh and 

Xu, 2012; Pereira et al., 2013). For a constant particle generation rate inside an OR, a 

higher air change rate could improve the removal rates of the airborne particles. 
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The setting of the air diffusers also affects the airborne particle concentration 

in an OR. The proposed air delivery layouts vary from ceiling-mounted to side wall-

mounted, diagonal and additional mobile air supply units (Pereira and Tribess, 2004; 

Sadrizadeh, Holmberg and Nielsen, 2016b; Ufat et al., 2017; Woloszyn, Virgone and 

Mélen, 2004). Each of these strategies has its advantages and disadvantages in terms 

of particle removal efficiency. The ceiling-mounted type, however, has been found to 

be less sensitive towards the placement of obstacles. The remaining layouts rely 

heavily on the positioning of medical personnel, the equipment table, medical 

equipment and other furniture. During surgical procedures, the movements of the 

medical staff are unpredictable, hence, the ceiling-mounted air supply is the most 

favourable strategy to be employed in the OR. Recently, Wagner and Schreiber (2014) 

tested several layouts that fulfilled the criteria of being ceiling-mounted air diffusers 

as stated in Standard (2008), namely, multi-diffusers, a single large diffuser, and a 

combination of diffusers and air curtains. A single large diffuser was found to be 

effective in preventing airborne contaminants from settling in the surgical zone 

(Wagner et al., 2014). 

Commonly, nine medical staff will be present in the OR for complex surgery, 

namely, a surgeon, three assistant surgeons, a scrub nurse, a circulating nurse, an 

anaesthetist, an assistant anaesthetist, and an X-ray technician (Oliveira and Gama, 

2015). Minor surgery, however, involves only five medical staff: a surgeon, an 

assistant surgeon, a circulating nurse, an anaesthetist, and an assistant anaesthetist 

(Oliveira et al., 2015). The number of staff present in the OR, however, varies on a 

case-by-case basis. Recently, Wang and Chow (2015) reported that in China, a total of 

seven staff participate in a surgical procedure, whereas, in Italy, only five staff are 

involved in an operation (Romano et al., 2015). Surprisingly, Sweden has the highest 

number of staff engaged in a surgical procedure, which is ten staff (Sadrizadeh, 

Holmberg and Tammelin, 2014b). During a surgical procedure, a surgeon performs 

the actual incisions and makes the critical decisions. The assistant surgeon assists the 

surgeon by providing surgical tools, clamping vessels during surgery, and stitching up 

the incisions. Both the anaesthetist and assistant anaesthetist are in charge of safely 

administering anaesthesia to patients before surgery, monitoring them during surgery, 

and ensuring that they safely come out of anaesthesia after the surgery. The 

responsibility of the circulating nurse is to deliver additional supplies that may be 
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needed during surgery and to document the surgery. On the other hand, the role of the 

scrub nurse is to sterilise the instruments before and after the surgery, to keep the 

surgical field organised during surgery, and to provide the surgeon with the necessary 

instruments.  

1.2 Problem Statement 

An ideal OR should have excellent healthcare facilities to provide patients with 

safe surgical treatment. However, having equipment alone is not sufficient if the 

hygiene of the OR is disregarded. Managing a clean environment is essential for 

preventing SSI due to the settlement of suspended particles on a patient’s wound. The 

primary source of airborne particles is from medical personnel and this could become 

more critical if they are making significant movements near the patient (Buchanan and 

Dunn-Rankin, 1998; Chauveaux, 2015; Talon et al., 2006). The adverse effect of such 

movement is that it will expedite the rate of release of particles from the staff and 

interfere with the oncoming unidirectional airflow of the air supply diffuser to push 

the particles away from the surgical zone (Shih, Chiu and Wang, 2007). Consequently, 

the effectiveness of the clean air to wash away the particles which have been shed, 

could be reduced and the possibility of particles settling on a patient wound will be 

increased. Before further addressing this problem, a comprehensive evaluation should 

be carried out to examine the effects of movement of medical personnel on particle 

concentration in the vicinity of the surgical zone. However, the personnel should not 

be treated as static dummies that just release particles. Any analysis should include 

their movement behaviour. Indeed, disregarding the effect of human movement was 

identified as the main shortfall in assessing the effectiveness of ventilation in a 

building (Khazaii, 2016). To study the aspects of a moving object, one should consider 

dynamic and transient features in the analysis to achieve realistic outcomes (Romano 

et al., 2015). Therefore, the goal of this study is to undertake particle counts to assess 

the number of particles that settle on a patient, taking into account the influence of 

medical staff’s movements, by using a numerical approach. A 3-D computational 

model of an OR was constructed using computer-aided design (CAD) software. 

Computational fluid dynamic (CFD) software was used to simulate particle transport 
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under transient conditions. The effects of a turning movement by medical staff was 

included in the analysis. A validation of the CFD model based on the published data 

was performed, and a user-defined function (UDF) written in C language software was 

incorporated into the analysis to create the turning movement of the medical personnel. 

Finally, the effectiveness of incorporating a single large diffuser (SLD) in reducing the 

particle concentration at the surgical zone was examined. 

1.3 Objectives of the Research 

The goal of this study is to examine the particles that settle on a patient due to 

the movement of medical staff, by using a numerical approach. Based on this research 

goal, three research objectives have been identified as follows: - 

1. to develop the validated CFD models of a patient ward and an environmental 

chamber. 

2. to predict the number of particles settling on a patient due to medical staff’s 

movement and posture. 

3. to assess the effectiveness of a single large diffuser (SLD) in reducing the 

particle concentration in the surgical zone and settlement on patients 

considering the effect of medical staff’s turning movement. 

1.4 Scope of the Research 

This study limits its scope to the following points: - 

1. Commercial CFD software was used to simulate the particle transportation and 

airflow inside the computational domain. 

2. The baseline model of the OR was developed in accordance with the actual 

dimensions of an International Organisation of Standardisation (ISO) Class 7 

OR, with dimensions of 6 m (length) × 5.5 m (width) × 3 m (height). 

3. The movement of medical staff was restricted to turning movements with an 

angular velocity of 1.57 rad/s. 

4. A Lagrangian particle tracking model was used to simulate particle trajectories. 
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5. The airflow analysis was performed under two conditions: a steady and a 

transient condition. 

6. The medical staff were considered under a stationary and a dynamic condition. 

7. The gravitational force is 9.81 m/s2. 

8. The particles are released from the surface of staff at a rate of 600 particles/min 

per person. 

9. The OR is in positive pressurization, with no intrusion of airborne particles 

from the door gap or adjacent rooms. 

1.5 Significance of the Research 

A comprehensive evaluation to examine the significant effects of medical 

personnel’s movements on particle settlement in the vicinity of the surgical zone is 

essential for addressing the problem of SSIs. A numerical method is crucial to predict 

the behaviour of the suspended particles on human movement. However, to produce 

realistic and reasonable results, the model simulation should be performed under 

dynamic conditions. Most of the recent studies have disregarded the dynamic 

behaviour of the model. Although the latter approach could save computational time, 

it is incapable of giving reasonable outputs. Furthermore, the dynamic analysis is 

capable of modelling the realistic behaviour of a moving person. So far, no studies 

have reported the effect of particles shed by moving humans in the OR. Understanding 

the relationships between moving medical staff, airflow patterns, and the number of 

particles, will provide knowledge that will be useful in minimising the settlement of 

suspended particles on patients’ wounds. This may potentially cause a reduction in the 

number of SSIs, thus resulting in a drop in the number of deaths. The proposed 

approach could be used as an option for researchers who are undertaking related 

studies. The research findings will be beneficial to investigators and engineers who are 

involved in cleanroom design and construction. 
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Appendix A PC Setup for Compiling the UDF Code 

 

 

Window 7 Home Premium- 64 bit 10 Home- 64 bit 

Simulation 

software 

ANSYS Fluent 14.0 ANSYS Fluent 14.0 

Additional 

software 

1) Microsoft Visual C++ 2008 

Express Edition 

2) Microsoft .NET Framework 

SDK V2.0 

1) Microsoft Visual Studio 

2013 Express 

2) Windows Software 

Development Kit 8.1 

3) Microsoft .NET 

Framework 4.5.1 

Environmental 

variables 

setup 

Adding the “;C:\Program Files 

(x86)\Microsoft Visual Studio 

8.0\Common7\Tools;C:\Program 

Files (x86)\Microsoft Visual 

Studio 8.0\VC\bin;C\Program 

Files\ANSYS 

Inc\v140\fluent\ntbin\win64” at 

the “path” variable 

Adding the “;C:\Program 

Files (x86)\Microsoft Visual 

Studio 

14.0\VC\bin\x86_amd64” at 

the “path” variable 

Initiating 

simulation 

software 

Using the SDK command prompt Using visual studio Cross 

Tools Command Prompt 
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