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ABSTRACT 

The disposal of rubbers from the waste tyres remains the main environmental 

concern worldwide unless recycled in an eco-friendly way. The incorporation of these 

wastes into the concretes as replacement agent for some of the natural aggregates is 

strategized as one of the possible solutions. Based on these factors, this study evaluates 

the effects of the tire rubber crumb wastes (TRCWs) at various contents (5, 10, 20 and 

30% of volume) and granulated blast furnace slag (GBFS) as the fine and coarse 

aggregates replacement on the properties of newly designed concretes. Twelve batches of 

such concretes are prepared by blending the industrial wastes including the GBFS and 

TRCWs with ordinary Portland cement (OPC). The mechanical, durability and acoustic 

performance of these modified concretes are analyzed using slump, compacting factor, 

water absorption, compressive, tensile, flexural strength, and modulus of elasticity test. 

Added to that the resistance to carbonation, acid, sulphate attack and elevated 

temperatures, as well as the microstructure tests such as scanning electron microscope 

(SEM), x-ray diffraction (XRD), energy dispersive x-ray (EDX), and impedance tube test. 

The concrete modified with 20% of GBFS as OPC replacement shows enhanced 

mechanical traits wherein the compressive strength after the curing age of 28 days is 

higher (42.8 MPa) than the OPC control mix (33.8 MPa). Moreover, the mix designed 

with 5% of TRCWs as fine or/and coarse aggregates replacement is nearly 14.8% 

compared to the OPC specimens. The results show that the TRCWs substitution up to a 

limit of 10% of the river sand and gravel into the concrete can be effective without any 

strength loss. The modified concretes’ performance in aggressive environments are 

analyzed using residual compressive strength, weight loss, surface textures and 

microstructure tests. The concrete modified with 20% of GBFS as OPC replacement 

shows enhanced durability properties wherein the residual compressive strength after 

exposed to sulfuric attack of one year is higher (10.7%) than the OPC control mix (2.9%). 

Moreover, the mix designed with 5% of TRCWs as fine or/and coarse aggregates 

replacement is nearly 7% compared to the OPC specimens. Modified concretes with 30% 

of TRCWs aggregates exhibit an enhancement on noise reduction coefficient (NRC) by 

137.7% and lower sound transmission coefficient (STC) by 37.3% compared to the control 

specimen. Since the compressive strength is in an acceptable range (27MPa), modified 

concrete contains 30% of fine TRCWs has good potential to be utilised as an acoustic 

absorber as the capability of absorbing sound energy at 500 Hz to 2000 Hz has improved. 

Therefore, modified concrete contains 30% of fine TRCWs can be applied as a sound-

absorping material for application in railway concrete slabs, precast concrete walls and 

concrete pavement blocks. It is established that the use of TRCWs into concrete will be 

an environmental remedy and renewable resource for developing construction materials, 

leading to sustainability (minimization of the depletion of natural resources including river 

sand and gravel). 
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ABSTRAK 

Pembuangan getah dari tayar terpakai sentiasa menjadi kerisauan utama berkaitan 

alam sekitar di seluruh dunia melainkan ianya dikitar semula dengan cara yang mesra 

alam. Penggunaan sisa ini ke dalam konkrit sebagai agen pengganti agregat semulajadi 

distrategikan sebagai satu kemungkinan penyelesaiannya. Berdasarkan faktor ini, kajian 

ini menilai kesan sisa tayar getah (TRCW) pada kandungan yang pelbagai (5, 10, 20 dan 

30% isipadu) dan sanga relau bagas berbutir (GBFS) sebagai penggantian agregat halus 

dan kasar pada sifat konkrit baru yang direkabentuk. Dua belas kumpulan konkrit tersebut 

disediakan dengan mengadunkan sisa industri termasuk GBFS dan TRCW dengan simen 

Portland biasa (OPC). Prestasi mekanikal, ketahanan dan akustik bagi konkrit yang 

diubah ini dianalisis menggunakan ujian turun, faktor pemadatan, penyerapan air, 

mampatan, tegangan, kekuatan lenturan dan modulus keanjalan. Ini ditambah pula 

dengan ujian rintangan terhadap karbonasi, asid, serangan sulfat dan suhu tinggi, serta 

struktur mikro seperti ujian kemikroskopan elektron imbasan (SEM), belauan sinar-X 

(XRD), sinar-X sebaran tenaga (EDX), dan tiub galangan. Konkrit yang diubah dengan 

20% GBFS sebagai pengganti OPC menunjukkan sifat mekanikal tertingkat di mana 

kekuatan mampatan selepas usia 28 hari adalah lebih tinggi (42.8 MPa) berbanding 

campuran OPC kawalan (33.8 MPa). Di samping itu, campuran yang dirancang dengan 

5% TRCW sebagai pengganti agregat halus atau/dan kasar adalah hampir 14.8% 

berbanding dengan spesimen OPC. Keputusan menunjukkan bahawa penggantian 

TRCW sehingga 10% daripada pasir sungai dan kerikil ke dalam konkrit adalah efektif 

tanpa mengurangkan kekuatannya. Prestasi konkrit yang diubah, dalam persekitaran yang 

agresif, dianalisis menggunakan ujian kekuatan mampatan baki, kehilangan berat, tekstur 

permukaan dan struktur mikro. Konkrit yang diubah dengan 20% GBFS sebagai 

pengganti OPC menunjukkan sifat ketahanan tertingkat di mana kekuatan mampatan baki 

selepas didedahkan kepada serangan sulfurik selama setahun adalah lebih tinggi (10.7%) 

daripada campuran OPC kawalan (2.9%). Di samping itu, campuran yang dirancang 

dengan 5% TRCW sebagai pengganti agregat halus atau/dan kasar adalah hampir 7% 

berbanding dengan spesimen OPC. Konkrit yang diubah dengan 30% agregat TRCW 

menunjukkan peningkatan pada pekali penyerapan bunyi (NRC) sebanyak 137.7% dan 

pekali kehilangan hantaran bunyi (STC) yang rendah sebanyak 37.3% berbanding dengan 

spesimen kawalan. Oleh kerana kekuatan mampatan berada dalam julat yang dapat 

diterima (27MPa), konkrit yang diubah dengan 30% agregat TRCW halus adalah 

berpotensi untuk digunakan sebagai medium penyerap akustik kerana kemampuannya 

menyerap tenaga bunyi pada kadar 500 Hz hingga 2000 Hz telah ditambah baik. Oleh itu, 

konkrit yang diubah dengan 30% agregat TRCW halus ini dapat digunakan sebagai bahan 

penyerap bunyi untuk kegunaan lantai konkrit keretapi, dinding konkrit pratuang dan blok 

turapan konkrit. Ini menunjukkan bahawa penggunaan TRCW ke dalam konkrit akan 

menjadi penawar kepada alam sekitar dan sebagai sumber yang diperbaharui untuk 

pembangunan bahan binaan, yang mengarah kepada kelestarian (meminimumkan 

penipisan sumber semulajadi termasuk pasir sungai dan kerikil).
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Introduction 

Concrete containing rubber aggregates known as rubberised concrete is a 

composite material of portland cement, water, natural and rubber aggregates. It different 

from conventional concrete is that it contains rubber aggregates as a partial replacement 

in the concrete mixture. Rubber particles significantly increase the strain capacity and 

improve the impact resistance of concrete. Moreover, rubber aggregate enhances 

toughness and ductility of the composite, and with a higher degree of air entrainment that 

can be easily pumped at higher flow rates, and also improves the efficiency of sound 

absorption and thermal insulation, although the mechanical strength of concrete is 

reduced. Rubberised concrete also has a lower unit weight, higher porosity, and lower 

splitting tensile strength. 

Utilise tyre rubber crumb wastes (TRCWs) in construction and other applications 

can reduce environmental problems by preventing the accumulation of tyres that end their 

life service without been burned, and also save energy, cost, and risk of stockpiling. In 

fact, tyres demand a huge space to stockpile and long duration to decompose. Meanwhile 

rubberised concrete is lighter by weight than conventional concrete with an economic 

impact on the total cost of the building, as it reduces the weight of Dead Load, also using 

waste rubber reduces the demand for natural raw materials, and saves landfill space. 

Rubberised concrete with all the desirable enhancement on concrete properties. Still it 

does not fully fulfil the construction work requirements, due to the low compression 

strength caused by the major weakness of using rubber in concrete. 
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The compressive strength of the concretes made from TRCWs showed a 

remarkable reduction and strongly depended on the rubber contents. When fine aggregates 

were entirely replaced by crumb rubbers, a decrease in the compressive strength was 

observed to reach 65%. The elastic modulus of the proposed concrete specimens were 

decreased with the increase in the substitution levels. Further parametric analysis 

demonstrated that rubber particles can only compose up to 20% of the material’s total 

composition before a large drop in the strength of the concrete occurs. However, the way 

in which rubber performs in concrete is directly influenced by the type of rubber used and 

its associated properties. The rigidity of the rubber and the size of its particles, gradations 

as well as its surface properties all had an effect on its performance within concrete.  

Wise management of waste materials can be quite intensive in terms of 

environmental friendliness and human safety. Hence, proper recycling of industrial wastes 

in concrete industry can lead to immense practical benefits, and waste materials as 

supplementary cementitious materials (SCMs) can improve the performance of concrete 

and mortar in many ways such as microstructure, durability, and mechanical properties 

compared to conventional concrete. 

Characteristically, today the SCMs are widely used in concrete either in blended 

cements or added separately in the concrete mixer. The use of SCMs such as ground 

granulated blast furnace slag (GBFS), a by-product from iron production, or fly ash (FA) 

from coal combustion represent a viable solution to partially substitute OPC. The use of 

GBFS as SCMs strongly recommended by several researchers to enhance the mechanical 

and durable properties. 

 

Over the years, numerous studies have been made to determine the performance 

of the concrete that contains GBFS. Multiple studies reported an improvement in the 

freshness, strength, and durability of concrete which incorporated GBFS.  When GBFS is 

incorporated as a SCMs, the porosity of OPC concrete is reduced due to the precipitation 

of additional calcium-silicate-hydrate (C-S-H) gel and the carbon footprint of the concrete 

is reduced due to the drop in OPC usage.  
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1.2 Problem Background 

Automobile industry worldwide is growing and the number of tyres generated and 

accumulated growing as well. Recently, most of countries in the world avoid or forbid 

burn, stockpiling or landfill of used tyres, and provide incentive for exploring recycling 

strategies of used tyres.  

In US, about 1 billion tyres stockpiled without effective solution for disposing of 

waste tyres. Consequently, the interest of using wastes tyres increased over the last two 

decades to help prevent environmental problems and carried out how to re-use TRCWs in 

construction industry (RMA, 2015).  

In last decade, the worldwide tyre production reached 1.1 billion units, only in 

Europe, and about 3.2 million tons of used tyres were discarded, 96% were recovered, and 

38% were recycled according to The European Tyre & Rubber Manufacturers Association 

(ETRMA, 2009). The Department of Statistics Malaysia estimated that 12.88 millions of 

Tyres (pneumatic) were generated in Malaysia in 2014, and 4% were exported (DOSM, 

2015). 

In 2013, Rubber Manufacturers Association (RMA) estimates that 233.3 millions 

of tyres were used in the US. The recovery ratio was 95.88%, of which 8.2% were Land-

disposed, 6.2% were exported, 4.3% were for Civil Engineering industry, and the rest 

were recycled or used for energy production. Stockpiles of existing waste tyres have been 

reduced by 92% since 1990 (RMA, 2013). 

Annually around billions tyres have been used and end their service life, and more 

than 50% are discarded to landfills or garbage without any treatment, continue to pose 

environmental challenges. By the year 2030, there would be 5000 million tyres to be 

discarded on a regular basis. (Blessen and Ramesh, 2016; Jorge and René, 2019). 
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 Therefore, the research on use of tyre scraps should be more emphasised as an 

obtainable resource and find their benefits. Furthermore, discarded without any treatment 

can led to environment and health problems.  

Using of waste rubber as a partial or full replacement of natural aggregate in 

construction activities not only reduces the demand for extraction of natural raw materials, 

but also saves landfill space and solve the environmental problems. 

It is well known, the tyres scrap demands a huge space to stockpile than other 

waste due to their volume and shape, 75% of a tyre's volume is void, and it is non-

decomposed material for short term. Furthermore, used tyres may accumulate water and 

create a suitable environment for breeding bacteria, molds, insects or mice. In the case of 

burning, tyres generate toxic gases such as dioxin, and cause a serious pollution problem, 

and the emissions compounds are very dangerous to humans, animals and plants. 

The current environmental and economical states of the world have led the 

researchers towards experiencing new methods and to rubber recycling industry. Rubber 

tyre can be used in a variety of civil and non-civil engineering applications. 

In USA, according to RMA use of wastes tyres in civil engineering dropped from 

639.99 thousands of tons in 2005 to 172 thousands of tons in 2013, with a ratio of 

reduction 73.12%, which means the demand of using it on constructional applications 

decrease (RMA, 2014). The main reason restricted using TRCWs in a wide range in 

concrete industry because of low compressive strength performance compared to 

traditional concrete. It is well known the strength performance depended on bond between 

the aggregates surface and the paste (cement), and also compressive strength as an indirect 

index on durability indicates a reduction in durability performance caused by the inclusion 

of rubber particles in concrete, and due to the weak bond and the porosity increment. 

Therefore, several methods used to enhance the bond strength between paste and 

aggregates. It concluded that the bond improvement takes two ways; one focus in enhance 

the paste properties and the second focusing in aggregates side. In aggregates side, there 
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are many studies reported the ability to improve the rubberized concrete performance by 

using different size of aggregate or improve the surface of aggregates using different 

methods for treatment. However, mostly methods used for this purpose such as treatment 

with sodium hydroxide still very expensive and not solve the problem. Likewise, several 

studies reported that the improve paste properties will help to improve the bond strength 

with rubber aggregates. 

 GBFS Slag has been widely used as SCM and extensive research has also been 

conducted on it. Using GBFS may reduce the problem of land fill, cost, and enhance the 

performance of the proposed concrete. About 1180 million tons of hot metal (2017) about 

380 million tons of blast furnace slag are produced yearly worldwide. Most of it (about 

280 million tons) is quenched forming the glassy granulated blast furnace slag (GBS).  

1.3 Problem Statement 

Commercial materials such as epoxy resin, polymers or silica fume used for this 

purpose and given a good performance but still not suitable for work in construction sector 

as these materials very expensive and effect negatively on life cycle of produced concrete. 

Yet, GBFS waste materials introduce a high performance SCMs improved the strength 

and durability of modified concrete. Several researchers recommended GBFS as OPC to 

enhance the sustainability performance of cement concrete. However, there are ability to 

use GBFS wastes as partial replacement to cement to enhance the bond strength 

performance. In rubberized concrete industry, replacing cement by GBFS will lead to 

produce new modified binder can contribute to enhance the bond zone with rubber 

aggregates and allow to recycle high amount of rubbers in concrete industry.  

The compressive strength of GBFS modified concrete increases as the GBFS 

replacement ratio increases, up until a 40-60 replacement level, beyond this level, the 

strength of the GBFS concrete begins to decrease. Previous studies undertook the 
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evaluation of the durability, strength, and porosity of GBFS concrete within different 

environments, under varying conditions and curing regimes. These studies proved that 

GBFS concrete was suitable to a broad range of construction applications. 

In-depth researches on the GBFS included concretes has suggested that it has a 

lower heat evolution, less permeability, greater strength over time, fewer chlorine ions 

penetration, and high resistance against the sulphate attack, alkaline silicate reaction and 

elevated temperature. Despite various studies that displayed the practicality of the GBFS-

based concretes most of them so far used the OPC as the binder. On top, the effects of the 

GBFS inclusion on the durability properties of the rubberized concretes with TRCWs as 

the replacement agent to the fine and/or coarse aggregates remained unexplored. In this 

perception, this work tried to enhance the durability traits of the GBFS and TRCWs 

included OPC-based concretes by exposing them against the aggressive environments (for 

example elevated temperatures and acid, sulphate as well as carbonation attacks). 

Producing a concrete containing tyre rubber aggregate, which increase sound 

absorption through the concrete can increase the use of tyres rubber in civil engineering 

construction. By using the tyres rubbers aggregate in this mixture concrete can be 

constructed in areas where noise prohibits exceeding the permissible level increase 

interest toward using of tyres rubber in civil engineering. Noise negatively may effect 

human health and well-being. Problems related to noise include hearing loss, stress, high 

blood pressure, increase heart rate, sleep loss, distraction, lost productivity, and a general 

reduction of the quality of life and opportunities for tranquility. Although rubberised 

concrete has good sound absorption attributes, the sound transmission loss coefficient 

(STC) inside the concrete decrease as a percentage of rubber content replacement increase. 

The ability to isolate the sound from travelling through the concrete affected by the 

porosity of concrete. Therefore, using SCMs such as GBFS may have the potential to 

partially restore the transmission loss value through the rubberised concrete. 

Rubberised concrete with many advantages such as enhance the concrete ductility, 

toughness, impact resistance and strain capacity, reduce the noise and improve the 
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building sustainability. Therefore, researches in develop strength perfomance and an 

environmental-friendly process for the exploitation of wastes tyres rubber are needed, 

instead of become a pollutant sources on environment. With such development and 

immense benefit of waste tyre rubbers incorporated concretes, this study attempted to 

achieve high performance, durable and eco-friendly rubberized concretes wherein amount 

of OPC was replaced by GBFS. The influence of GBFS inclusion in rubberized concretes 

(containing TRCWs as fine and coarse aggregates) matrix as OPC replacement was 

examined in terms of concrete workability, strength and microstructure performance. 

Durability of modified rubberized concretes as a function of varied TRCWs content was 

also determined. The sound transmission of prepared concretes were evaluated. Results 

were discussed in terms of strength, durability, environmental benefits and sustainability 

of such purposed concretes.  

1.4 Aims and Objectives 

This research aims to evaluate the use of waste tyre aggregates, and GBFS as 

partial substitution of OPC. The specific objectives of the research are: 

i. To optimize the GBFS replacement level, as well as determine the effect of GBFS 

and different amounts and sizes of TRCWs on the workability of fresh rubberised 

concrete. 

 

 

ii. To determine the effect of GBFS and different amounts and sizes of TRCWs on 

the short and long-term performance of mechanical properties of rubberised 

concrete. 

 

 

iii. To evaluate the durability and physical performance of GBFS modified rubberised 

concrete exposed to chemical attack and elevated temperature. 
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iv. To identify the influence of GBFS combined with different amounts and sizes of 

TRCWs on acoustic properties. 

1.5 Scope of the Study 

This research focus on workability and long-term performance of durability and 

mechanical properties as well as fire safety performance and acoustic properties of GBFS 

modified rubberised concrete. Concrete mixes produced with and without rubber crumb. 

Fourteen batches made by blending tyre rubber crumb wastes (TRCWs at various contents 

5, 10, 20 and 30% of volume) as the fine and coarse aggregates replacement with 20% 

GBFS and ordinary Portland cement. The main properties studied include slump, 

compacting factor, compressive strength, flexural strength, indirect tensile strength, 

modulus of elasticity, water absorption, ultrasonic pulse velocity, fire endurance test, 

resistance to carbonation, sulfate, and acid attack, as well as the microstructure tests such 

as scanning electron microscope (SEM), x-ray diffraction (XRD), energy dispersive x-ray 

(EDX), thermogravimetric analyzer (TGA), differential thermal analysis (DTA) and 

impedance tube test. 

1.6 Significance of the Research 

In general, using TRCWs in concrete decrease the demand of natural raw 

materials, and saves landfill space, and it applications is potentially an effective way of 

limiting the environmental dangers described, also prevent the toxic gases due to burning 

tyres scrap. Several efforts have been made to use the TRCWs in various types of 

concretes to examine their impacts on the mechanical behavior of concretes, and earlier 

reports revealed a substantial drop in the compressive strength. Since the major problem 

of rubberised concrete is the reduction of the compressive straight, using pozzolanic 

material such as GBFS can led to improve the performance of rubberised concrete in term 
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of durability and mechanical properties. In this spirit, supplementary cementitious 

materials may help to increase the incorporation of TRCWs and identify a balance, which 

may led to improve the rubberised concrete characteristic such as sound proof. Besides, 

rubberised concrete containing GBFS can reduce CO2 emissions that generated by 

manufacturing of Portland cement.  

It is established that the use of TRCWs into concrete can be reduce the 

environment problems, developing renewable resource for construction materials and 

enhance the ductility performance. The outcome of this research can prepare supportive 

information for utilising GBFS as a binder replacement and TRCWs as aggregates. 

Furthermore, this research work aim to provide a sound absorbing concrete with the use 

of TRCWs with proper compressive strength, which is accepted as a property of structural 

concrete that may be deemed as strength of this research.  

1.7 Novelty or the originality of the research 

Utilizing by-product as GBFS with TRCWs, constituting a novel strategy with 

immeasurable environmental, technological and economic benefits. This study took an 

attempt to determine the role played by TRCWs when incorporated in concrete as partial 

replacement with GBFS. Concrete specimens with varied predefined ratios of TRCWs 

and GBFS were designed. 

Performances of the prepared concrete specimens (fresh and hardened) were 

evaluated and compared with the control mix (OPC). As prepared concrete specimens 

were characterized using several tests to properties determine such as workability, 

durability, microstructure, and mechanical properties.  

 

Furthermore, to provide a sound absorbing concrete with proper compressive strength, 

this study determines sound absorption and sound transmission loss of rubberised concrete 
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containing GBFS with various proportions and sizes of TRCWs. 

1.8 Project or Thesis Organisation 

The Outline of the study as follows:  

Chapter 1: Chapter one is an introduction of the study, which included overview, 

aims and objectives of the research, problem background, problem statement, scope of the 

study, significance of the research, as well as the novelty and the originality of the 

research. Moreover, a brief description layout of the thesis with a schematic summary of 

thesis organisation as shown in Figure 1.1. 

Chapter 2: In chapter two, previous studies provided as supportive information to 

explain the concept and contribution of utilising of TRCWs, GBFS, and other related 

materials on the concrete properties. Literature Review on recent researches of Concrete, 

in terms of Acoustic durability mechanical Properties, as well as other Properties related 

to this filed. 

Chapter 3: The discussion of research methodology and experimental program to 

examine the materials, mix design, and rubberised concrete properties are described in 

this chapter.  

Chapter 4: Chapter four analysis the result of the experimental on raw materials, 

and also produce mix design with utilizing a different proportions and sizes of TRCWs 

with optimized GBFS as partial replacement of OPC, and also study the workability 

performance of fresh rubberized concrete by using slump and Compacting factor test.  

Chapter 5: The main properties studied in this chapter are microstructure and 

mechanical properties. This chapter reveals the effect of TRCWs incorporated with GBFS 
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on the modulus of elasticity, compressive, indirect tensile, and flexural strengths, as well 

as microstructure tests. 

Chapter 6: This chapter discuss and analysis durability and physical properties. 

Long term study and several of parameters conducted including water absorption, total 

porosity, resistance to carbonation, sulfate, and acid attack, Fire endurance, and then 

microstructure tests such as scanning electron microscope (SEM), X-ray Diffraction 

(XRD), Energy Dispersive X-ray (EDX), Thermogravimetric analyzer (TGA), and 

differential thermal analysis (DTA). 

Chapter 7: This chapter will focus on acoustic properties of rubberised concrete 

containing GBFS with various proportions of TRCWs, study the sound absorption and 

sound transmission loss of high and low-frequency of sound wave by using impedance 

tube test.  

Chapter 8: Chapter eight as the closure chapter, summarize the findings, 

achievements, and contribution of the research. And bring acknowledgement for further 

research related to this filed. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction  

Nowadays, the sustainable development and environmental safety became the 

main concern of the researchers worldwide, especially in the developed nations. For 

sustainable development of the buildings, the use of the construction materials is of 

highest importance. These materials can considerably affect the energy consumption, 

carbon dioxide emission, landfill and conservation of natural resources (Gregori et al., 

2019; Huseien et al., 2019). 

The concretes remain the most commonly utilized construction material for many 

years now, with its worldwide production surpassing approximately 1 ton of the concrete 

per person on the earth. A single cubic meter (m3) of the concrete includes nearly 0.6 to 

0.7 m3 of aggregate. It is often, the fine and coarse natural aggregates are the preferred 

choice due to its widespread availability and low cost. The traditional concrete shows 

substandard performance against the presence of sulfate and sulfuric acid. The presence 

of the calcium compounds in the OPC makes it non-resistant towards the acid attack. The 

easy dissolution of the calcium compounds in the acidic environment results in the 

increased porosity and rapid deterioration (Huseien et al., 2019).  

Likewise, the production of the concretes requires the consumption of the 

aggregate, thereby the rapid depletion of the natural aggregates as the resources. Thus, the 

quest of finding some new aggregates alternative to the natural one is never-ending. In 

order to completely or partially replace the concrete constituents, the possibility of using 

the processed waste materials is explored in the recent decades. The recycled construction 
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