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ABSTRACT

The nonlinear optical properties of various materials have been widely 
investigated to develop an all-fiberized laser cavity. The existing saturable absorber 
(SA) materials own a few limitations such as band gap-dependent wavelength, 
narrow lasing bandwidth, low optical damage tolerance, and weak nonlinear 
absorption. Hence, this study has developed MXene Ti3C2Tx and M AX phase 
Ti3AlC2 as SA in a fiber laser cavity. The SA materials were prepared by a solution 
casting method and the D-shaped fiber was fabricated by using a mechanical wheel 
technique. The SA materials were characterized using field-emission scanning 
electron microscopy, energy-dispersive x-ray spectrometer, and Raman spectroscopy 
to confirm their elemental constituent. A twin-balanced detector technique examined 
the nonlinear absorption o f SA devices, while linear absorption measurement 
confirmed the operating wavelength of the SAs. Linear and nonlinear absorption of 
the prepared SA devices exposed strong saturable absorption properties in the 1.55- 
|im  region. An erbium-doped fiber laser cavity was developed and optimized to 
generate a continuous-wave laser. The Q-switched and mode-locked lasers were 
successfully generated using the SAs developed based on D-shaped fiber and thin 
film structure in the erbium-doped fiber laser cavity, indicating the compatibility of 
such SA devices in the all fiber-based cavity. The SA device with the highest 
nonlinear absorption o f 3% was realized with M Xene Ti3C2Tx coated on D-shaped 
fiber. All SA devices own strong optical properties, thus generating powerful Q- 
switched and mode-locked lasers. An improvement in the pulsed laser's parameters 
and nonlinear absorption properties of the material was achieved with D-shaped fiber 
as SA in the laser cavity. The M AX phase Ti3AlC2 deposited onto D-shaped fiber 
generated a mode-locked laser with a pulse width o f 2 .2 1  ps compared to its thin film 
counterparts, which initiated a mode-locked laser with a 3.68 ps pulse width. The use 
o f ternary metal carbides, which are M Xene Ti3C2Tx and M AX phase Ti3AlC2, 
proved the development o f a SA with strong nonlinear absorption, high optical 
damage threshold, band gap-independent wavelength, and broad operational 
bandwidth. The short-pulsed lasers in the 1.55-^m regime are essential for various 
applications such as optical fiber communications, remote sensing, material 
processing, and laser cutting technology.
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ABSTRAK

Ciri-ciri optik tak linear untuk berbagai-bagai bahan telah dikaji secara 
menyeluruh bertujuan untuk pembangunan kaviti laser gentian. Bahan penyerap 
boleh tepu yang sedia ada mempunyai beberapa kelemahan seperti jurang jalur yang 
bergantung kepada panjang gelombang, lebar ja lur laser yang sempit, toleransi yang 
rendah terhadap kerosakan optik, dan penyerapan tak linear yang lemah. Justeru, 
kajian ini membangunkan MXene Ti3C2Tx dan M AX phase Ti3AlC2 sebagai bahan 
penyerap boleh tepu dalam kaviti laser gentian. Bahan penyerap boleh tepu 
disediakan dengan kaedah penuangan larutan dan gentian berbentuk D dihasilkan 
menggunakan kaedah roda mekanikal. Bahan penyerap boleh tepu ini diuji dengan 
mikroskop imbasan elektron pancaran medan, spektrometer sinar-x penyebaran 
tenaga, dan spektroskopi Raman untuk mengesahkan unsur-unsur bahan tersebut. 
Teknik pengesan kembar terimbang telah digunakan untuk mengkaji ciri tak linear 
penyerap boleh tepu, manakala ukuran serapan linear mengesahkan panjang 
gelombang operasi penyerap boleh tepu. Serapan linear dan tak linear bahan 
penyerap boleh tepu yang telah disediakan berupaya bertindak sebagai penyerap 
boleh tepu di kawasan laser 1.55-pm. Kaviti laser gentian terdop Erbium telah 
dibangunkan dan dioptimumkan untuk menjana laser gelombang selanjar. Laser suis 
Q dan laser selakan mod berjaya dihasilkan menggunakan penyerap boleh tepu 
berdasarkan gentian berbentuk D dan struktur filem nipis dalam kaviti laser gentian 
terdop Erbium, menunjukkan kesesuaian peranti penyerap boleh tepu dalam kaviti 
berasaskan gentian. Peranti penyerap boleh tepu dengan penyerapan tak linear 
tertinggi sebanyak 3% telah dihasilkan dengan gentian berbentuk D disaluti MXene 
Ti3C2Tx. Semua peranti penyerap boleh tepu yang disediakan mempunyai ciri-ciri 
optik yang unggul, seterusnya menjanakan laser suis Q dan laser selakan mod 
berkuasa tinggi. Penambahbaikan dalam parameter laser denyut dan ciri-ciri 
penyerapan tak linear bahan telah dicapai dengan gentian berbentuk D sebagai 
penyerap boleh tepu dalam kaviti laser. M AX phase Ti3AlC2 dimendapkan diatas 
gentian berbentuk D telah menjanakan laser selakan mod dengan lebar denyut 2.21 
ps berbanding filem nipis yang mencetuskan laser selakan mod dengan lebar denyut 
3.68 ps. Penggunaan karbid logam terner seperti MXene Ti3C2Tx dan M AX phase 
Ti3AlC2 telah menghasilkan penyerap boleh tepu dengan penyerapan tak linear kuat, 
mempunyai ambang kerosakan optik yang tinggi, jurang jalur yang tidak bergantung 
kepada panjang gelombang, dan kendalian lebar ja lur yang luas. Laser denyut pendek 
dalam rejim 1.55-pm adalah penting untuk pelbagai aplikasi seperti komunikasi 
gentian optik, penderiaan jauh, pemprosesan bahan, dan teknologi pemotongan laser.
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C H A P T E R  1

IN TR O D U C TIO N

1.1 B ackground  of Study

In 2004, Geim and Novoselov discovered an atomically thin layer o f carbon 

called a few-layer graphene [1]. Graphene owns excellent condensed matter 

properties with ballistic electron mobility, which prevents lattice dislocation and 

crystal imperfection at high temperatures. Thus, it is widely used as a SA in the 

broad near-infrared spectrum due to its overlapped conduction-to-valence band and 

ultrafast relaxation time (~200 fs) [2-4]. As promising as it is, graphene owns a few 

limitations in terms o f bandgap alteration ability and low modulation depth (<2.3 % 

per layer) [5]. The latter contributed to a low second-order susceptibility o f its 

structure [6 ]. In contrast, TMDCs such as molybdenum disulfide (MoS2) possess a 

high second-harmonic generation (SHG) and third-harmonic generation (THG) with 

recovery time nearly as fast as graphene (~30 fs) [7]. Both SHG and THG are 

strongly related to the thickness of M oS2, thus, optimizing a few  layers thickness of 

such material might enhance the performance o f pulses generated [8 ]. The 

modification o f TMDCs layer can also convert their bandgap from indirect to direct 

structure, which is suitable for near-infrared laser generation. Conversely, layer- 

dependent wavelength operation gives rise to a complicated preparation procedure 

resulting in the development o f other two-dimensional (2D) material-based SA.

Few years ago, many research works have been conducted on investigating 

the physical and optical properties o f BPs [9, 10]. Thanks to its excellence charge- 

carrier mobility (105 cm2/Vs) and thermodynamically stable phases, numerous 

semiconductor applications have been developed [11]. Its ability to generate pulses 

in the near-infrared region is proven, as a naturally occurring BPs covers wide near- 

infrared region due to a suitable bandgap o f such allotrope (0.3 eV). Unfortunately,
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BPs' compatibility as a SA diminishes over time as it is very sensitive to the 

environment. Exposure o f BPs to air for a few hours might reduce its saturable 

absorption properties, making it useless for pulse generation. Therefore, the surge for 

a new SA material which is not only easy to prepare, yet preserve the excellent 

nonlinear optical properties, wide operating bandwidth, and high damage threshold is 

still essential.

Recently, an extensive study on a newly synthesizes 2D material, MXene, has 

been widespread [12]. Ti3C2Tx, one o f MXene, exhibits an excellent nonlinear 

absorption alike graphene with two orders of magnitude larger than MoS2 and BPs 

[13], indicates its fast-optical switching capability. N ot only that, Ti3C2Tx holds a 

high damage threshold o f 70 mJ/cm 2, comparable to most metal NPs [14]. Therefore, 

avalanche research interest had revealed the potential of M Xene as a Q-switcher and 

mode-locker in a 1-, 1.3-, 1.55- and 2-pm laser cavity [15-18]. However, the ability 

of its bulk-counterparts, M AX phase (layered metal carbides and/or nitrides) for the 

generation o f pulses in a near-infrared region is not fully explored. M AX phase 

Ti3AlC2 is as unique as its precursor with good electrical conductivity, 

thermodynamically stable material, high damage tolerance at room temperature, 

good mechanical strength, and excellent oxidation-resistance [19-21]. The latter 

seems favorable for pulse generation as it did not easily oxidize in the air due to a 

dense alumina layer within the material. Unlike 2D s’ includes MXene, M AX phase 

is synthesis based on a simple solution-casting method, a mixture of M AX phase 

Ti3AlC2 and polyvinyl alcohol (PVA) was magnetically stirred to produce a SA 

device for pulse generation. Herein, this work investigated the optical properties of 

ternary metal carbides, M Xene Ti3C2Tx, and its bulk-counterparts M AX phase 

Ti3AlC2 as a pulse generator in an all-fiberized EDFL cavity.

1.2 P roblem  S tatem ent

In recent years, pulsed laser generation has been a widely discovered area 

since it is essential for industrial applications such as metal cutting technology, laser 

ablation, remote sensing, and laser eye surgery. The main component used for
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ultrashort pulse laser generation is a saturable absorber material. Over the years, 

researchers have implemented various materials as saturable absorbers such as 

graphene, molybdenum disulfide, tungsten disulfide, metal nanoparticles, and many 

more into the laser cavity to generate the pulse. However, the existing saturable 

absorber owns a narrow operating bandwidth, weak nonlinear optical properties, and 

a low damage threshold.

Therefore, this work proposed M AX phase Ti3AlC2 and M Xene Ti3C2Tx for 

pulse generation in a 1.55 p,m regime. N ot only do they have strong optical properties 

such as fast-optical switching capability, high damage threshold, excellent nonlinear 

absorption, but they also own a broad operating wavelength. This work outlined the 

investigation of M AX phase and M Xene optical properties to prove their good 

saturable absorption properties and incorporated those materials in a fiber laser 

cavity for pulse generation. Eventually, it enabled a pulsed laser with good spectral 

and temporal characteristics.

1.3 R esearch  Objectives

The main aim of this work is to develop a saturable absorber material based 

on the M AX phase and M Xene and to optimize a Q-switched and mode-locked fiber 

laser cavity. The success o f this work is evaluated based on the three main objectives 

as follows,

(a) To synthesis Ti3AlC2 and Ti3C2Tx, and determine the surface morphology,

elemental constituent, structural fingerprint, and optical properties of the SA 

devices such as linear and nonlinear absorption.

(b) To develop and generate Q-switched and mode-locked lasers by

incorporating the D-shaped fiber and the thin film structure o f SA materials 

inside the erbium-doped fiber laser.

(c) To determine the temporal pulse performance such as pulse width and

repetition rate, and to calculate the output power, pulse energy, peak power,

3



and slope efficiency o f the pulsed lasers with Ti3AlC2 and Ti3C2Tx as

saturable absorber in erbium-doped fiber laser.

1.4 Scope of Study

A solution-casting method was utilized to synthesis the SA in the form of 

solution, and a thin film SA was attained directly after the process. A homemade 

mechanical wheel technique was utilized to fabricate the D-shaped fiber structure, 

which was followed by the deposition o f the prepared SA solution onto its polished 

region. Later, the characterization o f material with Raman spectroscopy, FESEM  and 

EDS proved the existence o f Ti3AlC2 and Ti3C2Tx composition in the as-prepared SA 

devices. The SAs based on the M AX phase Ti3AlC2 and M Xene Ti3C2Tx revealed 

strong optical properties, as evidenced by the linear and nonlinear absorption 

measurement in the 1.55-^m region. Erbium-doped fiber laser cavity was developed 

and optimized to generate continuous-wave laser in 1.55 p,m regime. All saturable 

absorbers were incorporated into the cavity to generate QS and ML, and the better- 

pulsed performance achieved with the incorporation of D-shaped fiber-based SA 

inside the laser cavity.

1.5 Significance of S tudy

This work introduced a homemade mechanical wheel technique to fabricate a 

D-shaped fiber structure, which is essential to improve laser performance in a fiber 

laser configuration. In addition, this thesis synthesized M AX phase Ti3AlC2 and 

MXene Ti3C2Tx for pulse generation in a 1.55 p,m regime. The materials own good 

saturable absorption properties, a high damage threshold, and a broad operating 

wavelength. The potential o f M AX phase Ti3AlC2 and M Xene Ti3C2Tx as passive 

saturable absorbers in EDFL can also be beneficial for the researcher in this field 

since it can also be used for pulsed generation in 1 and 2-p.m laser cavities. The 

comparison between D-shaped fiber structure and thin film as SA is also essential to 

realize the pulsed laser with a better output performance. The generated Q-switched
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and mode-locked laser can be used for industrial applications such as remote sensing, 

laser beam machining, and high precision material processing.

1.6 O rgan ization  of this thesis

This thesis is structured in 5 main chapters, starting from the theoretical and 

current progress on pulsed laser, the work continues to investigate the optical 

properties and the lasing application o f the as-prepared SA, and comparison on 

pulsed laser performance between two SA implementation methods concludes the 

finding. This chapter describes the story o f laser and why it is worth to expand the 

current work on this field. The motivation o f this thesis was also elaborated, together 

with the proposal on how to solve the existing problems. This section also states the 

significance and scope o f the study.

C h ap te r 2 elaborates various physical phenomena such as a quasi-three-level 

erbium-doped fiber laser system, the principle o f Q-switching, the principle o f mode- 

locking, the principle of soliton, a saturable absorption mechanism, and evanescent 

field interaction. This section also contains current progress on various SA materials 

and its application as a pulse generator in the EDFL cavity.

C h ap te r 3 comprises the methodology o f this research. The preparation of 

both SA, M AX phase Ti3AlC2, and M Xene Ti3C2Tx are elaborated together with the 

fabrication o f the D-shaped fiber structure. Followed by the linear absorption 

measurement to confirm the ability o f SA devices to initiate pulse in a 1.55 pm 

regime. Later, the balanced-twin detector technique was introduced to investigate 

saturable absorbers’ optical properties. Finally, this chapter described the 

development and optimization o f an erbium-doped fiber laser cavity.

The as-stated objectives are covers in C h ap te r 4, starting with the EDS, 

FESEM, and Raman spectrum to confirm the existence of the M AX phase Ti3AlC2 

and M Xene Ti3C2Tx in the SA devices. It also details the linear and nonlinear optical 

profiles o f the SA devices. In the end, it describes the generation o f QS and ML in
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EDFL by incorporating ternary metal carbides-based SA. All the SA devices 

generate Q-switched and mode-locked with exceptional laser parameters. The laser 

parameters such as pulse width, repetition rate, output power, pulse energy, and slope 

efficiency of all the generated lasers are recorded and compared.

C h ap te r 5 concludes and discusses the results achieved from the previous 

chapter, including the optical properties, and generated laser performances of SA 

devices. The improvement of QS and M L by using a D-shaped fiber structure 

proposed a new SA implementation method in an all-fiberized laser cavity. A few 

limitations and future works are also suggested for the better temporal pulse 

characteristics of the pulsed laser.
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