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ABSTRACT

A biocomposite consists of Poly (lactic acid) (PLA) and Banana Fiber (BF) 

was prepared responding to high demand of biodegradable product. The mechanical 

as well as the morphological studies were done to find the optimum BF loading for the 

biocomposite system. Nevertheless, the optimum BF loading could not determine 

since most of the mechanical properties exhibit a decremental trends and the scanning 

electron microscope (SEM) analyses revealed that there was an interfacial gap 

presence between the PLA/BF due to poor compatibility between those two. An 

epoxy-based compatibilizer (brand name Joncryl) was then incorporated into the 

biocomposite system to improve the overall mechanical properties of PLA/BF 

biocomposite. However, addition of Joncryl only gave a slight improvement on impact 

strength but adversely affected the tensile and flexural strength. Hence, graphene (Gr) 

was added to improve the properties of the nanocomposite. Sample of PLA/10% BF 

with 0.5 phr Gr loading recorded the highest tensile and flexural strength compared to 

other formulations thus was selected as the optimum loading for the PLA/BF/Gr 

nanocomposite. Thermal gravimetry analysis (TGA) and differential scanning 

calorimetry tests (DSC) revealed that increased amount of Gr had enhance the thermal 

stability of the biocomposite. On the contrary, the increase contents of Gr had 

decreased the nanocomposite toughness, which was shown by the impact test results. 

In order to overcome the drawback, a core shell rubber (CSR) was introduced to the 

system as a toughening agent. Based on the overall mechanical properties, 15 phr CSR 

content showed the highest impact strength and elongation at break while having an 

acceptable thermal stability. The limiting oxygen index (LOI) for 15 phr CSR content 

was at 21 volume%, which exceeded the threshold mark of 20.8 volume%. This 

indicate that the nanocomposite produced at this formulation can be classified as a safe 

material.
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ABSTRAK

Biokomposit yang terdiri daripada campuran poli (asid laktik) (PLA) dan serat 

pisang (BF) telah disediakan bagi memenuhi permintaan tinggi produk biodegrasi 

pada masa kini. Kajian mekanikal serta kajian morfologi telah dijalankan bagi 

menentukan kadar pemuatan optimum BF didalam sistem komposit. Walau 

bagaimanapun, pemuatan optimum BF tidak dapat ditentukan kerana kebanyakkan 

sifat mekanikal menunjukkan nilai penurunan manakala imbasan miskroskop electron 

(SEM) pula mendedahkan bahawa terdapat ruang antara muka PLA dan BF 

disebabkan oleh keserasian yang kurang baik antara keduanya. Joncryl kemudiannya 

dimasukkan ke dalam komposit untk memperbaiki sifat mekanikal PLA/BF komposit. 

Penambahan Joncryl bagaimanapun, hanya memberi sedikit peningkatan kekuatan 

hentaman tetapi melemahkan sifat mekanikal lain seperti kekuatan tegangan dan 

lenturan. Grafene (Gr) kemudiaanya ditambah untuk meningkatkan sifat 

nanokomposit. Formulasi PLA/10% BF beserta 0.5 phr mencatatkan kekuatan 

tegangan dan lenturan tertinggi berbanding formulasi lain. Analysis terma gravimeti 

(TGA) dan pengimbas kalori berbeza (DSC) telah menunjukkan bahawa peningkatan 

kandungan Gr dapat meningkatkan kestabilan terma nanokomposit. Namun demikian, 

peningkatan kandungan Gr turut mnyebabkan penurunan daya tahan hentaman, seperti 

yang ditunjukkan oleh keputusan ujian hentaman. Bagi mengatasi masalah ini, getah 

teras bercengkerang (CSR) telah ditambah kedalam sistem nanokomposit. 

Berdasarkan sifat mekanikal secara keseluruhan, kandungan 15 phr CSR telah 

menunjukkan kekuatan hentaman tertinggi dan mempunyai keseimbangan terma yang 

baik. Indeks penghad oksigen (LOI) juga mencatakan 21/vol%, yakni melebihi paras 

20.8/vol%. Ini menunjukkan bahawa nanokomposit yang dihasilkan pada formulasi 

ini dapat diklasifikasikan sebagai bahan selamat.
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CHAPTER 1

INTRODUCTION

1.1 Background of Research

These few decade, various synthetic material has been explored as an 

alternative to iron and steel in various area such as automotive, packing and even 

housing application. Among those, thermoplastic has simulated immense interest and 

became the perfect replacement for metal. Nowadays, plastics are used for almost 

everything from the articles of daily use to complicated structures, machine 

components etc. (Raj et al. 1986). Plastics find an extensive application due to their 

properties such as less weight, low water absorption, high stiffness and strength. The 

same chemical building blocks that make plastics so versatile are the same components 

that harm people and the environment. Until now, there is no safe and convenient way 

to disposed plastics and it end up become an iconic of symbol of waste, ‘the white 

pollution’ that is harmful to environment. Another detriment of using plastic material 

was due to the fact that plastics were made from crude oil, a valuable natural resource 

that cannot be replenished once diminished. Most plastics are derived from 

petrochemicals process produced from fossil oil and gas. As the manufacture of 

plastics also requires energy, its production is responsible for the consumption of a 

similar additional quantity of fossil fuels.

Biodegradable polymer, a polymer that breaks down after its intended purpose 

to result in natural byproducts such as gases, water, biomass, and inorganic salt may 

serve as a promising replacement for thermoplastic. This type of polymer can be 

classified into two main groups based on the structure and occurrence, agro polymer 

and bio polyester. Agro polymer consist polysaccharides and protein while bio 

polyester usually obtained from microorganism or synthetic monomer. Among these 

biodegradable polymer, poly (lactic acid) (PLA) can be considered as the most famous 

and suitable alternative material for synthetic plastic due to it distinct features.



PLA is biodegradable thermoplastic aliphatic polyester that derived from renewable 

resources, such as corn starch, tapioca roots, or sugarcane. PLA has many desirable 

properties such as environmentally friendly, ease of processability and non-toxicity 

applications (Kumar et al., 2010). Even though PLA have those desirable properties as 

mention earlier, PLA also have several impediments that restricted it usage for several 

applications. In term of mechanical properties, PLA inherent brittleness, low 

elongation at break and low toughness. Apart from having moderate mechanical 

properties, the biggest concern regarding PLA was its high raw material cost. Due to 

this, scientists have come up with a new way, adding a natural fiber into PLA matrix 

and turn it into biodegradable composite or biocomposite. Various natural fibers such 

as flax, ramie, jute, bambo, pineapple, kenaf, hemp and banana have been investigated 

as reinforcements in biopolymers by various researchers (Shalwan and Yousif, 2013; 

Oksman et al., 2003)

Almost all biocomposite consist of biodegradable polymer as matrix and a 

natural fiber as the reinforcing filler. Since both components are biodegradable, the 

biocomposite will also become biodegradable as well. Natural fiber such as banana 

fiber (BF) surely can become a promising biocomposite filler because it is abundantly 

available and considered as one the most planted tree on whole world. Although BF 

does provide the biodegradability needed, but on its own, BF does not possess the 

necessary thermal and mechanical properties desirable for engineering application. In 

order to compensate these limitations, BF was combined with PLA to obtained the 

desirable property without obstructing green polymer images. The main problem with 

PLA/untreated banana fiber (UBF) is it tend to undergo various damage phenomenon’s 

such as matrix cracking, interfacial debonding, fiber pull outs, and fracture due to 

incompatibility between hydrophobic PLA and hydrophilic UBF. The poor interfacial 

interaction between the hydrophobic matrix and hydrophilic natural fiber is a 

pondering subject for material scientists in this area. Several attempts have been tried 

by numerous researchers to solve these incompatibility problems.
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Various modification techniques such as physical treatments using solvent 

extraction and the others use different type of coupling agent to improve the 

compatibility between PLA and BF (Dupraz et al.,1996; Luo and Netravali, 1999; 

Okubo and Fujii, 2002; Plackett et al., 2003). All of these researchers reported that 

most of the treatment used does improved the compatibility and thus, enhance both 

mechanical and thermal properties of the biocomposite.

The addition of compatibilizer certainly can improve the compatibility between 

matrix and natural fiber, thus, enhancing the mechanical properties of the PLA/BF 

composite. In a similar fashion, this research hope to utilize the usage of new additive 

named Joncryl, that will act as a compatibilizer, in order to improve the interfacial 

bonding between the hydrophilic fibers with hydrophobic PLA. This novel approach 

was expected to increase the mechanical properties of PLA/BF biocomposite. Despite 

several improvement in term of mechanical properties, the PLA/BF biocomposite 

might still possessed the poor thermal properties and high flammability.

According to Feng et al., (2014), high performance nanofillers like nanotube, 

nanoclay, and graphene can improve the thermal properties and flame retardancy of 

natural fiber reinforced PLA composites. However, the drawback of nanofiller is their 

high production cost while nanoclay only provided slight enhancing effect toward 

electrical and thermal conductivity properties. As Nicholas (2012) wrote in his review 

for Springer Nature, “When carbon fibers just won’t do, but nanotubes are too 

expensive, where can a cost-conscious materials scientist go to find a practical 

conductive composite? The answer could lie with graphene sheets”.

Graphene (Gr) is two-dimensional carbon nanofiller, with one-atom-thick 

planar sheet of bonded carbon atoms, that are densely packed in a honeycomb crystal 

lattice. It is regarded as the “thinnest material in the universe” with tremendous 

application potential (Geim and MacDonald., (2007); Si and Samulsky., (2008). Cao 

et al., (2010)) reported that the incorporation of 0.2 mass % of Gr into PLA induces a 

significant enhancement in mechanical and thermal stability of polymer.
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More recent study conducted by Pinto et al. (2013) has discussed the effect of 

small amounts (0.2 to 1 mass %) of graphene oxide (GO) and graphene nanoplatelets 

(GNP) on functional properties of PLA film. The results obtained show that the yield 

strength as well as Young's modulus certainly improved with the addition of GO and 

GNP compared to pristine PLA. Mat Desa et al., (2019), on the other hand, study the 

effect of GNP toward the thermal stability and LOI value of PLA composite. It was 

found out that GNP certainly enhanced both of the thermal stability and LOI value of 

PLA composite. Even though all of these studies highlight the enhancing effect of Gr, 

some of them also highlight the low impact strength yield PLA/Gr blend.

Low impact strength yield by PLA/Gr blend can be remedied by adding an 

elastomer or rubber component that can act as impact modifier. Elastomer or rubber is 

very important class of polymeric materials with major application in various areas of 

polymer industry. Among earlier work on PLA/Gr toughening was reported by Wu et 

al., (2009) and Ko et al., (2009) that used (PCL) and poly (butyleneadipate-co- 

butyleneterephthalate) (PBAT) as impact modifier. The toughening of PLA/Gr 

nanocomposites was later examined by Shi et al. (2011) using ethylene-co-vinyl 

acetate (EVA) as impact modifier. All of them had showed that addition of elastomeric 

material does give a slight toughening effect toward PLA/Gr nanocomposites. 

However, the materials stiffness becomes too low and this affected the tensile and 

flexural strength. Apart from the previously mention works, there was a very few 

attempts made thus far to enhance the toughness of PLA/Gr nanocomposites. 

Therefore, it is interesting to see the effect of new generation impact modifier called 

Core Shell Rubber (CSR) toward PLA/Gr nanocomposites system. CSR can be defined 

as a material that contain of a rubber core (inner material), encapsulated by a glassy 

shell (outer layer material). The advantage of CSR was its compatibility with non

polar polymer such as PLA since the outer shell were also made up from non-polar 

polymer as well. This will prevent the core rubber from sticking with each other thus, 

lead to a better toughening effect.
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1.2 Problem Statement.

Recent consciousness in reducing the environmental impact materials lead to 

the development of newer materials. In light of potential future petroleum shortages 

and pressures for decreasing the dependence on petroleum products, there is an 

increasing interest in maximizing the use of renewable material. Polylactic acid (PLA), 

linear aliphatic thermoplastic polyester, offers a fine solution toward those problems 

due to its biodegradability and agricultural origin. It is an auspicious polymer with 

inherent biodegradability character, offers good aesthetics, relatively good mechanical 

strength, and non-toxicity. Even though PLA has many desirable properties, it does 

have several impediments that restricted its use in several applications. High 

brittleness, low heat deflection temperature and high cost in particular have limited the 

wide application of PLA in various aspect (Kumar et al., 2010)

Mention before on the introductory part that the stumbling block of using PLA 

was its high cost. Many research studies have been conducted on modification of PLA 

by blending with other biodegradable polymers or incorporated PLA with natural fiber 

in order to reduce the cost (Dupraz et al., 1993, Jandas et al., 2011 and Plackett et al., 

2013). Unfortunately, the fabrication method of blending with others biodegradable 

polymer will also result in high cost. The more approvable method is producing a 

biocomposites by impregnating natural fibers into biodegradable polymer to reduce 

the cost as well as to improve the mechanical properties without compromising green 

composite image. That being said, the hydrophobic nature of PLA is not very 

compatible with hydrophilic natural fiber such as banana fiber (BF). PLA is an 

aliphatic polyhydroxyacid which mean chemically, there is no site for effective 

interaction with hydroxide (-OH) of natural fiber but many sites for hydrophobic 

reaction. This low compatibility of BF with PLA will result on ineffective stress 

transfer between them, that leads to poor mechanical properties in the composites. The 

poor mechanical properties may result from various type of failure such as matrix 

cracking, interfacial debonding, fiber pull outs, and fracture due to incompatibility 

between hydrophobic PLA and hydrophilic BF. It is believed that the addition of 

compatibilizer will improve the interfacial bonding between fiber and matrix, thus, 

further enhancing the compatibility between the matrix and fibers.
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Since several researchers have proved that the addition of compatibilizer will 

enhance the compatibility of PLA and BF, this research hope to pounce of the same 

idea, utilizing the usage of new additive named Joncryl, that will act as a 

compatibilizer, in order to improve the interfacial bonding between the hydrophilic 

fibers with hydrophobic PLA This novel approach expected to increase the mechanical 

properties of PLA/BF biocomposite. That being said, since Joncryl is a new type of 

additives, there is no paper published regarding the effectiveness of this additives as a 

compatibilizer. The only guideline was the technical data provided by the supplier (D- 

BASF), which contain the information stating that Joncryl can react with various 

reactive group such as epoxide, anhydride, -COOH and -OH. This opens the 

possibility for Joncryl to react with both PLA and BF. That being said, the reaction 

between PLA with Joncryl and Joncryl with BF might varies compared with silane or 

other type of coupling agent.

The addition of Joncryl might remedied the compatibilities issues between 

PLA and BF, thus slightly enhance the mechanical properties of biocomposite. 

However, PLA/BF biocomposite still inherent the poor thermal properties and high 

flammability, which limit it usage in various applications of polymer fields. According 

to Jandas et al. (2013), irrespective of the BF treatment and surface modifications, the 

thermal stability of PLA/BF remain unchanged. He also claimed that for the Limiting 

Oxygen Index (LOI), the value also constant at 20 volume% with or without BF 

treatment. This showed that the addition of compatibilizer or BF surface treatment will 

not improve the thermal properties as well as the flame-retardant properties of 

biocomposite.

In order to improve the thermal and flame retardancy properties of PLA/BF 

biocomposite, nano fillers such as nanoclay (Nc), carbon nanotubes (CNT) and 

graphene (Gr) (Feng et al., 2014; Geim and MacDonald, 2007; Si and Samulsky, 2008) 

were incorporated into PLA/BF biocomposite. Nc was reported to give just a slight 

improvement to PLA/BF biocomposite while CNT are very pricy, Gr was proved to 

be the most suitable candidate to be used as reinforcing filler for this project. Mention 

in introduction that there was plenty of studies in recent year that proved the addition 

of graphene already improved the mechanical, thermal and more importantly,
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compensate poor fire resistant inherent by PLA/BF biocomposite (Cao et al., 2010; 

Pinto et al., 2013). Although various research proved the effectiveness of Gr as 

reinforcing filler, incorporation of a rigid Gr into an already brittle PLA will create a 

very stiff and brittle material, that have low toughness and impact strength.

Adding an impact modifier can proved to be an effective way to tackle the 

brittleness issues experience by PLA/Gr blend. However, most traditional impact 

modifiers were made from elastomer/rubber that doesn’t synergy well with PLA 

matrix. There’s always the chance of agglomeration among rubber particle that could 

lead to even poorer mechanical properties. The emerging of new generation impact 

modifier called Core Shell Rubber (CSR) could prove to be the answer due to its 

compatibility with PLA. It is interesting to see whether the presence of CSR can 

improve toughness and at the same time, retained good mechanical, thermal and flame 

retardancy properties obtained by PLA/BF/Gr compatibilized with Joncryl 

nanocomposite.

1.3 Objectives of Research

The aims of this research were to develop a new smart material based on PLA 

and BF composite toughened by core shell rubber (CSR) as an impact modifier, with 

the addition of graphene (Gr) as nanofillers. The aims were further divided into:

(1) To determine the best BF loading for PLA matrix based on the mechanical 

properties and morphological study.

(2) To study the effectiveness of Joncryl as a compatibilizer for PLA/BF 

biocomposite.

(3) To examine the reinforcing effect of Gr toward the mechanical, thermal and 

flammability properties of PLA/BF/Gr composite

(4) To investigate the toughening effect of CSR toward the mechanical, thermal 

and flammability properties of PLA/BF/Gr nanocomposite
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1.4 Scope of Research

In order to achieve the research aims, several requirements were carried out

such as:

(1) Preparation of PLA/BF composite by using melt blending method, with BF 

loading varies between 0 to 20 wt%. Analysis on PLA/BF composite are:

(a) Evaluation of optimum BF load of PLA composites was determine 

based on tensile, flexural, and impact properties.

(b) Morphological observation using Scanning Electron Microscopy 

(SEM)

(c) Finding possible interaction between PLA, and BF by using Fourier 

Transform Infrared Spectroscopy (FTIR).

(2) Preparation of PLA/BF composite compatibilized with Joncryl by using melt 

blending method, with BF loading varies between 0 to 20 wt%. Analysis on 

PLA/BF compatibilized with Joncryl composite are:

(a) Evaluation of optimum BF load of PLA composites compatibilized 

with Joncryl was determine based on tensile, flexural, and impact 

properties.

(b) Morphological observation using SEM.

(c) Finding possible interaction between PLA, BF and Joncryl by using

FTIR

(3) Preparation of PLA/BF/Gr compatibilized with Joncryl biocomposite using 

melt blending method, with Gr loading varies between 0,0.5,1,1.5 and 2 phr. 

Analysis on PLA/BF/Gr compatibilized with Joncryl nanocomposite are:

(a) Evaluation of optimum Gr loading was determine based on tensile, 

flexural, and impact properties.

(b) Morphological observation using FESEM.

(c) Finding possible interaction between PLA, BF, Joncryl and Gr by

using FTIR
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(d) Thermal properties characterization using Thermal Gravimetry 

Analysis (TGA) and Differential Scanning Calorimetry (DSC).

(e) Investigate the flame retardancy property using Limiting Oxygen 

Index (LOI).

(4) Preparation of PLA/BF/Gr/CSR compatibilized with Joncryl nanocomposite

using melt blending method, with CSR content varies between 0,5,10,15 and

20 phr. Analysis on PLA/BF/Gr/CSR compatibilized with Joncryl

nanocomposite are:

(a) Evaluation of optimum CSR loading was determine based on tensile, 

flexural, and impact properties.

(b) Morphological observation using FESEM.

(c) Finding possible interaction between PLA, BF, Joncryl, Gr and CSR

by using FTIR

(d) Thermal properties characterization using TGA and DSC.

(e) Investigate the flame retardancy property using LOI.

1.5 Significance of Study

This study was originated from the desire to utilize biopolymer from renewable 

resources. Utilization of PLA and BF will enrich values to our local commodity and 

help to reduce dependency on non-renewable petroleum-based polymers. The addition 

of core shell rubber was essential to remedied the brittleness issues caused by PLA and 

BF composite. The addition of graphene (Gr) meanwhile, act as the reinforcement 

filler so that the composite can improved its mechanical, thermal, and flammability 

properties which consequently drive PLA based composite towards greater 

application. This research was expected to yield new findings and providing new 

knowledge regarding biopolymeric nanocomposites material with enhanced 

mechanical, thermal stability and flame-retardant characteristics. This PLA 

nanocomposites is expected to find ways into wider applications such as in automotive 

parts, medical devices, and coating application that required certain level of 

mechanical, thermal and flame retardancy property.
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