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ABSTRACT 

Addressing water scarcity is an essential of the sustainable development’s goal. 

One potential solution for new water resource is desalination. Forward osmosis (FO) 

desalination, utilizing the concept of osmotic pressure difference between high and 

low salinity streams across semipermeable membrane is of interest in the membrane 

research community in recent years. Nevertheless, practical application of FO 

desalination has been limited by the unsatisfactorily membrane performance to 

simultaneously offer high permeability and excellent anti-fouling properties. Hence, 

the overall goal of this study was the development of high-performance thin film 

nanocomposite (TFN) membrane with consistent water flux, high salt rejection and 

good biofouling resistance. Hybrid nanofiller, silver-functionalized carbon nanotubes, 

Ag-fCNTs synthesized via hydrothermal method was blended with PES dope solution 

and TFN membranes were fabricated by varying nanofiller loading (0.1, 0.3 and 

0.5 wt%) using phase inversion followed by interfacial polymerization technique. 

Different characterizations such as Fourier transform infrared spectroscopy (FTIR), X-

ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the 

successful formation of Ag-fCNTs. The effects of Ag-fCNTs on the membrane 

properties and physical characteristics such as, chemical functionality, morphologies, 

surface roughness and surface hydrophilicity were analyzed. The resultant TFN 

membranes exhibited enhanced hydrophilicity, porosity and surface roughness, which 

in turn improved the overall membrane performance. Evaluation using dead-end 

reverse osmosis revealed that TFN membranes enhanced the water permeability 

without trade-off in salt rejection and the structural parameter (S) was reduced, 

indicating the suppression of internal concentration polarization. Furthermore, FO 

performance significantly improved e.g., the water flux of the optimum blending ratio, 

TFN0.3 achieved 27.99 l/m²h in pressure retarded osmosis (PRO) mode by using 2.0 

M NaCl/RO water as the draw/feed solution, while the specific salt flux was acceptable 

at 0.15 g/m²h. However, antibacterial assessment and antibiofouling filtration 

experiments of pristine TFC and TFN membranes against the Gram-negative bacteria, 

E. coli demonstrated no noticeable antibacterial activity. This could be related to the 

small amount of Ag nanoparticles used (1:5 ratio) for Ag-fCNTs hybridization. 

Despite showing poor anti-biofouling properties, the promising water flux and salt 

rejection improvement implied the potential of the newly developed TFN for practical 

FO desalination application.  
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ABSTRAK 

Mengatasi kekurangan air merupakan matlamat utama pembangunan mampan. 

Salah satu penyelesaian yang berpotensi untuk sumber air baru adalah penyahgaraman. 

Osmosis hadapan (FO) yang menggunakan konsep perbezaan tekanan osmotik antara 

aliran kemasinan tinggi dan rendah merentas membran separa telap telah menarik 

perhatian yang sangat besar dalam komuniti penyelidikan membran beberapa tahun 

kebelakangan ini. Namun begitu, aplikasi praktikal FO untuk penyahgaraman telah 

dibatasi oleh kekurangan prestasi membran untuk menawarkan kebolehtelapan yang 

tinggi dan ciri-ciri anti-kotoran yang baik. Oleh yang demikian, matlamat keseluruhan 

kajian ini adalah pembinaan membran filem nipis nanokomposit (TFN) prestasi tinggi 

dengan aliran air yang konsisten, penolakan garam yang tinggi dan rintangan kotoran 

yang baik. Bahan nano hibrid yang terdiri daripada zarah nano silver (Ag) dan nanotiub 

karbon berfungsi (fCNT) disintesis menggunakan kaedah hidroterma telah dicampur 

dengan larutan dop polieter sulfon (PES) dan membran TFN direka dengan pemuatan 

nanofiller yang berbeza-beza (0.1, 0.3, dan 0.5 wt%) dengan menggunakan teknik 

penyongsangan fasa diikuti dengan teknik pempolimeran antara muka. Pencirian yang 

berbeza seperti spektroskopi inframerah transformasi Fourier (FTIR), difraksi sinar-X 

(XRD) dan mikroskop elektron penghantaran (TEM) mengesahkan kejayaan 

pembentukan Ag-fCNT. Kesan Ag-fCNT pada sifat dan ciri fizikal membrane seperti 

fungsi kimia, morfologi, kekasaran permukaan dan hidrofilik permukaan telah 

dianalisis. Membran TFN yang dihasilkan menunjukkan peningkatan hidrofilik, 

keliangan dan kekasaran permukaan, yang seterusnya meningkatkan prestasi membran 

keseluruhan. Penilaian menggunakan osmosis terbalik (RO) menunjukkan membran 

TFN meningkatkan kebolehtelapan air tanpa menjejaskan penolakan garam dan 

parameter struktur (S) menurun menunjukkan berlakunya pengurangan pempolimeran 

kepekatan dalaman. Tambahan pula, aliran air bagi sampel nisbah pengadunan 

optimum, TFN0.3 mencapai 27.99 l/m²h di bawah mod PRO dengan menggunakan 

2.0 M NaCl /air RO sebagai larutan pengambilan/suapan, sementara fluks garam 

spesifik menunjukkan nilai yang dapat diterima iaitu 0.15 g/m²h. Namun, penilaian 

antibakteria dan eksperimen penapisan antibiokotoran membran TFC dan TFN 

terhadap bakteria Gram-negatif, E. coli tidak menunjukkan aktiviti antibakteria yang 

ketara. Ini berkaitan dengan sejumlah kecil nanopartikel Ag yang digunakan (nisbah 

1: 5) untuk penghibridan Ag-fCNTs. Walaupun menunjukkan sifat anti-biofouling 

yang tidak baik, penambahbaikan yang dijanjikan dalam aliran air dan penolakan 

garam mempunyai potensi dalam pembentukan TFN yang baru  untuk aplikasi 

desalinasi FO praktikal.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

Water scarcity is being driven by two converging phenomena which are 

growing freshwater use and depletion of usable freshwater resources. It can be a result 

of two mechanisms which are physical water scarcity and economic water scarcity 

(Wang et al., 2018). Physical water scarcity is a result of inadequate natural water 

resources to supply a region's demand while economic water scarcity is a result of poor 

management of the sufficient available water resources. Due to water scarcity, 

technologies to produce clean water have received worldwide attention. Besides, the 

factors which caused the water scarcity might be climate change, such as altered 

weather patterns including droughts or floods, increased pollution and human demand, 

and overuse of water (Greenlee et al., 2009). 

Nowadays, addressing water scarcity issue is a goal of many countries and. 

Thus, the applications of desalination have received considerable interest in the recent 

decade (Chung et al., 2015). Desalination is a process which converts saltwater into 

fresh water. Desalination has been developed and already being used for centuries to 

solve the water scarcity issues. The process consists of two main categories which are 

thermal distillation processes and membrane separation processes. Depending on the 

geographical conditions and availability of natural resources, both processes have 

received equal attention as a reliable source for drinking water production. The basic 

thermal approaches are multiple effect distillation (MED), multi-stage flash (MSF) and 

vapor compression distillation (VCD) while for membrane separation process, the 

methods involve nanofiltration (NF), reverse osmosis (RO), and electrodialysis (ED) 

(Misdan et al., 2012). In comparison to membrane desalination technology, the 

conventional thermal desalination process was not competent in terms of energy 

consumption and create thermal and mechanical problems like tube clogging (Shatat 
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and Riffat, 2014). Among available water treatment, desalination using membrane 

technology has attracted increasing research interest owing to low energy 

consumption, suppression of chemical usages and smaller operation space (Greenlee 

et al., 2009).  

Since 1960, RO has become one of the most prominent technology in 

desalination industry to produce high quality water from unusable water sources due 

to its low process cost as well as using latest membrane technology (Goh et al., 2016). 

However, the growth of the RO technology has limited by a few restrictions such as 

relatively low water recovery factors, biofouling and high cost of electrical energy. 

This hence call for widespread applications of forward osmosis (FO) as a promising 

alternative membrane separation technology (Akther et al., 2015). It is a process which 

involves the selective permeable membrane where osmotic pressure difference based 

on the concentration gradient of feed solution (FS) and draw solution (DS) is the 

driving force of water molecules to diffuse across the membrane (Goh et al., 2013). 

The selective permeable membrane allows water to cross but blocks the unnecessary 

item like salt ions. In FO, the draw solution represented by the high salinity solution 

where it has a higher osmotic pressure than the feed solution thus encourages water 

flow across the selective permeable membrane from the feed to the draw. Therefore, 

compared to RO, FO needs less energy to transfer a net water flow across the 

membrane (Chung et al., 2015).  

The primary stumbling block for the progress of FO technology is the 

availability of membranes with desired properties such as promising separation 

performance in terms of water flux and salt rejection. Additionally, as membrane 

generally shows the tendency to be attached with various form of foulants which 

present in the water supply, the quality of the feed water is known to be influential to 

the membrane performance. The most commonly used configuration of FO membrane 

is thin film composite (TFC) membrane. Generally, TFC membranes have an 

asymmetric porous support and a top selective skin where the mechanical strength is 

provided by the micro-porous support and the separation are done by the selective skin 

layer (W. Xu et al., 2017). Compared to the asymmetric cellulose acetate membrane 

counterpart, TFC demonstrated some advantages such as higher chemical resistant. 
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However, the major issue with TFC FO membrane is still the internal concentration 

polarization (ICP). ICP is caused by a dilution of the DS which consequently, reduced 

the osmotic pressure difference across the membrane active layer (AL). Unlike 

external concentration polarization (ECP) which occurs outside the membrane, ICP 

occurs inside the porous support hence cannot be mitigated by increasing the water 

flow rate or turbulence (Lee and Kim, 2016).  TFC flat sheet membranes has been 

modified via various physical and chemical routes to reduce the ICP of membrane. 

Modification is performed on the TFC flat sheet membrane by introducing various 

additives such as bulky monomers and surfactants in reacting solutions to improve the 

intrinsic free volume of the rejecting layer and water permeability (Cui et al., 2014). 

Like any other membrane processes, FO also suffers from membrane fouling 

problem, although the fouling is generally less severe than RO fouling.  Membrane 

fouling is a process which takes place in membrane surface or membrane pores 

whereby a solution or a particle is deposited (Li et al., 2018). Membrane fouling can 

cause severe flux decline and affect the quality of the water produced. Some fouling 

problems may need intense chemical cleaning or membrane replacement and this will 

increase the operating costs of a treatment plant. Biofouling is one of the most 

challenging problems in membrane separation processes which hinders wider 

applications of the membrane. Biofouling starts with the bacterial adhesion on the 

membrane surface where once it attaches to the membrane surface, a bio-film will be 

produced. They are difficult to be removed and often causes irreversible damage to the 

membrane structure with the decline of water flux (Liu et al., 2015). Silver compounds 

and silver ions have been known to exhibit strong inhibitory and bactericidal effects 

as well as a broad spectrum of anti-microbial activities (Ben-Sasson et al., 2014). Due 

to their excellent biocidal properties and low toxicity towards mammalian cells, silver 

nanoparticles (AgNPs) have been widely applied in desalination membrane 

modification. 

Based on the findings of previous studies, it has been suggested that membrane 

modification through incorporation of functional nanomaterials is a straightforward 

strategy to simultaneously address the issues related to ICP and membrane fouling (Ma 

et al., 2018; Islam et al., 2020). Therefore, this study focuses on developing thin film 
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nanocomposite (TFN) membranes for FO desalination where Ag-fCNT hybrid is 

introduced into the membrane substrate to attain the desired membrane’s physico-

chemical performance and desalination performance.  

1.2 Problem Statement 

The performance of FO process largely depends on the membrane 

characteristics. Recent findings demonstrated that the membrane performance in terms 

of flux and anti-fouling behaviour are two crucial factors that dictate the ability of the 

FO system to desalinate seawater. Comparing both configurations, AL-FS and AL-

DS, published articles on desalination reported AL-DS configuration showed higher 

water flux. However, pronounced water flux drop was observed over time due to the 

more severe membrane fouling (Tang et al., 2010). This outcome also implies the 

importance for the development of a new FO membrane with an antifouling as well as 

antibacterial properties so that fouling can be minimized to boost FO performance. 

Particularly, membrane fouling has severe negative impact on the performance 

of FO process due to the water flux decline after a period of operation. Early works on 

the FO process fell short to attain promising results due to the ineffective of the semi-

permeable membrane. Thus, biofouling represents the major concern for industries that 

exploit membrane technology including water, food and pharmaceuticals (Al et al., 

2017). As an alternative to disinfectant application, nanotechnology has impacted on 

the design and fabrication of nanocomposite membranes with the potential for creating 

self-cleaning and antimicrobial surfaces. 

Another issue related to membrane performance is reverse solute diffusion 

(RSD) and ICP. Loss of draw solute during FO operation occurs via reverse solute 

flux, which refers to the back permeation of draw solutes from the bulk draw solution 

through the membrane active layer and goes into the feed. The ability of an FO 

membrane to minimize reverse draw solute is critically important because the loss of 

draw solute is economically unfavourable and can have negative impacts upon release 

of some toxic draw solutes, such as ammonia to the environment. Detrimentally, it can 



5 

lead to severe fouling and scaling in the feed solution. The semipermeable membrane 

used in FO desalination should not allow the permeation of draw solute into the feed 

solution and the early water flux models assumed the reverse salt flux to be negligible.  

Furthermore, RSD is also a reason behind ICP phenomenon in FO desalination. 

Since FO is an osmotically driven membrane process, obviously the concentration 

polarization is strongly affecting the water flux of the system. Basically, the occurrence 

of ICP and ECP related to polarized salt concentration profiles across the porous 

support layer of the FO membrane. ICP in the support layer is greatly affected by the 

physicochemical properties of the solution facing the support layer. The ICP 

phenomenon will be more severe hence resulting in low water flux once the solution 

against the support layer has a lower aqueous diffusivity but larger ion/molecule size 

and higher viscosity. Such problem not only give bad impact on the water flux but also 

affect the water recovery, the permeate quality and shortened membrane life. 

According to the classical model of ICP developed by Loeb et al., (Loeb et al., 1997) 

structural parameter (S) is an exponential function of ICP.  Generally, membranes with 

higher permeability have lower S-value which results in lower ICP and better FO 

performance (Amini et al., 2013; Wei et al., 2011).  This study aims to develop FO 

membrane having both optimized PA layer and membrane support layer. 

Unfortunately, no membrane is perfectly semipermeable, and a small amount 

of draw solute will permeate across the membranes from the draw to the feed solution 

owing to the difference in solute concentrations. According to McCutcheon and 

Elimelech, 2006, if the substrate layer of membrane owns a small structural parameter, 

S, then the ICP in FO process could be minimized. Besides, substrates which 

performed higher hydrophilicity show lower resistance against water passage and 

allow more water productivity. ICP phenomenon is actually influenced by the thick 

substrate layer and high S value that contributes to a huge decline in the effective 

osmotic driving force as well as the flux. Other than ICP, fouling is also being a serious 

issue in FO membranes, thus they can be solved by constructing a substrate with its 

interior pores highly interconnected by understanding that the mechanism on ICP is 

essential in order to innovate membrane design and synthesis. Hence, this study aims 

to develop FO membrane with high water permeability by incorporating Ag-fCNTs 
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hybrid within the membrane substrate in order to have a low S parameter membrane 

for minimizing concentration polarization. The fabrication of FO membrane with 

nanomaterials embedded into the membrane substrate can improve the characteristic 

of membranes owing to their super hydrophilicity and potential of exhibiting 

antifouling behaviours (Lee et al., 2020). The Ag nanoparticles can serve as an 

effective anti-microbial agent to mitigate the issues related to membrane biofouling. 

On the other hand, the presence of the fCNTs in the TFN is expected to render fast 

water transport hence improve the water permeability. 

1.3 Objectives of Study 

The aim of this study is to fabricate and evaluate the potential of TFN 

membrane embedded with Ag-fCNTs hybrid for FO desalination. The specific 

objectives of this study are listed below: 

(i) To synthesize hydrophilic and antimicrobial Ag-fCNTs hybrid nanomaterials. 

(ii) To fabricate and characterize TFN FO membranes incorporated with different 

loadings of Ag-fCNTs hybrid (0.1, 0.3 and 0.5%) within the PES substrate. 

(iii) To evaluate the desalination performance of the TFN FO membrane in terms 

of flux, rejection and antibiofouling properties in AL-DS mode. 

1.4 Scopes of Study 

In order to achieve the objectives, the following scopes have been derived. 

(i) Preparation and surface modification of Ag-fCNTs hybrid with w/w ratio of 

1:5 (fCNTs to Ag) via one step hydrothermal method using AgNO3 as 

precursor and by using acid treatment with hydrochloric acid (HCl) in 0.03M 

NaCl solution as solvent. 
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(ii) Characterization of the morphology and crystallinity of Ag-fCNT hybrid using 

transmission electron microscope (TEM) and x-ray diffraction analysis (XRD).   

(iii) Preparation of membrane substrate via interfacial polymerization using dope 

formulation of 17 wt% PES, 1 wt% PVP and 82 wt% NMP.  

(iv) Preparation of TFC membrane via interfacial polymerization (IP) of amine 

monomer; 2% (w/v) 1,3-phenylenediamine (MPD) in aqueous solution and 

acyl chloride monomer; 0.15% (w/v) 1,3,5-benzenetricarbonyl trichloride 

(TMC) with nanomaterial in n-hexane solution over a polyethersulfone (PES) 

support membrane. 

(v) Preparation of TFN membrane by incorporating Ag-fCNT hybrid’s loading 

ranging from 0.1-0.5 wt% of nanomaterial into the PES substrate via physical 

blending. 

(vi) Characterization of fabricated TFC and TFN membranes using field emission 

scanning electronic microscope (FESEM) for morphology analysis, atomic 

force microscopy (AFM) for surface topography analysis; zeta potential and 

contact angle meter goniometer for surface charge and hydrophilicity, 

respectively.  

(vii) Evaluation of the water permeability performance and NaCl rejection of TFC 

and TFN membranes in dead-end RO filtration system using RO water and  

brine water of 2 g/L (2000 ppm) NaCl, respectively as feed solution. 

(viii) Performance evaluation of synthesized TFC and TFN membranes in terms of 

water flux, antifouling, flux recovery and reverse draw solute in FO system in 

AL-DS modes.  
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1.5 Significance of Study 

Diminishing trade-off effect between water permeability and salt rejection is a 

great concern for membrane properties and have attracted many researchers’ attention 

in their studies. The application of Ag-fCNTs hybrid in TFN membrane is to enhance 

water permeability which later improve water flux without sacrificing the rejection of 

FO rejection. On the other hand, the surface modification on nanomaterial can provide 

a suitable charge that significant to encounter particle agglomeration and decrease 

defects in the PA structure, thus improve water permeability and salt rejection 

performance in FO and RO system.  This study is the first attempt of preparing Ag-

fCNTs to simultaneously improve the flux and anti-microbial activities of the 

membrane to heighten the FO in PRO mode performance. 
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