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ABSTRACT

Feature selection and classification in high-dimensional data is a challenging problem

in scientific research such as biology, medicine, and finance. In such data, highly correlated

features and missing data often exist. Therefore, selecting informative features and adequate

handling of missing values are significant to find an optimal model in terms of interpretability

and prediction accuracy. In recent years, embedded feature selection methods, including

penalized regression, have attracted many statisticians since these methods often obtain model

estimates with higher prediction accuracy. Nevertheless, most penalized methods lack the

consistency of feature selection, encouragement of grouping effects, and handling missing

values when dealing with high-dimensional data. Hence, this study aims to improve the process

of feature selection and handling of missing values by proposing several improvements in

the penalized high-dimensional approaches. An alternative initial weight was introduced in

the adaptive least absolute shrinkage and selection operator (LASSO) to improve the feature

selection performance. Then, an initial ratio and adjusted variance weights inside the 𝐿1-norm

penalty of the adaptive elastic net are proposed to encourage the grouping effect. Furthermore,

imputation penalized logistic regression with the adaptive LASSO approach was proposed

to enhance the handling of missing values in high-dimensional data. Simulation studies with

varying numbers of predictor variables, sample sizes, correlation coefficients, and the proportion

of missing values were performed to evaluate the effectiveness of the proposed methods. The

proposed adaptive LASSO methods were also compared with LASSO and other versions of

adaptive LASSO methods, while the proposed adaptive elastic net methods were compared

with the existing elastic net and adaptive elastic net methods. The proposed methods were also

applied to a chemometrics dataset and eight gene expression microarray datasets in which the

number of genes (features) is more than the sample size. The results indicated that the proposed

methods outperform their competitors in selecting the most relevant features and achieving

higher classification accuracy, sensitivity, and specificity values. It also reduces dimensionality

and selects the most helpful features for cancer classification, resulting in optimal models

that concurrently perform feature selection and patient classification. On the other hand, the

proposed adaptive elastic net method is shown superior to the other methods in terms of

encouraging the group effect. In conclusion, this study shows that the proposed methods are

appropriate for gene expression data classification and other high-dimensional data classification

analyses.
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ABSTRAK

Pemilihan ciri dan klasifikasi di dalam data berdimensi tinggi adalah permasalahan

yang mencabar dalam penyelidikan saintifik seperti biologi, perubatan, dan kewangan. Dalam

data begini, seringkali wujud ciri data yang berkorelasi tinggi dan data hilang. Oleh itu,

pemilihan ciri berinformatif dan keupayaan menangani masalah nilai hilang adalah signifikan

untuk mendapatkan model yang optima dari segi pentafsiran dan ketepatan ramalan. Beberapa

tahun kebelakangan ini, kaedah pemilihan ciri terbenam, termasuklah regresi terhukum telah

menarik minat ramai ahli statistik kerana kaedah ini sering memperolehi penganggaran model

dengan kejituan yang lebih tinggi. Walau bagaimanapun, kebanyakan kaedah terhukum

kurang menepati pemilihan ciri yang konsisten, tidak mempertimbangkan kesan kelompok

dan pengendalian data hilang apabila melibatkan data berdimensi tinggi. Maka, matlamat

kajian ini ialah menambahbaik proses bagi pemilihan ciri dan pengendalian nilai hilang dengan

mencadangkan beberapa penambahbaikan di dalam dimensi tinggi terhukum. Satu pemberat

awal alternatif telah diperkenalkan di pengecutan mutlak terkecil mudah suai dan pemilihan

operator (LASSO) bagi menambahbaik prestasi pemilihan ciri. Kemudian, satu nisbah awal

dan varians pemberat dilaraskan hukum 𝐿1-norm elastik jaring mudah suai telah dicadangkan

untuk menggalakkan kesan pengumpulan. Tambahan pula, imputasi regresi logistik terhukum

dengan pendekatan LASSO mudah suai telah dicadangkan untuk meningkatkan pengendalian

nilai hilang di dalam data berdimensi tinggi. Kajian simulasi dengan nombor pembolehubah

peramal, saiz sampel, pekali korelasi, dan perkadaran nilai hilang yang berbeza-beza dilakukan

untuk menilai keberkesanan kaedah yang dicadangkan. Kaedah LASSO mudah suai yang

dicadangkan turut dibandingkan dengan LASSO dan kaedah LASSO mudah suai versi lain,

manakala kaedah elastik jaring mudah suai yang dicadangkan dibandingkan dengan elastik

jaring dan elastik jaring mudah suai yang sedia ada. Kaedah-kaedah yang dicadangkan turut

diaplikasikan kepada satu set data kemometrik dan lapan set data mikrotatasusunan ekpresi gen

yang mana bilangan gen (ciri) lebih daripada saiz sampel. Keputusan menunjukkan kaedah yang

dicadangkan mengatasi prestasi pesaing-pesaingnya dalam memilih ciri yang paling relevan

dan mencapai nilai klasifikasi kejituan, sensitiviti dan kekhususan yang lebih tinggi. Ianya

turut mengurangkan dimensi dan memilih ciri yang paling berguna bagi klasifikasi kanser,

menghasilkan model optima yang dapat melakukan pemilihan ciri dan klasifikasi pesakit secara

serentak. Selain itu, kaedah elastik jaring mudah suai yang dicadangkan ditunjukkan lebih baik

daripada kaedah lain daripada segi penggalakkan kesan pengumpulan. Kesimpulannya, kajian

ini menunjukkan bahawa kaedah-kaedah yang dicadangkan adalah sesuai untuk klasifikasi data

ekspresi gen dan analisis klasifikasi data berdimensi tinggi yang lain.
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CHAPTER 1

INTRODUCTION

In this introduction, the study emphasizes the need to improve feature selection

and classification methods to face the challenges imposed by the high dimensionality of

the data, where some classification methods may not be applicable for analyzing data

directly. Section 1.1 provides a background of the study, which affirms the recently

developed methods and techniques that can be used to deal with high-dimensional data.

In Section 1.2, this research states the problem of the study focusing on the emerging

new methods in generalized linear models with high-dimensional data. Then, the study

states in Section 1.3 some scientific research questions that were answered in this study.

The last four sections of this chapter were devoted to the objectives, significance, scope,

and limitations of the study.

1.1 Research Background

As data collection technology evolves over the last few years, high-dimensional

data are becoming increasingly available such as genetic, genomic, biological,

social, economic, and chemometric data. In these kinds of data, the number of

predictor variables (feature) is hugely larger than the sample size; this is called high

dimensionality. For example, in the genomic studies, tens of thousands of genes could

be involved in a study, while the number of participants in that study (sample size) is less

than 100 persons or so (Adragni, 2015; Yang et al., 2018; Manhrawy et al., 2021). Also,

high dimensional data appears in chemometrics when modeling "quantitative structure

activity relationship" (QSAR), where the number of molecular descriptors surpasses

the number of compounds (Al-Fakih et al., 2019). This represents a challenge to the

statisticians and researchers as the use of traditional statistical methods and techniques

to analyze the high dimensional data is impossible (Algamal and Mohammad Ali,

2017).
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Any statistical study involving high-dimensional data seeks to find a statistical

model that can be used to classify the variables and make predictions. When dealing

with high dimensional data, the number of columns by far exceeds the number of rows

in the design matrix representing this data. As a result, the matrix is not invertible

(singular) (Algamal et al., 2017; Filzmoser et al., 2012; Fu and Xu, 2012). That is, the

linear equation used to find the coefficients matrix has no solution. Moreover, in any

linear model relating the response variable to the predictor variables, the prediction

error increases as the predictor variables increase. This makes the traditional statistical

models, including the generalized linear models (GLM), inapplicable and inappropriate.

The statistical studies concerning high dimensional data suffer from model overfitting,

estimation instability, prediction, and interpretation (Pourahmadi, 2013).

To overcome the problems associated with processing and tackling high

dimensional data, statisticians and researchers have recently been developing new

methods to deal with high dimensional data. One vital technique is (predictor,

explanatory, or feature) variable selection, which plays an essential role in statistical

modeling when dealing with high dimensional data. The aim of the variable selection

technique is to choose as small as a possible subset of the relevant variables from a large

set of predictor variables. That is, this technique is considered a classifier. It classifies

the predictor variables according to their relevance to the problem that the statistical

study seeks to address clearly. The selection process improves the statistical model

in the sense of accuracy and interpretability. Consequently, it decreases the effect of

multicollinearity and prevents overfitting (Liu et al., 2018; Fan and Lv, 2010).

Traditional subset selection methods such as backward elimination, forward

selection, and stepwise selection methods often perform poorly in the sense of both

variable selection and coefficients estimation in linear models, especially in high-

dimensional data, when multicollinearity is present. Furthermore, these traditional

methods computationally become more expensive in the high dimensional case. For

example, backward elimination fails because it starts with all predictor variables. On

the contrary, both forward selection and stepwise selection start with a model consisting

of a single predictor variable, which computationally make them more expensive as

the potentially time-consuming fitting has to be performed many times (Rish and

2



Grabarnik, 2014). Therefore, due to the high dimensionality of the data, the classical

variable selection methods (such as backward elimination, forward selection, stepwise

selection, Akaike information criterion (AIC), Bayesian information criterion (BIC),

and others) are impractical, inefficient, and time-consuming (Bühlmann and van de

Geer, 2011; Chen and Chen, 2012).

Consequently, over the last decades, researchers have developed a variety of

feature selection techniques. These techniques are divided into three groups. The first

group is filter approaches. It includes the most common feature selection techniques,

in which each feature is evaluated individually, irrespective of how well it performs in

the group. The second group is wrapper approaches. It evaluates the feature group

selection process using a variety of algorithms. Despite wrapper techniques, such as

"forward feature selection" and "backward feature elimination," being more effective

in feature selection than filter methods, wrapper methods are computationally very

expensive. The embedded methods are the third group, which incorporates the benefits

of both the filter and wrapper groups. It contains penalization techniques that can

model and select features simultaneously (Agrawal et al., 2021; Li et al., 2020; Liu

et al., 2018).

Recently, statisticians have set a flexible framework of penalized methods that

have proven to be practical, efficient, and accurate when dealing with high-dimensional

data. In these methods, a penalty term is added to the statistical model with the aim

of reducing high dimensionality by selecting a small subset of the vast set of predictor

variables. One advantage of these methods is to reduce the complexity of the statistical

model and provide criteria for variable selection and classification. Associated with

these penalizing methods constraints that are based on 𝐿1-norm, 𝐿2-norm, or both

𝐿1 and 𝐿2 norms of the model coefficients. These constraints force the coefficients

of the irrelevant variables to shrink to zero. The amount of penalty term provides a

tradeoff between the variance and the bias of the selected statistical model. As this

amount increases, the size of the selected subset of predictor variables decreases and

vice versa. On the other hand, the minor penalty leads to selecting more predictor

variables with low bias but significant variance. In contrast, a high penalty leads to

choosing a small number of predictor variables with more significant bias but lower

3



variance. Therefore, the suitable choice for the amount of the penalty term controls

prediction accuracy and makes the model interpretable (Casella et al., 2013; Doerken

et al., 2019).

Therefore, the ridge regression was introduced by Hoerl and Kennard (1970)

is used to overcome the multicollinearity problem produced by the linear regression

model. It uses 𝐿2-norm penalty to shrink the regression coefficients towards zero, but

it never makes them equal to zero. It is one of the most common penalizing methods.

Ridge regression adds the 𝐿2-norm based penalty to the residual sum of squares. As a

result, it reduces the variance of the parameter estimators, which gives better properties

in both estimation and prediction. Although as a tradeoff tool, the estimated parameters

are biased and have some limitations, such as it is not capable of performing the variable

selection. Therefore, it produces uninterpretable statistical models.

Another commonly used penalizing method is "Least absolute shrinkage and

selection operator" (LASSO), which was proposed by Tibshirani (1996). It uses 𝐿1-

norm penalty to shrink the coefficients of some predictor variables to zero. Therefore,

it is an efficient classifier and variable selection method. However, despite the

advantage of LASSO of being a good variable selection tool, it has some limitations and

shortcomings. First, it cannot select more variables than the number of observations

because of the nature of the convex optimization problem. This seems to be a limiting

feature for a variable selection method (Zou and Hastie, 2005). Second, in the presence

of multicollinearity, LASSO does not encourage group selection. That is, it selects only

one variable from the group and does not care which one is selected (Zou and Hastie,

2005). The third shortcoming is that LASSO does not enjoy the oracle properties,

which refer to the consistency of LASSO as an estimator and the ability of LASSO to

select the exact right features whose coefficients are not equal to zero. In other words,

using the language of Fan and Li (2001), a penalty term is called enjoy oracle properties

when it can identify the right subset model (consistent variable selection), and it has

an asymptotic normal distribution.

The limitations of the LASSO and ridge methods motivated statisticians to

improve them and develop new methods. For example, Zou and Hastie (2005)
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introduced the elastic net method, where the penalty is based on a linear combination

of 𝐿1 and 𝐿2 norms. Tutz and Ulbricht (2009) introduced a correlation-based penalty

method as an alternative to the elastic net method. Although this correlation-based

penalty has the advantages of the ridge method of dealing with grouped variables, it

does not perform variable selection. El Anbari and Mkhadri (2013) claimed that if the

absolute correlation between predictor variables is less than 0.95, the elastic net may be

slightly less reliable. In addition, the elastic net does not incorporate the information

about the data into the 𝐿2-norm during the computation. This motivated the two authors

to use the correlation-based penalty instead of the 𝐿2-norm and the 𝐿1-norm penalties.

Consequently, they proposed to use the correlation-based penalty instead of the 𝐿1

and 𝐿2-norms. In fact, they needed to amend the 𝐿2-norm in the elastic net instead

of replacing it with the correlation-based penalty. The reason is that the correlation-

based penalty gives wrong estimates when the correlation between variables is perfect.

Moreover, this amendment uses the same algorithm that is used in computing the elastic

net model, which may be helpful in reducing the time of computation.

As far as the oracle properties are concerned, Fan and Li (2001) showed that

LASSO does not have the oracle properties because of the inconsistency it has in

variable selection. As a result, the identification of the true model cannot be guaranteed.

Furthermore, the efficiency of its estimators is less than that of the oracle. To address this

issue, Zou (2006) introduced the adaptive LASSO (ALASSO) method, which penalizes

various coefficients in the 𝐿1-norm penalty term with different weights. He proved that

if the small (large) weights are chosen to penalize the coefficients of the important

(unimportant) predictor variables, then the ALASSO model becomes consistent. For

the initial weight, Zou (2006) used the ordinary least squares (OLS) estimates inside

the 𝐿1-norm penalty term, but in the presence of multicollinearity, he used the ridge

regression estimates.

However, in high dimensional data, the OLS and the maximum likelihood

estimates (MLE) are not available, and, therefore, the ALASSO is no longer applicable.

Hence, some researchers used the LASSO estimates as an initial weight (Lian, 2012).

Furthermore, the ALASSO method cannot handle the situation of multicollinearity and

cannot select more variables than the number of observations. Consequently, Zou and
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Zhang (2009) proposed the adaptive elastic net (AEN) method by replacing the 𝐿1-

norm penalty with the ALASSO penalty. He employed the elastic net estimates as an

initial weight. In fact, in both low and high-dimensional data, using LASSO estimates

and elastic net estimates as initial weights in the ALASSO and AEN, respectively, may

not be appropriate. This is because both the LASSO and the elastic net are inconsistent

in selected variables. For these reasons, this study proposes appropriate alternative

initial weights in the case of dealing with high dimensional data.

In view of that, high-dimensional data frequently comprises a substantial

amount of missing data, making it challenging to use conventional imputation methods

appropriately. According to previous research, most microarray datasets are incomplete

to varying degrees, ranging from 50% to 90% (Chen et al., 2016; Wang et al., 2021).

In addition, missing values are present in 45 % of the datasets in the University of

California Irvine (UCI) repository (Tran et al., 2016), which is one of the most common

data stores for benchmarking machine learning problems (Asuncion and Newman,

2007). Missing data is increasingly being handled with the use of multiple imputation

(MI) Rubin (1996); Little and Rubin (2019), which has seen major advancements in

techniques and software (van Buuren and Groothuis-Oudshoorn, 2011; Su et al., 2011).

However, MI approaches may not work correctly in high-dimensional data (Zahid

and Heumann, 2019; Zhao and Long, 2016). For such cases, penalized regression

approaches have drawn a lot of attention in recent literature, including LASSO, to

perform simultaneous parameter estimation and feature selection (Deng et al., 2016).

However, LASSO has some limitations, which are stated above. Against this backdrop,

this study proposes adaptive LASSO with imputation penalized logistic regression for

being more appropriate in such a case as an extension of the penalized methods to

improve the performance and impute missing values.

1.2 Problem Statements

Penalized methods play an essential role in the feature selection and

classification of high-dimensional data. One commonly used method is LASSO,

which has some shortcomings. First, it cannot select more predictor variables than
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the number of observations. Second, in the presence of multicollinearity, the LASSO

selects one variable from a highly correlated group of variables and leaves the others.

Third, the LASSO lacks the oracle properties. As a result, it is an inconsistent

feature selection tool. Moreover, the elastic net penalty method is considered the

most frequent penalized method that overcomes the first two shortcomings of LASSO.

Unfortunately, it outperforms LASSO only when there are highly correlated predictor

variables. However, a high correlation among predictor variables may not exist in many

situations. This is considered one of the drawbacks of the elastic net. Besides, although

a correlation-based penalty was proposed instead of using 𝐿2-norm penalty in elastic

net, it no longer gives an accurate estimation when the correlation among variables is

perfect.

The limitations mentioned above of LASSO and elastic net motivated

statisticians to use adaptive LASSO and elastic net in order to overcome the problems

of the LASSO and elastic net methods. Adaptive LASSO basically uses the OLS

estimates as initial weights. However, this is no more valid in high dimensional data.

Despite several statisticians used the LASSO estimates as initial weights. On the other

hand, adaptive elastic net uses elastic net estimates as initial weights. However, this

is not an appropriate choice for the initial weights because both LASSO and elastic

net lack the oracle properties. Furthermore, both of these methods do not consider the

weights for all the features in any implementation. In addition, one of the most vital

issues with high-dimensional data is that it often contains large quantities of missing

data that common multiple imputation approaches may not work correctly.

Therefore, the search for effective adaptive penalizing methods in high

dimensional data has become a necessity in order to improve some penalizing

methods so that they can effectively select features in order to achieve high prediction,

classification accuracy, stability and consistency, and the ability to adequately deal with

different situations of high-dimensional data including missing values and grouping

effect.

7



1.3 Research Questions

In light of the problem statements, the following questions were tackled in this

study.

(a) How to construct adaptive penalizing methods that improve the prediction

accuracy for high dimensional data?

(b) How to propose adaptive penalized methods that work on on the grouping

effect?

(c) How to propose an imputation method that can handle missing values in high-

dimensional data?

(d) How to evaluate the performance of proposed adaptive penalizing methods?

1.4 Research Objectives

The research objectives are as follows:

(a) To improve the adaptive LASSO by using alternative initial weights for logistic

regression models with high-dimensional data.

(b) To construct an adaptive elastic net by employing new initial weights inside the

𝐿1-norm to encourage the grouping effect in high-dimensional data.

(c) To propose an imputation method for penalized logistic regression with adaptive

LASSO.

(d) To evaluate the performance of proposed methods using simulation studies and

real-world data.
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1.5 Significance of the Study

Improving effective penalizing methods is essential to deal with high-

dimensional data to guarantee high performance in prediction, handling of missing

values, and classification in terms of accuracy and consistency. Therefore, these

methods have been a major concern to many statisticians and researchers. This

study thus focused on improving penalizing methods to achieve such desired unique

advantages of high-performance accuracy, stability, and consistency. It is known that

every technique has its strengths and limitations; hence the need for adaptive penalizing

methods become necessary. The results of the proposed penalizing methods improved

the accuracy of prediction, classification, and feature selection, compared to other

existing penalizing methods.

Furthermore, the finding of this study can benefit to early diagnosis of patients

with cancer that machine learning approaches play an important role in classification,

analysis, and prediction in medical science today. The importance of curing patients

and safe lives with early detection ability justifies the need for more effective,

regularization (penalizing) approaches that can concurrently perform both model and

feature selections. For researchers in other fields, the study can help them to unscrew

the potential use of the proposed methods that various researchers were not able to

explore.

1.6 Scope of the Study

This study concentrated on improving the process of feature selection, prediction

accuracy, and handling of missing values through the use of alternative initial weights in

adaptive LASSO and adaptive elastic net for high dimensional data. Simulation studies

with varying numbers of predictor variables, sample sizes, correlation coefficients,

and the proportion of missing values were performed to evaluate the effectiveness of

the proposed methods. In addition, real-world data was used to assess the proposed

penalizing methods. The major parts of the real dataset used are real-world datasets

obtained from the medical discipline like gene expression microarray of different
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cancer types in which the number of genes is often much more than the sample

size. Other datasets are from chemometrics when modeling "quantitative structure-

activity relationship", where the number of molecular descriptors surpasses the number

of compounds. Deep comparative studies were conducted to compare the proposed

penalizing likelihood methods with other existing related methods. All of the simulation

studies and real-world applications are implemented using the R programming language.

1.7 Limitations of the Study

There may be three possible limitations in this study. First, although algorithms

of proposed methods implement well for logistic regression models, they need

improvement in order to use for other regression models. In addition, proposed

penalized methods cannot apply to imbalanced data refers to those types of datasets

where the target class has an uneven distribution of observations, i.e., one class label

has a very high number of observations, and the other has a very low number of

observations. Furthermore, the present study concentrated on dealing with three

different rates of missing values, namely 10%, 20%, and 30% in high-dimensional

data. Therefore, the performance of the proposed imputation penalized method did not

be investigated when the proportion of missing values is more than 30% in such data.

1.8 Organization of Thesis

Following this introductory chapter of the study. This thesis is organized as the

following. Chapter 2 presents a review of the past literature on penalized likelihood

approaches. The research methodology is covered in Chapter 3. It began by explaining

the penalized linear regression and extended linear model methods. It also went over the

statistical properties of the penalized approaches that were used. It was then followed by

a detailed presentation of the proposed penalizing approaches and evaluation metrics

used. In chapter 4, the performance of each proposed method is evaluated through

simulation studies and real-world applications of the logistic regression models. The
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findings and discussion for the effectiveness of the proposed methods are also presented.

Chapter 5 ends the thesis with a summary and future directions of study in this area.
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