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ABSTRACT 

Electromagnetic fields (EMF) are combinations of invisible electric and 

magnetic fields of force collectively where electric fields are proportional to electric 

charges, and magnetic fields are proportional to electric currents. Those fields may 

have detrimental potential health effects and can be in our homes or workplaces. There 

are many uncertainties about those emissions. This research is to clarify and answer 

those questions. This study focuses on magnetics fields only as it can vary. therefore, 

this project is to simulate and analyse magnetic fields radiations in the vicinity of  132 

kV overhead power lines for two cases; with straight conductors and with conductors 

sags, 11 kV triangular straight underground cable for two cases; as 185 𝑚𝑚2,  and 

120 𝑚𝑚2 cross sectional area at 0.9 m in depth, and for 1000, 1600, and 2000 kVA 

transformers determined using finite element method via ANSYS Maxwell. Also, to 

compare the results with the safety limits as defined in recent international standards. 

The results for 132 kV double circuit overhead power transmission straight lines show 

a highest magnetic field magnitude of 38 μT while with conductors sags a highest 

magnetic field of 51.2738 μT. For underground cables, the results show 185 𝑚𝑚2 

bigger cross-section area cable has higher magnetic fields compared to the smaller 

cross section cable with the highest magnetic fields of 97.6598 μT and 44.89 μT 

respectively. For transformers, the highest magnetic field was obtained by applying 

peak load current to the upper and lower windings in each phase for each geometry 

models and examined both far and near fields in two directions. The highest magnetic 

field obtained for far fields of 2000 kVA transformer is 110.50 μT. Those fields data 

are collected at one meter high. The allowable limits are set in ranges (200-1000 μT) 

and (0.9-3mT) for ICNIRP 2010 and IEEE 2019 respectively based on 50 Hz. The 

results are showing safe exposure level of magnetic fields as long as the distance is 

respected. It is advisable that safety precautions should be taken to prevent prolong 

exposure of EMF radiation to human body.  
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ABSTRAK 

 Medan elektromagnetik (EMF) adalah gabungan medan daya elektrik dan 

magnet yang tidak dapat dilihat secara kolektif di mana medan elektrik berkadaran 

dengan cas elektrik, dan medan magnet berkadar dengan arus elektrik. Bidang tersebut 

mungkin mempunyai kesan kesihatan yang berpotensi memudaratkan dan boleh 

berada di rumah atau tempat kerja kita. Terdapat banyak ketidakpastian mengenai 

pelepasan tersebut. Penyelidikan ini adalah untuk menjelaskan dan menjawab 

persoalan tersebut. Kajian ini hanya memfokuskan pada medan magnet kerana boleh 

berbeza. oleh itu, projek ini adalah untuk mensimulasikan dan menganalisis radiasi 

medan magnet di sekitar saluran kuasa overhead 132 kV untuk dua kes; dengan 

konduktor lurus dan dengan kendur konduktor, kabel bawah tanah lurus segitiga 11 

kV untuk dua kes; sebagai luas keratan rentas 185 𝑚𝑚2, dan 120 𝑚𝑚2  pada 

kedalaman 0,9 m, dan untuk transformer 1000, 1600, dan 2000 kVA ditentukan 

menggunakan kaedah elemen hingga melalui ANSYS Maxwell. Juga, untuk 

membandingkan hasilnya dengan had keselamatan seperti yang ditentukan dalam 

piawaian antarabangsa baru-baru ini. Hasil untuk garis lurus transmisi kuasa overhead 

litar berkembar 132 kV menunjukkan magnitud medan magnet tertinggi 38 μT 

sementara dengan konduktor merosakkan medan magnet tertinggi 51.2738 μT. Untuk 

kabel bawah tanah, hasilnya menunjukkan kabel luas keratan rentas 185 𝑚𝑚2 yang 

lebih besar mempunyai medan magnet yang lebih tinggi berbanding kabel keratan 

rentas yang lebih kecil dengan medan magnet tertinggi masing-masing 97.6598 μT 

dan 44.89 μT. Untuk transformer, medan magnet tertinggi diperoleh dengan 

menerapkan arus beban puncak ke belitan atas dan bawah dalam setiap fasa untuk 

setiap model geometri dan memeriksa medan jauh dan dekat dalam dua arah. Medan 

magnet tertinggi yang diperoleh untuk medan jauh pengubah 2000 kVA ialah 110.50 

μT. Data ladang dikumpulkan pada ketinggian satu meter. Had yang dibenarkan 

ditetapkan dalam julat (200-1000 μT) dan (0,9-3mT) untuk ICNIRP 2010 dan IEEE 

2019 masing-masing berdasarkan 50 Hz. Hasilnya menunjukkan tahap pendedahan 

medan magnet yang selamat selagi jaraknya dihormati. Sebaiknya langkah 

keselamatan diambil untuk mengelakkan pendedahan radiasi EMF yang berpanjangan 

ke tubuh manusia.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of study 

Electricity has become critical in our daily life especially in modern and 

industrial cities as it does make our life easier. Consequently, electricity demand keeps 

on rising, towns keep on expanding and become closer to power systems especially in 

crowded population regions. Many electrical systems involving either apparatus or 

conductors are available around us, forming network to meet the increasing electricity 

demand and to transmit energy from generation stations to the load centers. 

Furthermore, the use of machinaries and high voltage applications also keep on 

increasing which leads to the concern of EMF radiation from these sources. As a result, 

people are getting exposed to electromagnetic radiation without them being realise 

since it is invisible and silent to our eyes or ears. Furthermore, the effects cannot be 

felt and seen directly. People can receive electromagnetic radiation continuously from 

different kinds of sources such as generation stations, power lines, substations, 

industries, electrical panels, wires, home appliances, and other countless load centers. 

In the last decades, many countries had shown their concern about electromagnetic 

field (EMF) radiation which is taught to be associated with many health hazards 

especially cancer. Large number of researches were done and the results were analysed 

and presented from different perspectives such as in medical, biological, physical, 

chemistry, and engineering fields [1]. 

Electromagnetic fields which consists of electric and magnetic fields have 

become a great concern since the past decades and recently, the measurements, 

calculations, simulations, and evaluation of these fields radiations are becoming more 

common. Electric fields are proportional to electric charge intensity while magnetic 

fields are proportional to the current intensity flowing through the lines, cables, and 

electrical devices. Intensity of these radiation is affected with increasing distance from 
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the radiation source. Electric fields are measured in Volts/meter (V/m) or sometimes 

in kilovolts per meter (kV/m) while magnetic fields is measured in micro (µT) or milli 

Tesla (mT).  Magnetic fields radiation can be found in different countless technologies 

but in electrical power systems it is considered as extremely low frequency (ELF) 

because their frequency normally does not exceed 300 Hz, man-made, non-ionize, and 

has no thermal effect. 

 

Figure 1.1 Low frequency electric and magnetic fields [2] 

Humans and environment receiving magnetic energy from power sources. The 

dotted lines as shown in Figure 1.1 allow us to see the directions of the induced currents 

parallel to the electric field and perpendicular to the magnetic field. It is very simple 

to disturb the electric field with objects and materials such as buildings, trees, or human 

skin while the magnetic field does not get affected easily by materials because they 

have a high potential to go through everything except if it has a high concentration of 

iron [2]. 

1.2 Problem statement  

The presence of electric currents has strong links with EMF emissions and if it 

is not managed properly, this emission may risk the health of living organisms whom 

are near to those sources. Electric fields can be screened by objects such as buildings, 
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trees, and wall while magnetic fields cannot be shield completely. Therefore, prolong 

exposure to magnetic field radiation from overhead lines, underground cables, 

transformers, and other electrical appliances may be harmful to human body. 

According to statements released by World Health Organization (WHO) and 

International Commission on Non-Ionizing Radiation Protection (ICNIRP), everyday 

exposure to chronic low-intensity currents can rise different kinds of health effects, 

classified into short and long effects. In the short term, it causes headaches, fatigue, 

anxiety, insomnia rashes, and muscle pain while in the long term it causes leukemia, 

brain cancer, breast cancer, and skin cancer[3]. According to the recent standard 

released by the Institute of Electrical and Electronics Engineers (IEEE) in 2019, people 

whom exposed daily to chronic low intensity (above 0.9–3 mT) magnetic fields may 

increase health risks, potentially leading to leukemia, especially in children[1]. Besides 

that, the International Agency for Research on Cancer (IARC) has classified such 

fields as possibly carcinogenic to humans (Group 2B) but there is no clear evidence to 

justify the relationship between the electromagnetic fields and severe diseases such as 

cancers [3]. Furthermore, individuals are concerned or nervous about their healthy life, 

and the working environment, and their crop since they have read or heard stories 

about this problem.  

1.3 Objectives 

The main objectives of this research are: 

(a) To simulate and analyse magnetic fields radiation in the vicinity of overhead 

power lines, underground cables, and transformers using finite element method 

via ANSYS Maxwell. 

(b) To compare the results with the limits of the guidelines as defined in the 

international standards. 
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1.4 Project Scopes  

This research work is focusing on analysing the magnetic field radiation from 

132 kV double circuit overhead power transmission lines, 11 kV underground cables 

with different sectional cross area, and transformers. The analysis is done through 

simulation work using finite element method via ANSYS Maxwell. No measurement 

was conducted for this research work because of limitation and restriction due to 

Covid19 pandemic. The simulation results were compared with the recent guidelines 

for safe limit exposure recommended by the World Health Organization (WHO). 

1.5 Significance of the study  

The advantage of this research is to see how those magnetic fields radiation 

behaves in power systems as in transformers or conductors which can be located 

anywhere around us and to evaluate the magnitude of radiations and validate how they 

are varying to the receivers especially regarding the probability of health hazards 

associated with those different sources.  
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1.6 Thesis Organization 

The project report is outlined in the following manner 

Chapter 2, consists of general concepts reviewed from previous related work. 

Introduction, discussion of the theoretical framework, safety limits based on recent 

international standards, and potential of health hazards were explained and elaborated 

in detail in this chapter. 

Chapter 3, discusses the methodology adopted on how this research works was 

conducted. The research design, flowchart, and how does the simulation works was 

carried out using ANSYS Maxwell were discussed appropriately. 

Chapter 4, states the findings in quantitative analysis and interprets the meaning 

of the results, and compare them to the recent international guidelines. 

Chapter 5, concludes the findings of this study where the magnetic field and 

electric field values within the allowable range and safety precautions should be 

considered. 
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