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ABSTRACT

Contamination of heavy metals has attracted great attention in scientific
community in which membrane technology by using thin film composite (TFC)
membrane has shown a great potential for treating contaminated water. The presence
of dense polyamide (PA) layer in TFC membrane often cause water transport to be
hindered, yielding low flux at high pressure in which modifying TFC membranes by
incorporating nanomaterials within thin active/selective layer serves as an interesting
approach. This study aimed to develop and compare thin film nanocomposite (TFN)
incorporated water-stable zirconium-based metal organic frameworks (MOFs) on the
PA layer for removing lead (Pb) from water by different membrane processes. To
investigate the effects of amine-functional groups of UiO-66 on physicochemical
properties of the PA layer, TFN membranes with PA layer containing different
loadings of Ui0-66 or UiO-66-NH> were prepared and compared followed by their
performance test for Pb(Il) removal. The synthesized UiO-66 and UiO-66-NH>
showed highly crystalline and uniform rhombic structures with particle size of 113-
130 nm and 130-150 nm, respectively. Under field emission scanning electron
microscopy analysis, the TFN membranes displayed thicker PA layer as compared to
control membrane. Fourier transform infrared analysis revealed the successful
fabrication of PA layer indicated by the strong amide peak. Atomic force microscopy
analysis was similar for both TFN/UiO-66 and TFN/UiO-66-NH> which resulted in
rougher membrane surface. Water contact angle analysis showed improved
hydrophilicty of TFN membranes as compared to control membrane, in which the
hydrophilicity of TFN/U10-66-NH; was higher than TFN/UiO-66 membranes. Under
nanofiltration (NF) process, it was found that the optimum loading of UiO-66 or UiO-
66-NHz (0.01 wt%) has shown higher pure water flux than control membrane (4.45
L/m?h.bar), which was 6.26 L/m?.h.bar and 8.63 L/m?.h.bar, respectively. Basic salts
rejections of MgSQ4, NaxS04, MgCl; and NaCl revealed rejection of TFN membranes
were at par with control membrane but at higher solute permeability. In terms of
membrane performance for Pb(Il) removal by NF process, increasing Pb(Il) initial
concentration caused decreased Pb(Il) rejection for TFN/UiO-66 and TFN/UiO-66-
NHaz. Presence of cadmium (Cd)/nickel (Ni) decreased the rejection of Pb(II) ascribed
by the hydrated size and diffusion coefficients of metals. Interestingly, under forward
osmosis (FO) process, Pb(Il) initial concentration and presence of Cd/Ni did not
influence the rejection of Pb(Il) in which 99% rejection was achieved for all
membranes. TFN membranes which were TFN/UiO-66 and TFN/Ui1O-66-NH: offered
higher FO water flux, which was 16.51 L/m?h and 18.51 L/m%h, respectively as
compared to 9.45 L/m2.h for control membrane. In comparison to NF process using
the same membrane, the rejection via FO process was 30% more efficient. Stability
study demonstrated 10% reduction of permeability of TFN membranes as compared
to 15% permeability drop for control membrane when subjected to MgSO4 solution.
The permeation and Pb(II) rejection from this study has proven that the incorporation
of Zr-based MOFs (UiO-66 or UiO-66-NH>) as additive has improved the properties
of TFN membranes making it suitable to be used for water/wastewater treatment.
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ABSTRAK

Pencemaran logam berat telah menarik perhatian utama komuniti di mana
teknologi membran dengan menggunakan membran komposit filem tipis (TFC) telah
menunjukkan potensi besar untuk merawat air yang tercemar. Kehadiran lapisan
poliamida (PA) padat dalam membran TFC sering menyebabkan pengangkutan air
terhalang, menghasilkan fluks rendah pada tekanan tinggi di mana mengubah
membran TFC dengan memasukkan bahan nano dalam lapisan aktif/selektif nipis
merupakan pendekatan yang menarik. Kajian ini bertujuan untuk membangunkan dan
membandingkan nanokomposit filem tipis (TFN) yang menggabungkan kerangka
organik logam berasaskan zirkonium (MOF) yang stabil pada air pada lapisan PA
untuk penyingkiran plumbum (Pb). Untuk menyiasat kesan kumpulan berfungsi amina
UiO-66 pada sifat fizikokimia lapisan PA, membran TFN dengan lapisan PA yang
mengandungi muatan UiO-66 atau UiO-66-NH2 yang berbeza telah disediakan dan
dibandingkan diikuti ujian prestasi bagi penyingkiran Pb(Il). UiO-66 dan UiO-66-NH2
yang disintesis menunjukkan struktur rombus yang sangat kristal dan seragam dengan
ukuran zarah masing-masing 113-130 nm dan 130-150 nm. Di bawah analisis
mikroskop elektron pengimbas perlepasan medan, membran TFN menunjukkan
lapisan PA yang lebih tebal berbanding membran kawalan. Analisis inframerah
transformasi Fourier mendedahkan kejayaan pembuatan lapisan PA yang ditunjukkan
oleh puncak amida yang kuat. Analisis mikroskop daya atom adalah serupa untuk
kedua-dua TFN/UiO-66 dan TFN/UiO-66-NH2 mengakibatkan permukaan membran
lebih kasar. Analisis sudut sentuh air menunjukkan hidrofilik membran TFN adalah
lebih baik berbanding dengan membran kawalan, di mana hidrofilik TFN/UiO-66-NH2
lebih tinggi daripada membran TFN/UiO-66. Di bawah proses penapisan nano,
didapati bahawa muatan optimum UiO-66 atau UiO-66-NH2 (0,01 % berat)
menunjukkan fluks air tulen yang lebih tinggi daripada membran kawalan (4,45
L/m2j.bar), iaitu masing-masing 6.26 L/m2j.bar dan 8.63 L/m2j.bar,. Penolakan
garam asas MgS0O4,Na2S04, MgCh dan NaCl mendedahkan penolakan membran TFN
adalah setara dengan membran kawalan tetapi pada kebolehtelapan zat terlarut yang
lebih tinggi. Dari segi prestasi membran untuk penyingkiran Pb (Il) oleh proses NF,
peningkatan kepekatan awal Pb (II) menyebabkan penurunan penolakan Pb (Il) bagi
TFN/ UiO-66 dan TFN/UiO-66-NH2. Kehadiran kadmium (Cd)/nikel (Ni)
menurunkan penolakan Pb (I1) yang disebabkan oleh pekali ukuran dan resapan logam
yang terhidrat. Menariknya, di bawah proses osmosis berhadapan (FO), kepekatan
awal Pb (I1) dan kehadiran Cd/Ni Pb (1) tidak mempengaruhi penolakan Pb (Il) di
mana penolakan 99% dicapai untuk semua membran. Membran TFN iaitu TFN/UiO-
66 dan TFN/UiO-66-NH2 menawarkan aliran air FO yang lebih tinggi, iaitu 16.51
L/m2j dan 18.51 L/m2j, berbanding 9.45 L/m2j daripada membran kawalan. Jika
dibandingkan dengan proses NF menggunakan membran yang sama, penolakan
melalui proses FO adalah 30% lebih cekap. Kajian kestabilan menunjukkan
pengurangan kebolehtelapan membran TFN adalah 10% lebih rendah berbanding
penurunan kebolehtelapan 15% membran kawalan apabila dikenakan larutan MgSO4.
Kebolehtelapan dan penolakan Pb (I1) dari kajian ini telah membuktikan bahawa
penggabungan MOFs berasaskan Zr (UiO-66 atau UiO-66-NH2) sebagai bahan
tambah meningkatkan sifat membran TFN menjadikan ia sesuai digunakan untuk
rawatan air/air sisa.
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CHAPTER 1

INTRODUCTION

1.1 Clean Water Availability

Safe and readily available water, whether it is used for drinking purpose,
domestic use, or food production or recreational purposes is important to the public
health. In 2017, approximately 5.3 billion of people have safely consumed managed
water service, however, there is still 2 billion of people consumed contaminated water
as indicated by Figure 1.1 (Our World in Data, 2015). Briefly, contaminated water can
transmit diseases such as cholera, typhoid, polio, dysentery with estimation of 1.2
million deaths of drinking polluted water in 2017 alone (Our World in Data, 2017).
The availability of clean water is dwindling due to the increasing amount of water
contaminants. The United Nations Educational, Scientific, and Cultural Organization
disclosed that in 2017, 80% of agricultural and industrial wastes are being disposed
into world’s water, with the annual production of waste water is six times more than
water available in all rivers in the world (UNESCO, 2017). Therefore, understanding
and removing contaminants from water is crucial in finding solutions to overcome this

issue.

As mentioned previously, industrial and agricultural wastes are the major
contributor that contaminate water bodies. In certain cases, some industrial factories
release waste effluent into the water ways while often pesticides and fertilizers from
agricultural sectors contaminate water bodies during rain season where the
contaminants readily penetrate to the water sources. The types of water contaminants
are varies, from inorganic, organic or biological. Heavy metals contaminations in
water has attract a great concern among scientists due to large number of industries
player discharging their metal containing eftfluents into water bodies without any

proper treatments.



Figure 1.1 Number of people without access to safe water (Our World in Data,
2015)

Lead (Pb) is a type of heavy metals which is frequently emitted from
manufacturing of battery storage, building construction, paint and ceramics, storage
tank lining and pipework. In aquatic environment, Pb typically exists in the state of 2+
and 4+ where the speciation of lead compound solely relies on pH, dissolved oxygen
and concentration of other organic and inorganic compound (UNEP, 2010). Unlike
other heavy metals such as zinc, copper, cobalt, manganese and iron that play vital role
in biochemical processes, Pb has no known beneficial role on living organism. Despite
World Health Organization (WHO) has set the maximum contaminant level (MCL) of
Pb in drinking water is 15 |ig/L (Jamshidi Gohari, Lau, Matsuura, Halakoo, et al.,
2013), the presence of as low as 10 |ig/L of Pb had been reported to cause cognitive
impairment, aggression and delinquency to children (Brinson & Brinson, 2008).
Besides that, accumulation of Pb in body also causes disruption in the process of
haemoglobin synthesis, renal function, nervous system, reproductive system and
immune system. Due to the hazardous impacts posed by Pb, controlling or treating
water laden with this metal has become a subject of interest among scientific

community.



1.2 Membrane Technology for Lead Removal

There are various methods have been employed for removing Pb from water
sources. These include ion exchange (Ahmed et al., 1998; Islam & Patel, 2009; Street
et al., 2002; Trgo et al., 2006), precipitation (Eren, 2009; Esalah et al., 1999; Matlock
et al., 2002; Rojas, 2014), coagulation-flocculation (Debora et al., 2013; Pang et al.,
2011), and flotation (Drzymala et al.,, 2003; Ghazy et al., 2008). Nevertheless,
incomplete Pb removal, high operational cost and generation of secondary waste are
some of the limitations posed by the aforementioned (Barakat, 2011; Xiangtao Wang
et al., 2012). Membrane technology is a versatile technique for removing various
unwanted constituents, including metallic ions from wastewater. In principle,
membrane acts as barrier that inhibits the passage of certain constituents while
allowing other constituents to pass through (Figure 1.2). There are five membrane
processes that can be used for water treatment; 1) microfiltration (MF), 2)
ultrafiltration (UF), 3) nanofiltration (NF), 4) reverse osmosis (RO) and 5) forward

osmosis (FO) in which the latter four have been reported to remove heavy metal ions.

membrane

Unwanted
constituents

Figure 1.2 Basic principle of membrane technology



In comparison to UF membrane which require membrane with adsorptive
feature, the state-of art of NF, FO and RO process for Pb often rely on thin film
composite (TFC) membrane which comprised of ultrathin selective layer on porous
polymeric substrates. The preparation of TFC is commonly conducted via interfacial
polymerization (IP) reaction between two monomers- polyfunctional amine dissolved
in aqueous solution and polyfunctional acid chloride dissolved in hydrocarbon solvent,
followed by curing process to densify the polymerization properties of polyamide

layer. Figure 1.3 illustrates the structure of thin film composite membrane.

Figure 1.3 Components of thin film composite membrane

Despite all ofthe related published studies, the performance of TFC membrane
could be further enhanced by incorporating nanomaterials into the dense layer of thin
film. In this case, the term of this type of membrane changed to thin film
nanocomposite (TFN) membranes. Various nanomaterials have been integrated during
fabrication of TFN membranes; these includes graphene based materials (Lai et al.,
2016; Mahdavi, Delnavaz and Vatanpour, 2017; Wang et al., 2017; Zhao et al., 2018),
graphene quantum dots (Seyedpour et al., 2018), titanium dioxide (Emadzadeh et al.,
2014; Ghanbari, Emadzadeh, Lau, Matsuura, et al., 2015), carbon nanotubes (Al-
Hobaib et al., 2017; Han et al., 2015), metal nanocomposite materials (Ben-Sasson,
Zodrow, et al.,, 2014; Lee et al., 2007; Ramezani Darabi et al.,, 2018), and silica
nanoparticles (Abadikhah et al., 2018; Ang et al., 2019).



Metal organic frameworks (MOFs), a new type of porous materials which is
widely used in gas separation has created a breakthrough for its studies in
water/wastewater treatment application (Wang et al,, 2016). MOFs is typically
described as inorganic metal ions linked by organic ligands via coordination bonds
(Rowsell & Yaghi, 2004). In general, the properties of MOFs are preferable for water
treatment application ascribed by their high specific surface area, different particle

structures, tunable properties, and distinct pore size and structure

Nevertheless, the use of MOFs membranes in water treatment is still in its
infancy when compared with their applications for gas separation. MOFs-integrated
membranes are advantageous because they can overcome the traditional filling
problems of low affinity with the membrane, porosity blocking, and segregation
(Kadhom et al., 2017). The hybrid MOFs structure with organic and inorganic parts is
generally compatible with polymeric layers in membrane where MOFs particles can
be more conveniently embedded into the TFC membrane with less gaps than those
created by traditional inorganic fillers. There are also studies reported on incorporation
of MOFs TFN membranes to treat water in different applications. For example, Lee et
al. used A100 (aluminum terephthalate) and C300 (copper benzene-1,3,5-
tricarboxylate) as water soluble MOFs, which were embedded and dissolved into the
ultrafiltration membrane to increase its porosity (Lee et al., 2014). For reverse osmosis,
Hu et al. (2011) reported two simulation studies that used Zeolitic Imidazolate
Framework (Z1Fs)—MOFs based on zeolite as membranes for water desalination. Xu
et al. (2016) filled MIL-101(Cr) NPs into the TFC membrane to improve the
desalination performance. Findings showed that the water flux increased by 44%
comparing to the neat membrane just by adding 0.05% MIL-101 nanoparticles to the

organic solution, while the salt rejection remained almost the same.

Another advantage is the low cost of the polymeric membranes and the vast
selection range of linkers toward controlling MOFs shape, morphology, and surface
chemistry, making it potentially possible to design membrane for specific applications
(Wang et al.,, 2016). Hence, this research aimed to develop TFN membranes
incorporated water-stable zirconium(Zr)-based MOFs for Pb(Il) removal via

membrane NF and FO processes. The physiochemical properties of the two types of



Zr-based MOFs (Ui0-66 and UiO-66-NH2) with and without functional amine (-NH>)
was be evaluated thoroughly. The performance of the membranes upon removing
Pb(II) will be investigated under hydraulic pressure-driven NF process and osmotic
pressure-driven FO process under various operational conditions. Leaching and
stability study of the fabricated membranes at long operating hour were also conducted

and evaluated.

1.3 Problem Statement

Thin film composite (TFC) membrane has been shown to be effectively
remove heavy metals from water. This type of membrane which comprised of
polyamide (PA) dense layer with thickness of few hundred nanometers which is
supported by porous substrate (Shaffer et al., 2015). This is the active layer that
responsible for salt rejection. However, due to the presence of dense PA layer, water
transport is often hindered, yielding low flux at high pressure. In order to improve the
properties of the membranes, modifying TFC membranes by incorporating
nanomaterials within thin active/selective layer serves as an interesting approach
(Zirehpour et al., 2017). Various types of nanomaterials have been studied comprising
zeolite, silica, carbon nanotubes, pure metals and metal oxides to improve the TFN

membranes properties (Lau et al., 2012).

Metal-Organic Frameworks (MOFs) are a class of nanomaterials consisting of
an inorganic or metal core surrounded by an organic linker material (Champness,
2011). Nevertheless, due to lability of the bonding of ligand that surrounds the metal
atom, most of the earlier reported of MOFs are susceptible to water content. With the
improved understanding of MOFs towards water stability, many studies have reported
such water stable/hydrophilic MOFs. High valence based MOFs such as Ui0-66 (Ma
etal., 2017), ZiF-8 (Sorribas et al., 2013) and HKUST (Nurasyikin Misdan et al., 2019)
have been reported for desalination purpose using RO processes. The selection of this
type of MOFs is mainly due to their excellent water stability in which their structures
are not easily collapsed upon exposure to water molecules. Despite there were studies

reported on the use of Ui0-66 in thin film layer (Ma et al., 2017; He et al., 2017),



different monomer leads to different types of polyamide layer. In addition, the impacts
of adding two types of Zr-based MOFs where one have additional NH2- groups to the
physicochemical properties of NF-ranged TFN membranes have not yet being
explored. Comparison between these two types of Zr-based MOFs is beneficial in
providing the to which extent the presence of NHz group of Zr-based MOFs will

influence the physicochemical changes of PA layer.

Another major issue faced by most membrane-based water separation
processes is membrane fouling, caused due to the existence of varies contaminants in
water. The effects of fouling aggravate over time, where the permeability of membrane
declines in a long run. UiO-66 is the prototypical Zr-MOFs, having chemical formula
of Zrs04(OH)4(BDC)s and possesses hydrophilic surface due to the presence of OH-
functional groups. As most foulants are commonly hydrophobic in nature, thus, adding
Zr-based MOFs with hydrophilic surface into TFN membranes can mitigate the
adhesion of foulants, and hence improve the antifouling properties of the resultant

membranes.

Despite to incorporation of additive into PA layer or substrate layer, the
performance of TFC can be also influenced by difference modes of membrane
processes. In addition, less information has been provided in term of the comparison
between pressure driven and osmotic driven membrane process using same TFN
membrane. Comparing the performance of TFN membranes using pressure driven
membrane system (nanofiltration) and osmotic driven membrane system (forward
osmosis) will provide better understandings in term of flux permeability, Pb(II)
rejection and fouling propensity between different membrane processes. In addition,
there is no comparative studies have been employed on the performance of TFN
membranes incorporated with Zr-MOFs for Pb(II) removal under pressure-driven and

osmotic-driven membrane processes.



1.4  Research Objectives

The main aim of this research work is to study the removal of lead (II) by thin film
composite/Zr-metal organic framework (TFN/Zr-MOFs) membrane by NF and FO

processes. The objectives of this study are:

1) To study the effects of different types and loading of Zr-based MOFs (U10-66 and
Ui0O-66-NH3z) to the physicochemical properties of PA layer of TFN/Zr-MOFs

membranes.

2) To investigate the performance of TFN/Zr-MOFs membranes for removal of Pb(Il)
by using nanofiltration process and forward osmosis process based on water

permeability, basic salt rejections, and Pb(II) rejections.

3) To evaluate the difference of the performance of TFN/Zr-MOFs when using
hydraulic pressure-driven process and osmotic pressure-driven process for Pb(Il)

removal.

4) To evaluate the leaching and fouling impact to the stability of TFN/Zr-MOFs at

longer operating hour.

1.5  Research Scopes

In order to achieve the aforementioned objectives, the following scopes of study are

outlined:

1) Synthesizing two types of Zr- based MOFs which are UiO-66 and UiO-66-NHz via

solvothermal method and characterizing their physicochemical properties

The aim of this phase is to synthesize and characterize two types of Zr-based
MOFs which are Ui0-66 and UiO-66-NH; by using high valence metal Zr*" as
precursor and 1,3-benzene dicarboxylic acid as ligand. The physiochemical properties

of self-synthesised MOFs were evaluated via Fe-SEM (to evaluate the morphological



structure of the prepared MOFs), X-ray diffraction analysis (to determine the
crystallinity structure of MOFs and water stability), Attenuated total reflection-fourier
transform infrared (ATR-FTIR) (to determine the presence of surface functional
groups) and Brunauer, Emmet and Teller (BET) (to determine the specific surface

area).

2) Fabricating TFN/Zr-MOFs membrane by incorporating different loading of UiO-66
or Ui0-66-NH; ranging from 0.005 wt% to 0.1 wt% into the PA layer.

For this scope, PSf substrate was prepared by phase inversion technique, as
followed by the optimized procedures. TFN membranes made of PSf substrates were
prepared via in-situ interfacial polymerization by studying the effects of different
loading of UiO-66 or UiO-66-NH2 (0-0.1wt%) on the PA layer. The physiochemical
properties of TFN membranes were evaluated by scanning electron microscope
(SEM), elemental dispersive X-ray (EDX), Fourier transform infrared (FTIR), atomic
force microscope (AFM), contact angle measurement, zeta potential analysis, pure

water flux analysis and membrane conductivity.

3) Investigating the performance of TFN/Zr-MOFs membranes for removing of Pb(Il)

from aqueous solution by NF and FO process

The performance of two types of TFN/Zr-MOFs were firstly analyzed based
on the water permeability and basic salt rejections (NaCl, MgCl, Na2SO4, MgSO4) by
using lab scale NF system. This followed by rejections of Pb(II) from aqueous solution
by investigating the effects of pH (1.0-5.0), initial concentration (50ppm-500ppm) and
presence of binary metal (Ni and Cd) were carried out where the final concentration
of Pb(Il) was measured by using atomic absorption spectrometer (AAS). For FO
process, water flux and reverse solute flux (RSF) were carried out by using FO-cross
flow membrane system in which the draw solution (MgCl> with concentration of
1.0M) and membrane orientation (active layer facing feed solution, AL-FS) were kept

fixed.



4) Comparing the removal of Pb(Il) using NF filtration process and FO filtration

process.

In this scope, the performance TFN membranes upon removing Pb(Il) was
conducted at fixed operating conditions. The rejection of Pb(II) and water flux of the
both types of TFN/Zr-MOFs membranes were measured and compared between both

filtration processes.

5) Evaluating the effect of leaching and scaling compound to the stability of TFN/Zr-

MOFs membranes

Leaching study was carried out by agitated the membrane and the amount of
Zr-MOFs leached after overnight agitation was determined by AAS. 2000ppm MgSQO4
as scaling compound was used in order to study the eftect of Pb(Il) rejection in the
presence of scaling compound. Both flux and rejection of solutes were measured and

compared to the flux and rejection without scaling compound

1.6  Significance of Study

It is well known that membrane separation becoming important for various
applications, TFN/Zr-MOFs membranes serve as another alternative measure for
removal of heavy metals. This study is expected to provide better understandings on
the underlying principle of the fabrication of TFN membranes for removal of heavy
metals by considering the changes of incorporating different types of Zr-based MOFs
into PA layer to the physicochemical morphologies, liquid separation characteristics,
surface characteristics and comparative performance of pressure driven and osmotic

driven membrane processes by using the developed membrane.

The primary outcomes of this study would benefit scientific community in the
sense of filling the knowledge gap of nanotechnology and membrane technology for
water/wastewater treatment. The approach of incorporating water stable MOFs which

has good compatibility with polymer may combat the issues that are commonly faced
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by thin film composite membranes. In addition, as there are limited studies have been
conducted on the comparative performance between pressure driven and osmotic
driven membrane processes for heavy metals removal, thus this study may also provide
better understanding in term metal rejection and fouling effects of the TFN
membranes. As it is well known that addition of additive with hydrophilic surface will
improve the antifouling properties of the membrane, however the life-span and
performance of the membrane are also varied according to which type of membrane

filtration processes are used.

In addition, from the perspective of Malaysian hazardous waste management
and legislation policies, currently, the application of TFN/Zr-MOFs membranes will
reduce the threat of heavy metals pollution towards surrounding environment and

human health.

1.7  Organization of Thesis

This thesis consists 5 chapters. Chapter 1 describes brief research background
about thin film composite and its applications as well as metal organic framework as
additive in thin film composite. In addition, this chapter also elaborates the problem

statements, objectives, scopes and rational of this study in detail.

Chapter 2 provides detailed information about heavy metal contaminations and
type of membrane processes used for their removal from water. This chapter also gives
information of the chronological development of thin film composite membrane and
influence of additives to the performance of this type of membrane. Chapter 3 focuses
on the experimental procedures involved in this study; from synthesis of metal organic
frameworks, fabrication of thin film composite membrane, characterizations and

performance analysis of the developed membrane.

Chapter 4 describes the results and discussion for the all experimental
procedures which are sub-divided into subheadings. The physicochemical properties

of the self-synthesized UiO-66 and UiO-66-NH2 were firstly discussed followed by
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physicochemical properties of the TFN incorporated with different loadings of UiO-
66 or UiO-66-NH2. The physical properties of the prepared TFN membranes were
firstly investigated by using Fe-SEM and AFM analyses while ATR-FTIR was
conducted in order to evaluate their chemical properties The correlation of cross-
linking between nanofillers and PA layer were analysed by using XPS analysis. For
performance analysis, comparison of performance was firstly discussed between
TFN/U10-66 and TFN/Ui10O-66-NH2 The results of the performance for Pb(I) removal
by each membrane filtration processes were discussed and compared and the end of
this chapter. Finally, the general conclusions of this study and some recommendations

for future studies are drawn in chapter 5 followed by appendixes of this study.
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