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ABSTRACT

Epilepsy is a brain disease caused by abnormal brain activities. Machine 

learning algorithms are usually applied in the classification and identification of 

epilepsy at an early stage. This study's primary objective is to classify the 

Electroencephalography (EEG) signal dataset of epileptic seizures using a machine 

learning algorithm and to evaluate the performance using the Plot Confusion Matrix 

and area under the receiver operating characteristic (AUC-ROC) curve. The plot 

confusion matrix method will give an array that depicts the True Positives, False 

Positives, False Negatives, and True Negatives. Besides, the AUC-ROC curve is a 

performance measurement for classification problems at various threshold settings. 

These methods can be used to check or visualize the performance of the multi-class 

classification problem. This thesis involves a collection of datasets containing 200 

healthy individuals and 300 epilepsy patients. Next, features were extracted from 

these datasets. Feature extractions help to reduce data dimensionality and eliminate 

noise, while its output is used as the input for classifier-based epileptic classification. 

This study selected the Discrete Wavelet Transform (DWT) and Statistical Features 

as feature extraction methods. In addition, multiple machine learning techniques are 

presented in this study. Feed Forward Neural Network (FFNN), Back Propagation 

Neural Network (BPNN), Decision Tree, and Ensemble Bagged Tree (EBT) were 

used as classifiers. Furthermore, Linear Discriminant Analysis (LDA) has been 

selected as the benchmark standard. Therefore, five classifiers were trained for 

classification purposes. Each classifier is combined with DWT and Statistical 

Features. The proposed feature extraction, DWT combined with BPNN, gives the 

highest accuracy of 91.2% and a shorter duration of training.
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ABSTRAK

Epilepsi adalah penyakit otak yang disebabkan oleh aktiviti otak yang tidak 

normal. Algoritma pembelajaran mesin biasanya digunakan dalam klasifikasi dan 

pengenalpastian epilepsi pada peringkat awal. Objektif utama kajian ini adalah untuk 

mengklasifikasikan set data isyarat Electroencephalogram (EEG) bagi sawan epilepsi 

menggunakan algoritma pembelajaran mesin dan menilai prestasi menggunakan 

Matriks Kekeliruan Plot dan kawasan di bawah lengkung ciri pengendalian penerima 

(AUC-ROC). Kaedah matriks kekeliruan plot akan memberikan tatasusunan yang 

menggambarkan Positif Benar, Positif Palsu, Negatif Palsu dan Negatif Benar. Selain 

itu, keluk AUC-ROC ialah pengukuran prestasi untuk masalah pengelasan pada 

pelbagai tetapan ambang. Kaedah ini boleh digunakan untuk menyemak atau 

menggambarkan prestasi masalah pengelasan berbilang kelas. Tesis ini melibatkan 

sekumpulan set data yang mengandungi 200 individu yang sihat dan 300 orang 

pesakit epilepsi. Seterusnya, ciri telah diekstrak daripada set data ini. Pengekstrakan 

ciri membantu mengurangkan dimensi data dan meminimumkan bunyi, serta 

keluaran daripada pengekstrakan ciri ini digunakan sebagai input untuk pengelasan 

epilepsi dengan menggunakan pengelas. Kajian ini memilih Transformasi 

Gelombang Diskret (DWT) dan Ciri Statistik sebagai kaedah pengekstrakan ciri. 

Selain itu, pelbagai teknik pembelajaran mesin dibentangkan dalam kajian ini. 

Rangkaian Neural Suap Maju (FFNN), Rangkaian Neural Propagasi Belakang 

(BPNN), Pepohon Keputusan dan Pepohon Beg Ensembel (EBT) digunakan sebagai 

pengelas. Tambahan pula, Analisis Diskriminasi Linear (LDA) telah dipilih sebagai 

piawaian penanda aras. Oleh itu, lima pengelas telah dilatih bagi tujuan pengelasan. 

Setiap pengelas akan digabungkan dengan DWT dan Ciri Statistik. Pengekstrakan 

ciri yang dicadangkan, DWT digabungkan dengan BPNN memberikan ketepatan 

tertinggi iaitu 91.2% dan tempoh latihan yang lebih singkat.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Epilepsy is one of the brain disorders caused by abnormal brain activities. 

There are several symptoms to detect epilepsy such as unusual behaviour, confusion, 

and loss of awareness (Andrzejak et al., 2001). Moreover, epileptic symptoms in an 

individual may lead in many cases of injuries due to falls, involuntary muscular 

contraction, biting one’s tongue and accompanied strong pain (Shorvon et al., 2012; 

Siuly, Li, and Zhang, 2016). Seizures can be analysed by using 

Electroencephalography (EEG), the signals which will provide useful information 

that can be used for monitoring individuals who suffer from this disorder (Bongiorni 

and Balbinot, 2020). Many studies have been conducted on the EEG of patients with 

diseases, such as Alzheimer’s, Parkinson’s, and depression, as well as healthy 

patients and patients with epilepsy (Almustafa, 2020).

There are several ways to predict the seizures such as from their clinical 

analysis to EMG (Vandecasteele et al., 2017) and the monitoring of diverse electrical 

variables (Jory et al., 2016). However, automatically inspecting and classifying the 

seizures accurately and effectively might be a time-consuming, costly and laborious 

process. Moreover, detecting a seizure beforehand is difficult for many researchers. 

It is also hard to determine the accuracy of the manual classification (Bongiorni and 

Balbinot, 2020). According to Chamorro-Atalaya et al. (2021), there are various 

technologies used to obtain predictive models, which use data from virtual platforms. 

Within these technologies is the branch of Artificial Intelligence that within its fields 

houses Machine Learning (Pedrero et al., 2021). Machine Learning is a set of 

algorithms capable of learning to perform certain tasks from the generalization of 

examples. AI is an intelligent computational technique, usually fed and trained with
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EEG data with the ultimate goal of extracting important features from the data and 

learning how to generalize them to new inputs of the same type (Bongiorni and 

Balbinot, 2020).

According to Almustafa (2020), an epileptic seizure can be classified by 

using a special class of Artificial Neural Network (ANN) such as Recurrent Neural 

Network (RNN) that can hold an internal structure with a feedback loop. Other 

studies also decided to use different machine learning algorithms to classify the 

epileptic seizure dataset. Few studies have been conducted on the classification of 

epilepsy in real-time applications (Vidyaratne and Iftekharuddin, 2017). In addition, 

this thesis presents a bagging ensemble learning technique to improve epilepsy 

classification performance.

Initially, the methodology used will be detailed, and then the validation of the 

algorithm will be determined. The datasets will then undergo preprocessing in 

preparation for feature extraction. In this sense, the main objective of this thesis is to 

determine the predictive model using Machine Learning by comparing FFNN, 

BPNN, Decision Tree, and enhancement of decision trees which is the Ensemble 

Bagged Trees (EBT) algorithm. EBT is intended to enhance the performance of DT 

classifiers based on their classification accuracy. These four techniques were utilised 

for the classification of epileptic seizure datasets using predictive analysis.

Furthermore, a standard Linear Discriminant Analysis will be set up as a 

benchmark in this thesis. Then, the technique that achieves the highest classification 

accuracy and surpasses the benchmark will be chosen as the best prediction model 

for this thesis. The chosen methods for this thesis have been proven in two ways, 

using plot confusion to confirm the accuracy of the trained network and plot receiver 

operating characteristic curve (ROC) analysis to confirm the performance of the 

trained network.
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The total performance metrics of the chosen algorithm, such as accuracy, 

precision, sensitivity, and specificity, can then be evaluated using the Plot Confusion 

Matrix. The research contribution focuses on applying a novel technique through 

machine learning by using the data and information collected, which compares 

machine learning methods to identify a predictive model. The predictive model with 

the highest classification accuracy and shortest training time will be chosen.

1.2 Problem Statement

Seizures caused by abnormal brain activity associated with an epileptic 

disease have a variety of symptoms, including unusual behaviour, confusion, and 

loss of awareness. EEG is a commonly used clinical approach for detecting epilepsy. 

Manual inspection of EEG brain signals can be done. However, this task will be a 

time-consuming, costly and laborious process. Furthermore, because the majority of 

seizures occur unexpectedly, it is difficult to detect a possible seizure before it 

occurs. It is also quite hard to determine the accuracy of manual classification. In this 

study, therefore, feature extraction and classification algorithms are used to predict 

whether a person will have a seizure or not. This study will aid in classifying the 

epileptic seizure dataset more precisely and efficiently. Machine Learning has been 

chosen to solve these classification issues.

In recent years, Machine Learning techniques have been successfully used in 

clinical approaches and a wide range of human endeavours to design algorithms, 

methods, and models (Weng, 2020). As classifiers for the epileptic seizures datasets, 

DT and ANN were selected. In this context, classifiers may be over-fitted when they 

perform very well with training data but poorly with test data. In addition, overfitting 

occurs when the training data are not cleaned and contain noise. This may also occur 

in other machine learning approaches, however, to address this problem, we trained 

the model with sufficient data, applied a data pre-processing method, extracted 

features, and adopted ensembling techniques known as Ensemble Bagged Tree 

(EBT). EBT is one of the ensemble approaches utilised to enhance the performance 

evaluation of DT based on percentages of classification accuracy. All of these
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classifiers will then be evaluated and analyzed using plots of the confusion matrix 

and receiver operating characteristic curve (ROC) analysis.

1.3 Research Goal

The goal of our research is to determine the most appropriate and superior 

classification algorithm to classify the epileptic seizure dataset whether a person will 

have a seizure or not by employing various classification techniques, namely 

Artificial Neural Network (ANN) and Decision Trees (DT). The Ensemble Bagged 

Tree was then presented in this thesis to improve the decision tree's performance in 

terms of accuracy and training time. The performance evaluations of these classifiers 

will then be analysed and differentiated.

1.3.1 Research Objectives

The objectives of the research are:

(a) To extract the epileptic seizure dataset of Electroencephalography (EEG) 

using feature extraction techniques.

(b) To classify the epileptic seizure dataset using ANN and Decision Trees (DT).

(c) To improve the performance of the Decision Tree by employing the 

Ensemble Bagged Tree (EBT) approach and compare the performance of 

ANN, DT, and EBT based on their respective performance evaluations.

(d) To perform performance evaluation using Area under the Receiver Operator 

Characteristic (AUC-ROC) curve and Plot Confusion technique.
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1.4 Scope of research

This thesis mainly focuses on classifying the EEG datasets of epileptic 

seizures. Firstly, the datasets will be preprocessed to remove noises and reduce the 

dimensionality of the data. Then, the datasets will be extracted by using two types of 

feature extractions, which are discrete wavelet transform (DWT) and statistical 

features. In this thesis, Machine Learning Techniques are used to classify the dataset 

of epileptic seizures. FFNN, BPNN, and DT were initially used to classify the data. 

The DT will then be upgraded to Ensemble Bagged Tree. In addition, a fundamental 

Linear Discriminant Analysis (LDA) will be included as one of the classifiers and 

will stand as the benchmark for this thesis. The performance of these classifiers will 

be tested using a plot confusion matrix and plot AUC-ROC curve. The performance 

evaluation of these methods will be analysed and compared based on their accuracy 

and duration of training. Plot Confusion Matrix will also be used to analyse the 

algorithm's entire performance metrics, including specificity, precision, sensitivity, 

recall, and F1-score. Last but not least, Matlab software was used for implementation 

and coding in this study.

1.5 Significance of research

Data analysis and classification of two or more different classes is an 

important skill for the clinical sector during this age of technological advancement. 

The need to possess appropriate skills and training, especially in artificial 

intelligence (AI) is a must. The classification of epileptic seizures can be achieved 

by using Machine Learning techniques. Artificial Neural Network (ANN), Decision 

Trees, and Ensemble Bagged Trees are the major focus for the classification of 

epileptic seizures in this thesis. These classifiers are subtopics of AI and 

fundamental approaches in the data learning network. Furthermore, these classifiers 

are simple to implement while outperforming any other classical statistical approach. 

One of the machine learning techniques chosen as the benchmark in this thesis is the 

Linear Discriminant Analysis. The benchmark test functions have been used for 

evaluating the performance of machine learning algorithms. The algorithm that
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performs well on a set of numerical optimization problems is considered one of the 

effective methods for solving classification problems.

To prove the effectiveness of these methods, a performance evaluation must 

be conducted. By using the Plot AUC-ROC curve and Plot confusion technique, the 

performance of classifiers that classified the epileptic seizure can be rated. The main 

purpose of the performance evaluation is to evaluate the accuracy, sensitivity, 

specificity, precision, f1 score and training time of the data. Moreover, the changes 

in brain activity can be determined by using the EEG device and it might be useful in 

diagnosing brain disorders, especially epilepsy and other seizure disorder. An EEG 

might also help treat or diagnose brain damage from a head injury and brain tumour.

In recent years, ANN, decision trees and Ensemble Bagged Tree have 

become a trend in various fields of study as evidenced by the increase in annual 

publications of these fields in the Scopus platform. This proves that the research of 

epilepsy classification by using ANN, decision trees and Ensemble Bagged Tree will 

be a beneficial move. Besides, there are several advantages when using MATLAB 

software. MATLAB also known as the automated driving toolbox, provides tools and 

algorithms for designing, simulating, testing, and autonomous driving systems. 

MATLAB is also easier and simple to use to remember syntax and the time required 

from idea to implementation is shorter. This thesis not only provides a deeper 

understanding of machine learning but also assists algorithm providers in analysing a 

variety of EEG signal data using machine learning techniques.

For this research, ANN and DT are the primary focus of the classification 

process. Both methods are becoming a trend in recent years in various fields of study 

and can be analyzed because both related fields of studies published in the Scopus 

platform increased yearly. Figure 1 shows the increasing graph of documents 

published in Scopus from 2010 to 2021 for ANN and DT studies increasing 

dramatically.
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Documents Published in Scopus for Artificial Neural 
Network (ANN) and Decision Tree (DT) from 2010 

until 2021
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Figure 1.1 Documents Published in Scopus Platform for ANN and DT Studies 
(Scopus,2021)

Besides both methods stated above, this research also introduced another 

enhanced technique to produce a more significant result which is the Ensemble 

Bagged Tree (EBT). By using EBT, the results obtained for the classification 

process will become more reliable and accurate. EBT is also a new branch emerging 

from the bagging technique that has yet to be discovered further for the performance 

optimization of the result. The documents published in Scopus regarding this 

potential technique came on the rise from 2017 onwards, as shown in Figure 1.2.

Figure 1.2 Documents Published in Scopus Platform for Decision Trees Studies 
(Scopus, 2020).
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In this era of technological advancement, data analysis and classifications 

play a significant role in all related industries, including medical analysis. In a sense, 

this study will assist in resolving common issues faced by medical practitioners when 

conducting medical assessments on patients, especially early epilepsy detection.

1.6 Research Outline

In the following chapters, the thesis is organized as follows:

Chapter 2: Provides an overview of past studies and sequences for classifying data. 

The literature included the preprocessing technique, the relevant feature extraction 

method as well as the option for classifying the dataset by using various Machine 

Learning techniques.

Chapter 3: Provides the details of the chosen method based on the previously studied 

variety of options from chapter 2. The details are arranged in a way to represent the 

process of data preprocessing, extraction features, and choosing the suitable 

classifiers to classify the epileptic seizure dataset and proposed method. Lastly, the 

methodology for designing the programming will be elaborated.

Chapter 4: This chapter thoroughly explains the implementation of methods and 

Matlab coding used in this thesis.

Chapter 5: Presents the outcome of the feature extraction data analysis. The 

performance results of classifiers will be compared in terms of training time and 

classification accuracy and presents the discussion based on outcomes in Chapter 4.

Chapter 6: The conclusion from the performance of the classifiers. Further 

improvements are also discussed in this chapter.
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