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ABSTRACT 

Glass fibre reinforced polymer (GFRP) waste quantity is reported to 

increase every year and contributing to the majority of composites waste. The 

awareness for a greener world has led to the recycling of GFRP waste. Previous 

studies focus on extracting the recycled fibres from GFRP waste and reintroducing 

the reclaimed fibres back into various types of polymer matrix to produce new 

composite materials. However, there is a lack of study conducted on the potential 

use of recycled fibres hybridized with nanoclay. This research highlights on 

recycled glass fibre (rGF) as a potential reinforcement in polymer composite, as 

green alternative to virgin glass fibre. The aim of this study was to investigate the 

effect of montmorillonite (MMT) nanoclay on the mechanical properties of rGF – 

unsaturated polyester (UP) composites. The selected parameters were rGF fibre 

sizes and loading, MMT weight percentage and the hybridization effect of rGF with 

MMT. The grades of rGF were raw (unsieved), fine and coarse, while the fibre 

loading ranges were from 5% to 45% by weight. Various MMT nanoclay weight 

percentage ranges from 0.5% to 7% were studied. The rGF samples were prepared 

using mechanical grinding, prior being fabricated by hand lay-up and followed by 

compression moulding. The effects of varying experimental parameters were 

observed in composites tensile, flexural, and compression properties. Mathematical 

formulae for every mechanical properties including all interaction factors were 

developed. The results from tensile and flexural tests revealed that rGF size was 

the most significant factor influencing its strength. The tensile strength of 30% 

coarse rGF was the highest among all samples while coarse rGF at 35% fibre 

loading showed the best flexural strength. For hybrid rGF-MMT composites, 

tensile strength showed improvement at 0.5% MMT inclusion. The flexural test 

demonstrated that the inclusion of rGF increases the flexural modulus by 

approximately 300% compared to pure UP. The addition of rGF and MMT was 

also improved the compression properties of composites by about 200% compared 

to pure UP. The morphology analysis showed that a good adhesion between rGF-

resin bonding was observed at low MMT percentage. Transmission electron 

microscopy of UP-MMT nanocomposites showed that at 1 wt.% MMT, the 

nanoclay is well dispersed. Based on the results, hybridization with MMT nanoclay 

can be a green alternative solution to improve mechanical properties of rGF-UP 

composites and at the same time providing recycling solution to GFRP waste.  
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ABSTRAK 

Kuantiti sisa polimer bertetulang gentian kaca (GFRP) dilaporkan meningkat 

setiap tahun dan menyumbang kepada sebahagian besar sisa komposit. Kesedaran 

terhadap kelastrian dunia telah mendorong aktiviti kitar semula sisa buangan FRP. 

Kajian- kajian terdahulu memberi fokus pada pengekstrakan gentian kitar semula 

dari sisa buangan FRP dan gentian tersebut akan dimasukkan semula ke dalam 

matriks polimer untuk menghasilkan bahan komposit baru. Walau bagaimanapun, 

kajian yang sangat kurang dilakukan mengenai potensi penggunaan gentian kitar 

semula yang dihibridisasi dengan tanah liat nano. Penyelidikan ini memberi 

tumpuan terhadap gentian kaca yang dikitar semula (rGF) sebagai penguat 

berpotensi dalam komposit polimer sebagai alternatif hijau untuk gentian kaca 

tulin. Tujuan kajian ini adalah untuk mengkaji kesan tanah liat nano 

montmorillonite (MMT) terhadap sifat mekanik komposit rGF - poliester tak tepu 

(UP). Parameter yang dipilih adalah ukuran dan peratusan berat gentian rGF, 

peratusan berat MMT dan kesan hibrid rGF dengan MMT. Gred rGF terdiri 

daripada mentah (tidak diayak), halus dan kasar manakala peratusan berat gentian 

yang dikaji adalah antara 5% hingga 45% berat. Pelbagai peratusan berat tanah liat 

nano MMT antara 0.5% hingga 7% telah dikaji. Untuk penyediaan sampel, rGF 

telah dikisar secara mekanikal, sebelum difabrikasi dengan teknik bengkalai tangan 

dan diikuti dengan kaedah pengacuanan mampatan. Pelbagai parameter 

eksperimen telah dianalisa terhadap sifat tegangan, lenturan, dan mampatan 

komposit. Formula matematik pada setiap sifat mekanikal yang dibangunkan 

meliputi kesemua faktor interaksi. Hasil dari ujian tegangan dan lenturan 

menunjukkan bahawa saiz rGF adalah faktor yang paling bererti yang 

mempengaruhi kekuatannya. Kekuatan tegangan bagi 30% rGF kasar adalah 

tertinggi di antara semua sampel sementara rGF kasar pada 35% serat menunjukkan 

kekuatan lenturan terbaik. Untuk komposit hibrid rGF-MMT, kekuatan tegangan 

menunjukkan peningkatan pada kemasukan 0.5% MMT. Ujian lenturan 

menunjukkan bahawa penambahan rGF meningkatkan modulus lenturan sebanyak 

300% berbanding UP tulen. Untuk hasil ujian mampatan, penambahan rGF dan 

MMT meningkatkan sifat mampatan komposit sebanyak 200% berbanding UP. 

Analisis morfologi menunjukkan bahawa MMT pada peratusan rendah 

menghasilkan rekatan yang baik antara rGF-resin. Mikroskopi elektron transmissi 

bagi kompositnano UP-MMT menunjukkan bahawa pada 1 wt.% MMT, tanah liat 

nano menyerak dengan baik. Berdasarkan hasil kajian, hibridisasi dengan tanah liat 

nano MMT boleh menjadi penyelesaian alternatif hijau untuk meningkatkan sifat 

mekanik komposit rGF-UP dan pada masa yang sama memberikan penyelesaian 

kitar semula kepada sisa GFRP.   
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Research Background 

 

Fibre reinforced polymer (FRP) composites are unique because they offer 

engineers and designers the flexibility in selecting the wide selection of reinforcing 

fibres, fillers, additives, binding resins and manufacturing process to produce an 

engineered material with desired definitive specifications (Gibson, 2016). The main 

advantages of using FRP composites over other conventional materials are high 

strength-to-weight ratios, non-conductive, non-corrosive, non-magnetic, good 

electrical insulation and wear resistant (Vinson and Sierakowski, 2012). 

 

Every year, it is projected that over six megatons of plastic composites are 

produced worldwide, mostly consists of glass fibre reinforced polymers (GFRP). It is 

estimated that about 1 million tons of GFRP produced annually in Europe (Nash et al., 

2019). In United Kingdom, the GFRP production represents about 140,000 tonnes, 

while the carbon fibre composite production represents around only approximately 

2,000 tonnes. It was estimated one billion tonnes of GFRP waste is generated in Europe 

annually and the amounts of GFRP waste are increasing yearly (Rybicka et al., 2016). 

 

Increased GFRPs usage has led to mounting pressure to resolve issues relating 

to composite waste (Abu Hassan et al., 2016). For instance, GFRP sheet moulding 

compound (SMCs), is one of the most commonly used composite materials, its total 

waste generates 0.4 million tonnes annually. Composites materials from glass fibres 

and carbon fibres are relatively new in commercial usage and therefore the current 

composites recycling technologies are still in development stage and requires further 

research. Environmental factors are seen to be probably the most critical element 

affecting the composites industries, with the issues of recycling having the greatest 

impact. 
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Composites made from thermoset polymer resins such as epoxies and 

unsaturated polyesters are technically challenging to recycle since the thermoset 

polymer matrixes are cross-linked and cannot be re-melted like thermoplastic 

polymers. There are many recycling options available for FRP composites waste 

include mechanical grinding, fluidised-bed processing, pyrolysis and supercritical 

water processing (Meng et al., 2017; Naqvi et al., 2018; Kim et al., 2019; Shuaib and 

Mativenga, 2016). Most of the technique has been demonstrated inside the laboratory 

except for mechanical recycling which has been commercialized (Mamanpush et al., 

2019; Yazdanbakhsh et al., 2018). 

 

 The strength of recycled glass fibres is lower compared to virgin glass fibres 

(Rouholamin et al., 2014). The deterioration of recycled fibres is one of the major 

factors that discourage FRP manufacturers to recycle or reuse the composites scraps. 

Recent studies show that hybrid glass fibre composites that uses nanofillers such as 

montmorillonite (MMT) nanoclay can improve the mechanical properties of 

composites (Sagar and Palanikumar, 2016; Prabhu et. al., 2019). The addition of MMT 

nanoclay could possibly give the same positive result for recycled glass fibre 

composites. 

 

 The research on nanoclays fillers in polymer nanocomposites has attracted 

considerable interest due to its many potential improvement in thermo-mechanical 

properties, fire and gas resistance of the developed nanocomposites. The nanoclay 

fillers has excellent dispersion in the polymer matrix at nanometer scale and high 

surface-to-volume ratio which resulted in improvement of mechanical and physical 

properties of nanocomposites as compared to the pure polymers (Müller et al., 2017; 

Laatar et al., 2016). 

 

Previous studies focus on the technology of recycling and extracting the fibres 

from FRP waste. The reclaimed fibres were added back to various types of polymer 

matrix and produced into a new composites material. In this study, the reclaim fibres 

will not only be reintroduced into new polymer matrix but will also be hybridize with 

nanoclay. The effect of nanoclay hybridization with glass fibre recyclates polymer 

composites will be evaluated by its quasi-static mechanical properties such as tensile 
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and flexural properties. Compression properties of glass fibre recyclates polymer 

composites will also be highlighted in this study, as not many research has been done 

on the compression properties of glass fibre recyclate composites. 

 

 

1.2 Problem Statement 

 

Abundant usage of GFRP applications has generated large amount of waste 

which ends up in landfills. A sustainable recycling mechanism is critically necessary 

to effectively recycle the GFRP waste. From past studies, mechanical recycling 

technology of GFRP has shown to be an eco-friendly method compared to thermal and 

chemical recycling technologies. However, the recovered glass fibres from mechanical 

recycling of GFRP only maintain half of its original tensile strength compared to virgin 

glass fibre (Rouholamin et al., 2014; Palmer 2009). Reintroducing the recovered fibres 

into composites resulted in inferior mechanical properties.  

 

Understanding the characteristics of the GFRP recyclates is essential in 

determining the composites mechanical properties. Characteristic of GFRP waste from 

septic tanks fabrication scraps has not been investigated. The effect of raw recyclates 

at various fibre loading on the tensile and flexural properties of recyclate reinforced 

unsaturated polyester composite need to be establish. 

 

 Raw GFRP recyclates tends to include powder particles and impurities which 

inhibit good composite fabrication. The raw recyclates need to be sieved to remove the 

impurities and powder particles and to grade the fibrous recyclate form into different 

fibre length grades. The effect of sieved GFRP recyclates at different fibre length and 

various fibre loading percentages in unsaturated polyester composite on tensile and 

flexural properties need to be determined. 

 

 The high surface-to-volume ratio of montmorillonite (MMT) nanoclay among 

other nanoparticles geometries has the potential to improve the mechanical and 

physical properties of nanocomposites. However, the optimal percentage of MMT 

loading in unsaturated polyester nanocomposites need to be identified as the dispersion 

of MMT in polymer plays a major role in influencing the mechanical properties of 



4 
 

nanocomposites. Therefore, inclusion of MMT loading ranging from 0.5 wt.% to 7 

wt.% need to be study in determining optimal MMT loading for tensile and flexural 

properties of unsaturated polyester nanocomposite.  

 

 Based on a previous study (Prabhu et. al., 2019), the incorporation of MMT 

can improve the mechanical properties of virgin glass fibre reinforced composites. The 

hybridization of MMT nanofillers with recycled glass fibres can potentially overcome 

the degraded strength of recycled glass fibres reinforced polymer composites. The 

combination effect of MMT and GFRP recyclates at various percentages on tensile 

and flexural properties of hybrid composites requires further evaluation. 

 

 Lack of studies was found regarding the compression properties of GFRP 

recyclates composites. Pure unsaturated polyester polymer composites have low 

compression strength and modulus reading. Most studies combine the use of sand and 

aggregates to improve the compression performance of polyester polymer composites 

but lack of studies was performed using recyclates exclusively with polyester polymer 

composites. The effect of sieved GFRP recyclates at different fibre length and various 

fibre loading percentages in sieved GFRP unsaturated polyester composite on 

compression properties requires further investigation. Investigation on MMT 

reinforced polyester nanocomposite need to be done using various MMT loading. The 

combined effects of GFRP recyclates and nanoclay at various percentages on 

compression of hybrid composites need to be assessed. 

 

 

1.3 Objectives of Research Project 

 

In the light of the above, the aim of this project is to investigate the potential 

use of montmorillonite nanoclay in order to enhance the mechanical properties of 

recycled glass fibre reinforced unsaturated polyester composites. The specific 

objectives are: 

 

1. To determine the physical characteristic of raw glass fibre recyclates (rGF) 

and its effect at different fibre loading on the tensile and flexural properties 

of raw rGF reinforced unsaturated polyester composites. 
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2. To determine the effect of different fibre sizes and different fibre 

percentages of sieved rGF on the tensile and flexural properties of sieved 

rGF reinforced unsaturated polyester composites. 

3. To investigate the effect of MMT nanoclay at different percentages on the 

tensile and flexural properties of MMT nanoclay reinforced unsaturated 

polyester nanocomposites. 

4. To evaluate the hybridization effect of MMT nanoclay percentages on the 

tensile and flexural properties of sieved rGF reinforced unsaturated 

polyester composites. 

5. To evaluate the effect of rGF fibre percentages, rGF fibres sizes and the 

hybridization effect of MMT percentages on the compression properties of 

sieved rGF reinforced unsaturated polyester composites. 

 

 

1.4 Scope of Research 

  

 This thesis covers the topic of polymer composites focusing on the issue of 

composite recycling and sustainable composite materials. The study emphasized on 

the recycling of glass fibre reinforced polyester (GFRP) waste specifically from the 

scraps of septic tanks fabrication. The GFRP was recycled using mechanical recycling 

method. The recycled GFRP (rGF) was reintroduced in a new composite at different 

fibre size grades. The type of matrix selected for this study is limited to unsaturated 

polyester resin. The mechanical performance of the test samples was evaluated under 

three different types of testing which are tensile, flexural and compression test. The 

parameters that were studied are fibre size and fibre loading of the rGF. The 

mechanical tests provide data regarding the tensile properties, stress versus strain curve 

graph, flexural properties, compression properties and compression stress versus 

compression strain curves of the rGF reinforced UP composites samples. Morphology 

study on the test samples was perform using scanning electron microscope (SEM) to 

observe the interfacial bonding between rGF and polymer resin. Data such as fibre 

distribution, fibre breakage, fibre-matrix debonding, fibre pull-out, matrix cracking 

and porosity of the composites was observed. 
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Polymer nanocomposite was studied specifically on the use of montmorillonite 

nanoclay reinforced unsaturated polyester (UP-MMT) composites. The prepared 

composite samples were tested for tensile, flexural and compression properties which 

generate data on tensile strength, Young’s modulus, tensile strain, stress versus strain 

curve graph, flexural strength, flexural modulus, compression strength, compression 

modulus and compression stress versus compression strain of the UP-MMT 

nanocomposites material. These data were analysed based on the MMT weight 

percentages. Mathematical model using Halpin-Tsai equation was produced based on 

the plotted experimental tensile and compression data. Transmission electron 

microscope (TEM) and X-ray diffraction (XRD) were used to provide information 

regarding MMT nanoclay distribution in UP-MMT nanocomposites samples.  

 

Hybrid polymer nanocomposites to be studied in this thesis include the use of 

rGF and MMT nanoclay. The samples of rGF and MMT were produced after the 

optimal fibre percentage and MMT loading. The prepared hybrid nanocomposite 

samples were tested for tensile, flexural and compression properties which generate 

data on tensile strength, Young’s modulus, tensile strain, stress versus strain curve 

graph, flexural strength, flexural modulus and compression strength, compression 

modulus and compression stress versus compression strain curve of the hybrid rGF-

MMT nanocomposites material. Mathematical model using modified Halpin-Tsai 

equation were produced based on the plotted experimental tensile and compression 

data.SEM image was used to observe the interfacial bonding between rGF and UP 

resin at different MMT percentage.  

 

  

1.5 Significance of Research 

 

The hybridization of montmorillonite nanofillers with recycled glass fibre 

reinforced composites has the potential to increase the mechanical properties of the 

composites. The data on tensile, flexural and compression properties of recycled GFRP 

composites hybridized with nanoclay can be used by engineers and other researchers 

to develop a useful product and further investigates potential application of recycled 

GFRP. Mathematical model on the mechanical properties of recycled GFRP-MMT 

hybrid composites in relation to fibre loading that was produced by this study can be 
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used by other researcher as a guideline. In general, a practical composite product 

developed based from this study will encourage FRP manufacturer to involve in 

composites recycling rather than landfilling or incinerating their FRP waste. This study 

will indirectly promote the recycling of GFRP scraps, reuse of GFRP scraps and reducing 

the consumption of new glass fibre. 

 

 

1.6 Thesis Framework 

 

This thesis is divided into five major chapters. The first chapter will present 

the overall background of the study, problem statement, research objectives, scope and 

the significance of this research. Chapter 2 discussed the literature review based on 

previous studies of related topics including GFRP and its waste management and 

recycling technologies. The literature review includes past studies which use recycled 

GFRP in composites. Polymer nanocomposites and its hybrid with conventional fibres 

were reviewed in this chapter. Chapter 3 elaborated on the research methodology. 

Materials properties used in this study, sample formulations, sample fabrication, 

testing standards and analysis method was highlighted in this chapter. Chapter 4 

reported the experimental data on tensile, flexural and compression properties. 

Mechanical test results analysis was supported by microstructure analysis. The 

mathematical models generated based on the composites parameters studied. Chapter 

5 concluded the research findings based on research objectives and recommendation 

for future research to be explored. 
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