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ABSTRACT

Fault and fracture stability/reactivation, reservoir compaction, and associated 
surface subsidence are observed in many oil and gas fields worldwide. A better 
understanding of the geomechanical parameters of reservoir formation and 
neighbouring lithology is therefore becoming highly important within the oil carbonate 
field development. Pore pressure, effective stresses, and geological structures as well 
as their evolution during an oil field life have a considerable impact on wellbore 
instability and fault and fracture behaviour. The main aim of this study is to determine 
the causes of faults and fractures instability in a natural fracture reservoir by using 
integrated wellbore stability (1D) analysis to 3D geomechanical study. In this research, 
different approaches were used to perform the 3D geomechanical model through 
integrated analysis of the drilling events, log and rock mechanics data. By 3D finite 
element, the principal stresses were calculated in two steps. Firstly, the gravity 
(overburden and underburden) and pore pressure were applied; the second step was 
involving the sideburden. This study indicates a 3D geomechanical modelling of the 
oil field as a gentle anticline in the Middle East area. Wellbore stability model (or 1D 
Geomechanical modelling) contains various stresses, pore pressure, and rock 
mechanics properties for offset wells were simulated by integrating a wide variety of 
good data from the field. These calibrated 1D geomechanical outputs were applied to 
model 3D geomechanical models and were further utilized for fracture and fault 
reactivation modelling. A 3D reservoir geomechanical modelling (or couple 
geomechanical modelling) was improved to utilize the geological static and reservoir 
dynamic models to estimate the changes in reservoir pore pressure and principle 
stresses in magnitude and orientation. Based on 3D geomechanical modelling, vertical 
and horizontal stresses have been evaluated for all faults and fractures. The tendency 
of the fault and fracture reactivation was determined in terms of minimum and 
maximum horizontal stresses. The simulation result indicated that the change of 
reservoir pressure during the initial phase of production since 1992 to 2054 has a 
significant impact on principal stresses in the field. On the other hand, the 3D map of 
minimum and maximum horizontal stresses on both sides of the main faults explain 
that faults are most stable compared to fractures in cap rock and reservoir sections. 
While high porous and permeable reservoir formation and impermeable cap rock (the 
combination of anhydrite, salt and shale) are experiencing normal to strike-slip stress 
fault regime, the strain and stress fluctuation due to oil production in more than 60 
years’ simulation does not have a destructive impact (or activation) on different faults. 
But fracture behaviour changes from 2017 to 2054 due to pore pressure changes, the 
fracture instability in different directions was considerable and it must be considered 
in production optimization.
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ABSTRAK

Kestabilan/ pengaktifan semua sesar dan retakan, pemadatan reservoir dan 
embalesan permukaan berkaitan diteliti berlaku di kebanyakan medan minyak dan gas 
di serata dunia. Pemahaman yang baik teutang parameter- parameter geomekanik 
formasi reservoir dan litologi berhampiran menjadi sangat penting bagi pembangunan 
medan minyak karbonat. Tekanan liang, tegasan berkesan, dan struktur geologi 
disamping evolusinya ketika hayat medan minyak mempunyai kesan yang agak besar 
terhadap ketidakstabilan lubang telaga dan tingkah laku sesar dan retakan. Matlamat 
utama kajian ini adalah untuk menentukan penyebab-penyebab ketidakstabilan sesar 
dan retakan di dalam sebuah reservoir berretakan semulajadi dengan meggunakan 
analisis bersepadu kestabilan lubang telaga secara satu dimensi (1D) hingga ke kajian 
geomekanik tiga dimensi 3D. Dalam kajan ini, pendekatan yang berbeza telah 
digunakan untuk melakukan pemodelan geomekanik 3D menerusi analisis bersepadu 
terhadap maklumat penggerudian, data log dan data mekanik batuan. Dengan 
menggunakan unsur terhingga 3D, tegasan utama dihitung menerusi dua langkah. 
Pertama, graviti (beban atas dan beban bawah) dan tekanan liang yang dikenakan; 
langkah kedua melibatkan beban sisi. Kajian ini menunjukkan pemodelan geomekanik 
3D bagi medan minyak sebagai antiklin landai di kawasan Timur Tengah. Model 
kestabilan lubang telaga (atau pemodelan geomekanik 1D) yang mengandungi 
pelbagai tegasan, tekanan liang dan sifat mekanik batuan daripada telaga ofset telah 
diselaku menenasi penyepaduan pelbagai jenis data telaga dari medan. Output 
geomekanik 1D tertentukur telah diaplikasikan terhadap model geomekanik 3D dan 
kemudiannya digunakan untuk pemodelan pengaktifan semula sesar dan retakan. 
Pemodelan geomekanik reservoir 3D (atau pemodelan gandingan geomekanik) 
ditambah baik menggunakan model statik geologi dan model dinamik reservoir untuk 
menganggar perubahan tekanan liang reservoir dan perubahan tegasan utamanya 
dalam bentuk magnitud dan halaan. Berdasarkan kepada pemodelan geomekanik 3D, 
tegasan tegak dan tegasan mendatar telah dinilai untuk kesemua sesar dan retakan. 
Kecenderungan untuk pengaktifan semula sesar dan retakan telah ditentukan berdasar 
kepada tegasan mendatar minimum dan juga maksimum. Keputusan penyelakuan 
menunjukkan bahawa perubahan tekanan reservoir ketika fasa awal pengeluaran sejak 
tahun 1992 hingga ke 2054 memberikan kesan yang ketara terhadap tegasan-tegasan 
utama medan. Sebaliknya, peta 3D bagi tegasan mendatar minimum dan tegasan 
mendatar maksimum retakan pada kedua-dua sisi sesar utama menunjukkan bahawa 
sesar adalah paling stabil berbanding retakan pada bahagian batuan tukup dan 
reservoir. Sementara itu, reservoir berliang dan boleh telap dan batuan tukup tak boleh 
telap (gabungan anhidrit, garam, dan syal) mengalami regim bertegasan normal hingga 
ke bertegasan jurus gelineir. Berdasarkan turun naiknya terikan dan tegasan berikutan 
pengeluaran minyak melebihi 60 tahun, hasil penyelakuan menunjukkan bahawa tiada 
kesan pemusnah (atau pengakifan) terhadap sesar yang berbeza. Walaubagaimanapun, 
perubahan tingkahlaku retakan dari 2017 hingga ke 2054 disebabkan perubahan 
tekanan liang, ketidakstabilan retakan pada arah berbeza didapati ketara, dengan kesan 
itu mesti diambil kira dalam pengoptimumkan pengeluaran.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

Due to the field 3D geomechanical analysis serves as a complexity for 

declining budget and increasing efficiency over the life of a field, the information 

contained in a geomechanical model makes it possible to assess exploration risk 

associated with fault-seal breach caused by fault slip. Also, natural fault/fractures have 

a dramatic impact on carbonate reservoirs in terms of oil recovery. A 3D 

geomechanical model also makes it possible to design completions to avoid or manage 

production and to extend the productive life of wells. Also, the effects of reservoir 

depletion and injection can be predicted to enable optimal exploitation that avoids 

excessive reservoir damage, casing collapse, and hazards related to leakage of 

produced or injected fluids and finally fracture and fault stability.

Modeling natural fractures/faults, their characterization, and the effect of 

injection/production have become one of the important subjects in oil and gas field 

management. This issue is critical in carbonate reservoirs with a wide variety of natural 

fractures and faults. The complexity of fluid behavior in carbonate porous media and 

their characteristic parameters (such as location, pattern, direction, azimuth, 

magnitude, length, and aperture by core data and special log; image log and shear sonic 

logs) must be estimated at beginning and during of field development. However, none 

of these parameters are well constrained by available static and dynamic data (for 

example different kinds of log data, geophysical data, and reservoir data). This study 

concentrates on a specific parameter: fracture/fault characterization, its integration 

with prediction, and injection into the geomechanical analysis workflow.



1.2 Background of the Study

1.2.1 1D Geomechanical study

Wellbore instability problems bring significant cost increases to drilling 

operations. These problems can occur in a variety of forms including stuck pipe, loss 

circulation, hole enlargement, unintentionally induced tensile fractures, or difficult 

directional control incidents. In severe conditions, wellbore instability can increase 

non-productive time and create simultaneous occurrences of multiple instability 

incidents, which potentially can lead to losing the well if  they are not handled with 

proper mitigation.

Angelier, J., 1979, and Aadnoy and Chenevert (1987) indicated that wellbore 

instability is a function of imbalance in the required wellbore pressure applied and the 

fluid pressure in the formation, in addition to chemical interactions between the 

formation and the drilling or completion fluids, and interactions between these fluids 

and native formation fluid. Deviation and azimuth of the well also influence the 

wellbore stability as the stress distribution around the wellbore is dependent on the 

orientation of the wellbore, concerning the in-situ stresses and the hoop stresses 

introduced through drilling the wellbore.

Bradley (1979), and Cheatham (1984) showed that for avoiding wellbore 

instability problems in drilling, a proper well design needs to be developed for the 

formations to be drilled and completed for production, which requires an 

understanding of the in-situ stress state, pore pressure, and geomechanical properties 

of the reservoir formation. Matthewsh (1967), Eaton (1969), and Wilson and Willis 

(1986) proved that wellbore stability analysis is required to predict the mud weight 

window for new wells. Wellbore stability analysis has been previously presented in 

many publications.
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Geomechanical analyzing and gathering essential info is a fundamental section 

in oil and gas field management. The entire life cycle oil and gas field development 

from exploration to abandonment, drilling to production, and gas injection benefits 

from a 1D Mechanical Eart Model (MEM) to 3D geomechanical analysis (Zoback and 

Moos, 1992; Bradly, 1979; Zoback et al., 2001, Zoback, 2002). The 3D 

Geomechanical modeling integrates open hole log data, lab tests, leak-off tests (LOT) 

and daily drilling data to obtain the stress characterization such as magnitudes and 

direction together with specific rock strength properties. This vital concept of the stress 

situation and characterization of different carbonate properties (limestone and 

dolomite) is required for selecting the best operational parameters during drilling and 

oil and gas production and injection.

In well planning, the 1D MEM is used to implement the well design for 

choosing the best well trajectory. Mud type and weight as well as the casing scheme 

can be selected due to the result of Mechanical Earth Model (Hamid and Zillur, 2015). 

Geomechanical analyses can minimize cost and risk while maximizing drilling 

efficiency.

1.2.2 3D Geomechanical study

Geomechanics could be addressed and understood in all oil and gas field 

disciplines. These 3D models prepare the benefit for well in designing and oil and gas 

reservoir management especially in carbonate reservoir with different kinds of 

ambiguities; natural fracture, giant thrust faults. In the life cycle of the field, oil 

production or gas injection make considerable changes in the maximum and minimum 

horizontal stresses which must be analysed geomechanical modeling and define the 

impact of these phenomena in fluid behavior.

Koupriantchik, et al. (2007) showed that 3D geomechanical modeling has 

become a popular and effective way to address those challenges, particularly at the 

reservoir scale but also at the well scale. Improvements in seismic quality, logging
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data, and numerical techniques mean that we have enough information to predict 

stresses accurately in areas away from those previously drilled.

An elegant way of performing a spatially correct depth stretch is using 

structural or stratigraphic grids (called structural grids hereafter). Available to many 

geological subsurface modeling software packages, structural grids are essentially 

deformable grids, capable to be aligned to reference surfaces. The alignment to key 

reference horizons can be proportional allowing the grid to swell or shrink according 

to the distance between two reference surfaces. On the other hand, the alignment can 

be parallel to one key surface allowing truncation by another to form e.g. an erosional 

surface. The concept of structural grids aims to replicate the stratigraphic layering.

Using only a few key horizon surfaces and integrating formation markers, the 

structural grids can, therefore, define the full structural framework, capable to receive 

spatially continuous properties, including those necessary for wellbore stability 

analyses. Rather than extracting a multitude of zonation markers for a 1D depth stretch, 

the entire geomechanical model is built in 3D using such a structural grid. Most 

techniques for this operation are well known to geologists and reservoir engineers who 

build stratigraphic models and use geostatistical techniques populating them in 3D 

with properties such as rock type, permeability, and porosity (Deutsch, 2002; Yarus, 

2002).

The geomechanical model for the Valhall field, as described in by Kristiansen 

et al. (2010), was built to reduce the risks that are associated with the drilling of the 

edge zones. The model showed that the greatest number of non-standard problems 

associated with stress is localized in the area near the fault. The 3D Geomechanical 

model used to determine the trajectory of the well, which minimizes the risks of the 

instability of the borehole, which significantly reduces the drilling uncertainty.
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Optimization of the well trajectory and well design to avoid drilling risks 

during well site construction is another main of 3D geomechanics output which is 

important in check and control the oil and gas field study (Ovcharenko and Lukin, 

2016). Optimization of hydraulic fractures in carbonate reservoirs and the processes 

of hydrocarbons production are other serious issues that can be considered by 

geomechanical study. Challenging geological conditions, the complex geological 

structure of sediments, which is common for fields development to date, leading to the 

need to build complex 3D geological and geomechanical together.

Most of the field-scale method is to integrate the 1D MEM in a geology 

framework and make a 3D geomechanical grid from a static model throughout the 

field. This new model is the only representative of a related time and reservoir pressure 

condition that is the condition at the time which information was acquired from the 

wells. So, such models might not be appropriate to study the instabilities and risks 

associated with reservoir depletion, e.g. fault movement and casing collapse due to 

compaction and subsidence. The changes in the in situ stresses concerning reservoir 

depletion can be estimated by providing and running a Visage model in Petrel software 

which is coupled to the dynamic model by Eclipse software (Younessi et al., 2013).

1.2.3 Estim ation of the Rock M echanical Properties of the Fault

Estimating the rock mechanical properties of the faults is always challenging 

in geoscience because the direct measurement of these properties is not practical 

(Bayerlee, 1975). Ideally, core samples should be taken from the faulting zone and be 

tested for rock mechanical properties but that requires a precise sampling at the 

location where the well hits the fault, which in many cases is impractical. In some 

cases, by knowing the constituent materials of the fillings of the fault, reasonable 

estimations of the mechanical properties of the fault can be made. There are also 

indirect methods of estimating the rock mechanical properties of a fault, which can 

help narrow down the values to an acceptable range of uncertainty. Experimental
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studies on different types of rocks have been conducted, taking into account both 

natural and man-made fractures/faults.

1.3 Problem  Statem ent

In oil field development, proper well planning and safe drilling operation is 

very important in oil and gas field development. To identify the causes of instability 

problems encountered in this field, a problem diagnostic procedure must be performed, 

which includes studying the well plans, drilling programs, daily drilling reports, and 

various logs for all well. Wellbore stability issues can be caused by a combination of 

many factors, which can be classified into controllable and uncontrollable in origin 

(Chatterjee,2018).

Modeling and characterization of natural fractures by geomechanics concept 

(1D to 3D) and stress pattern issue has recently become a high priority issue. However, 

in the previous method the effect of stress or strain (by dispersion analysis) never has 

been involved in fracture analysis, and most of the time the full field study in the 

carbonate reservoir suffered about this topic.

Based on a conventional full-field study, all Geoscience team never cares about 

the effect of fault/fracture stability analysis during oil/gas production and injection. 

Sometimes if the effect of the stress on the fracture/fault is ignored, the static and 

dynamic model will not be reliable especially in naturally fractured carbonate 

reservoirs with high heterogeneity. By involving the geomechanical aspect of 

fault/fracture stability, it can be controlled over the development process taking into 

account the changes in rock stress state and changes on growth hydraulic fractures and 

the processes of hydrocarbons production. Understanding this leads to the fact that 

mixing of 3D geological and geomechanical modeling based on fault/fracture tectonics 

becomes an integral part of the construction of static and dynamic field models 

(Aguilera, 2018).
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Usually in conventional structural 3D modeling fault is very concerning as 

having an impact as a barrier or conductive in compartmentalization issue. So because 

of the lack of geomechanical concept, the activation of the fault during the oil or gas 

production never taking care of studies. However, in general, most of the geoscientist 

never does the comprehensive study on fault and fracture characterization and because 

of the complicity of this kind of feature try to determine by geophysics or well testing. 

Sealing or extending the capacity of the fault itself is a very modern study that can 

categorize in 3D Geomechanical study. One of the main output of the 3D 

geomechanical modelling is different horizontal and vertical stress direction and 

measurements which are essential in fracture and fault behaviour analysis. By 

investigation on stresses variation around fault and fracture due to production, it is 

possible to anticipate fracture and fault stability.

As mentioned in some paragraphs in this chapter, in previous researches about 

fault and fracture role in oil and gas full-field studies, the relationship between 

production and its reaction on fault and fracture was mostly ignored and this issue 

could be high risk in oil and gas fields developments. Currently, in this study, the effect 

of hydrocarbon production on fault and fracture stability and its reaction as the main 

purpose were studied and recommend as a new workflow in oil and gas field study 

(Full Field Study or Master Development Plan) to avoid spending unnecessary budgets 

and time.

1.4 Objectives

The main objective of this research study is to determine the causes of 

instability problems from drilling operation to a fault and fracture in a natural fracture 

reservoir by using an integrated wellbore stability analysis (1D Geomechanical study) 

and 3D Geomechanical study. The specific objectives of this study include:

i. To employ a 1D geomechanical modelling or 1D MEM and making a wellbore- 

stability model incorporating the effects of Geomechanical properties to reduce
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the uncertainties in drilling operation. 1D MEM models were used for making 

3D geomechanical model.

ii. To model natural fractures and faults by using the concept of Geomechanics 

(1D to 3D) and stress pattern analysis in carbonate reservoir

iii. To analyse the fault and fracture stability analysis during oil production and 

injection in natural factorized carbonate reservoir with high heterogeneity

iv. To characterize the fault in a structural study by the concept of stress and strain 

relationship and capacity of reactivation of the faults in a complex carbonate 

reservoir.

By carrying out this study it is hoped that to have a better understanding in 

geomechanical characteristic such as integrity stress analysis (direction and magnitude 

of stresses and its reaction by production/injection) of the field, which can be utilized 

for future developments in the field as well as improving oil and gas production, 

reducing the cost and time of drilling operation, minimizing the reservoir damage and 

finally improving reservoir management practically.

1.5 Scope

The goal of this work is to build 3D geomechanical modeling on fault/fracture 

stability analysis in a complex carbonate reservoir. To achieve these objectives, four 

tasks have been defined. The first task is building 1D geomechanical wellbore stability 

analysis. To do this task need to collect all necessary well and log data. Estimation 

shear sonic logs, mechanical parameters, and safe mud window are the main outputs 

in this step. In this phase, it needs to do formation evaluation regarding Lithology, 

effective porosity, and water saturation estimation. The second task is developing and 

validation of 3D geomechanical modeling. The generation of a 3D static model 

including the initial pore pressure model is necessary to input data that must be done 

by Petrel software. All 1D geomechanical results must be distributed in a static model. 

Mechanical parameter propagation is the final output in the second step. The third task 

is fracture analysis with the concept of stress and strain relationship developing by 

image log and other available data. Processing and interpretation of a different kind of
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image log (FMI, XRMI) and shear dipole sonic (DSI) for extracting the fracture and 

faults parameters are the important activity in this step. Fracture study by image log is 

a vital procedure that must be considered in the third step. Another task is verifying 

improved models for building the fault and fracture stability analysis. The Mohr’s 

circle of stresses is the final output which considers the fault reactivation in the 

reservoir and cap rock.

Obviously, because of the wide range of reservoir geomechanical subjects, it 

is impossible to cover all aspects of this issue. For example, processing and 

interpretation of seismic analysis, dynamic modeling, compaction study are the topic 

which were not be comprised in this study. One of the important phases of this project 

is gathering information on the field that has been located in Middle East area. To fulfil 

the objectives of this research, the field in the middle east was selected.

1.6 Significance of Study

The Alpha field includes a wide verity of structural and geological complexity, 

such as different kinds of fractures (major, medium, minor, and hairline open fracture) 

and giant thrust fault. So any changes in stress and strain due to oil production or 

injection cause serious impact on fracture or fault behavior. This revolution could be 

constructive (increasing fracture aperture or length) or destructive (because of 

reducing fracture quality). However, monitoring the reaction of faults and fractures 

reaction due to gas production and injection is so important for field development. In 

the general field study, the effect of different depletion, and injection scenarios on 

stress distribution mostly is ignored and the impact of this stress turbulence on 

structural features is not considered. One of the different aspects of this study besides 

general procedures such as petrophysical study and making a static model is to include 

all geomechanical procedures from 1D to 3D geomechanics and finally focus on faults 

reactivation in the reservoir.
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It tried to integrate all general approaches with the geomechanical study as a 

new method to optimize reservoir management.
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