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ABSTRACT

Although electrocardiography (ECG) t-shirts have some advantages,
obtaining the signal-to-noise ratio (SNR) of the captured ECG signal as high as
traditional ECGs remains challenging. Reducing the number of electrodes by
employing limited-lead systems has been an approach to minimize artifacts.
However, the accuracy and correlation of the derived 12-lead ECG remain a
problem. Electrode placement for ECG t-shirts should consider two aspects to
maximize the SNR including the electrophysiological and practical aspects. These
aspects should be quantified for computing purposes. Unfortunately, the existing
studies have not quantified the practical aspects. Additionally, the previous research
formulated them in a single objective function for optimization, whereas both aspects
are independent. This study is aimed to maximize the SNR of ECG t-shirts using
limited-lead systems by trading-off between the two aspects. It has three objectives:
to improve accuracy and correlation of the synthesized 12-lead ECG by segmenting
the ECG waveform, to quantify some factors in electrode placement (including ECG
signal amplitude, skin-shirt gap, relative shirt movement, and regional sweat rate) for
optimization purposes, and to improve SNR by compromising electrophysiological
and practical aspects in the electrode placement. In this study, one cycle of ECG is
divided into three segments: P, QRS, and ST. Each segment is transformed to obtain
a derived 12-lead ECG signal. This proposed segment-specific (SS) approach is then
compared to conventional full-cycle (FC) by using six existing methods: Dower's
method with generic coefficients, Dower's method with individual (patient-specific)
coefficients, linear regression (LR), 2nd-degree polynomial regression (PR), 3rd-
degree PR, and artificial neural network (ANN). Simulations using 3DS Max® and
MATLAB® were carried out to quantify the ECG signal amplitude, skin-shirt gap,
relative shirt movement, and regional sweat rate into variables in the range of [0,1],
called satisfaction degrees. These variables represent the likelihood of the placement
of electrodes. Multi-objective optimization (MOO) is employed to find the optimal
electrode placement, i.e.,, high SNR, by compromising electrophysiological and
practical aspects. As a result, the new SS approach outperformed the conventional
method (FC). It has significantly reduced the transformation error up to 30.94% and
improved the transformation correlation as high as 4.89%. The simulations have
successfully quantified the electrophysiological and practical aspects of electrode
placement into satisfaction degrees. The MOO vyielded Pareto optimal solutions to
assist decision-makers in selecting the final solution subjectively. Based on the
experiment results, this new approach improved the SNR as high as 29.44%. This
study provides a comprehensive method for determining the location of the
electrodes to support ECG t-shirt manufacturers.



ABSTRAK

Walaupun #-shirt elektrokardiografi (EKG) mempunyai beberapa kelebihan,
namun usaha untuk mendapat isyarat yang mempunyai kualiti isyarat-ke-bunyi
(signal-to-noise-ratio/SNR)  setinggi EKG  tradisional kekal = mencabar.
Mengurangkan bilangan elektrod dengan menggunakan sistem sadap terhad (/imited
lead) telah menjadi suatu pendekatan untuk meminimumkan artifak. Walau
bagaimanapun, ketepatan dan korelasi EKG 12-sadap yang diperoleh kekal sebagai
suatu masalah. Peletakan elektrod untuk 7-shirt EKG seharusnya mempertimbangkan
dua aspek iaitu untuk memaksimumkan SNR melalui aspek-aspek elektrofisiologi
dan praktikal. Aspek-aspek ini harus dihitung untuk tujuan pengkomputeran.
Malangnya, kajian-kajian semasa tidak mempertimbangkan aspek-aspek praktikal
dalam kajian mereka. Tambahan pula, penyelidikan terdahulu merumuskannya
dalam satu fungsi objektif untuk pengoptimuman, sedangkan kedua-dua aspek ini
tidak saling bergantung. Kajian ini bertujuan untuk memaksimumkan SNR 7-shirt
EKG yang menggunakan sistem sadap terhad dengan mengkompromikan kedua-dua
aspek. Kajian ini mempunyai tiga objektif, iaitu meningkatkan ketepatan dan korelasi
isyarat EKG 12-sadap yang disintesis dengan membahagikan bentuk gelombang
EKG, untuk mengukur beberapa faktor dalam penempatan elektrod (termasuk
amplitud isyarat EKG, jarak #-shirt dan kulit, pergerakan relatif baju dan kadar
peluh) untuk tujuan pengoptimuman, dan untuk meningkatkan SNR dengan
mengkompromikan aspek-aspek elektrofisiologi dan praktikal dalam peletakan
elektrod. Dalam kajian ini, satu kitaran EKG dibahagikan kepada tiga segmen: P,
QRS, dan ST. Setiap segmen diubah untuk memperoleh isyarat EKG 12-sadap.
Pendekatan segmen khusus (segment-specific/SS) yang dicadangkan ini kemudian
dibandingkan dengan pendekatan konvensional (fu//-cycle/FC) dengan menggunakan
enam kaedah yang ada: kaedah Dower dengan pekali generik, kaedah Dower dengan
pekali individu (khusus pesakit), regresi linear, regresi polinomial darjah ke-2,
regresi polinomial darjah ke-3, dan rangkaian saraf tiruan. Simulasi menggunakan
3DS Max® dan MATLAB® dilakukan untuk mengukur amplitud isyarat EKG, jarak
t-shirt dan kulit, pergerakan relatif baju dan kadar peluh menjadi pemboleh ubah
dalam kisaran [0,1], yang disebut tahap kepuasan. Pemboleh ubah ini mewakili
kemungkinan peletakan elektrod. Pengoptimuman multiobjektif (Multiobjective
optimization/MOO) digunakan untuk mencari penempatan elektrod yang optimum,
iaitu SNR tinggi, dengan mengkompromikan aspek-aspek elektrofisiologi dan
praktikal. Kajian ini menunjukkan, pendekatan SS baru yang diukur di dalam kajian
ini telah mengatasi kaedah konvensional (FC). Pendekatan SS juga telah
mengurangkan ralat transformasi dengan ketara sehingga 30.94% dan meningkatkan
korelasi transformasi setinggi 4.89%. Simulasi berjaya menghitung aspek-aspek
elektrofisiologi dan praktikal peletakan elektrod menjadi tahap kepuasan. MOO pula
berjaya menghasilkan penyelesaian optimum Pareto untuk membantu para pembuat
keputusan dalam memilih penyelesaian akhir secara subjektif. Berdasarkan
keputusan eksperimen, pendekatan baru ini dapat meningkatkan SNR setinggi
29.44%. Kajian ini telah berjaya mengetengahkan kaedah yang komprehensif untuk
menentukan lokasi elektrod untuk membantu pengeluar #-shirt EKG.

vi
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

1.1.1 Waearable ECG

Cardiovascular diseases (CVD), including coronary heart disease, heart
failure, hypertension, and stroke, have caused more than 17 million deaths and
remain the world's highest cause of death (WHO, 2018; Benjamin ef al., 2017). A
number of studies have been carried out in order to reduce the number of deaths. An
effective approach to reducing this number is through preventative lifestyles and
early diagnosis (Zheng ef al., 2014; Habetha, 2006; Shomaji et al., 2019; Cuba
Gyllensten ef al., 2016; Dzau and Balatbat, 2017), for instance, personalized
cardiovascular disease monitoring devices (Vemishetty e al, 2016). One of the
techniques is incorporating an ECG into wearable devices, called wearable ECG.
For long-term monitoring, wearable ECGs are preferred for practical reasons

(Rashkovska ef al., 2020).

Wearable devices have been implemented in sport, medical, fashion, personal
protective equipment, and military applications (Ismar er al., 2020). Many are
incorporated with the internet of things (IoT) (Jiang, 2020; Trobec ef al., 2018).
Communication security, energy efficiency, and wearable computing are the most

concern currently (Seneviratne et al., 2017).



Wearable electronics were first introduced in the 1990s. Afterwards, a
number of wearable electronics have been introduced, such as wearable ECG,
wearable health systems, smart textiles, smart clothing, smart wear, interactive
textiles, smart fabrics, sensate liners, e-broidery, functional & intelligent clothing,
communication textiles, wearable intelligence, wearable sensors, and textile
motherboards (Troster, 2011; Yoo, 2013; Mukhopadhyay, 2015, Fiedler ef al., 2012,
Lou et al., 2020).

A human-centered approach to design wearable sensors has been proposed by
researchers (Totter, Bonaldi and Majoe, 2011). They proposed a 2-dimensional
matrix to design wearable sensors by considering two aspects: instrumental qualities
and user experience. This matrix can be a good guideline for garment industries to
design wearable ECGs. A framework aiming to bring smart clothing research to the
market has been designed by researchers (Park and Jayaraman, 2010). They proposed
the roadmap in three steps: establishing robustness and finalizing the system,
demonstrating clinical effectiveness, and holistic cost-benefits analysis. Establishing
robustness can be performed by identifying sensors for long-term use, eliminating
motion artifacts, improving signal processing and communication module,
simplifying the user interface, developing technologies for mass production, and

testing the integrated system.

According to EU medical device regulation, a wearable ECG for long-term
monitoring can be categorized as a class Ila (Rashkovska er al., 2020); hence, a
notified body approval is required. A bio-amplifier should have input impedance
larger than 3 GQ frequency to meet the IEC60601 requirements of signal distortion
(Maji and Burke, 2020).

Table 1.1 summarizes the existing wearable ECG technologies (Chi, Jung and
Cauwenberghs, 2010; Ozkan ef al., 2020). Some wearable ECG products offer some
additional features, such as replaceable electrodes, battery alert, low power, and
emergency request. Several products provide smartphone apps, webpage, data
storage, medical history, and geographical location. ANT, Bluetooth low energy
(BLE), Bluetooth, and Zigbee technologies are employed for wireless



communication to connect the device to the network

consumption is the primary consideration.

Table 1.1

Wearable ECG technologies summary

infrastructure.

Power

Electrodes

Wet, textile, polymer composite, metal plate, dry-noncontact
(capacitive)

Circuit

Passive, active

Electrodes location

T-shirt, on-phone, chair, belt, on-body, vest, bra, singlet

The textile electrodes

can be replaced? Yes, no
Battery alert? Yes, no
Battery life 1~14 days
Memory No memory, local, server, local & server
Medical history Yes, no
Smartphone apps Yes, no
Webpage Yes, no
Data transferring ANT, BLE, cable, Bluetooth, Zigbee
Geographl-cal Yes. no
location
Emergency request Yes, no

Some products utilize conventional wet electrodes. Other devices have used

dry electrodes, such as textile, polymer, composite, and metal plate. The others use
non-contact electrodes, which work using the capacitive principle. The electrode can
be passive or active (i.e., equipped with a preamplification module close to the
electrode). Active electrodes are employed to obtain a good signal-to-noise ratio
(SNR). On the other hand, passive electrodes are widely used due to their simplicity

and low cost.

There are several types of wearable ECGs in the market, such as T-shirts, on-
phone, chairs, belts, on-body, vests, bra, and singlets. One of the T-shirt advantages
is that the manufacturer can place the electrodes in any position on the body to obtain
the best SNR, unlike the other types. Usually, the ECG T-shirts utilize passive textile
electrodes. In this thesis, the term LCG T-shirt is used to describe a T-shirt

containing integrated ECG electrodes.



1.1.2 Dry Electrodes and SNR

Several studies have proposed T-shirt designs for heart monitoring using
various types of electrodes (Cho er al, 2011; Hoffmann and Ruff, 2007,
Gruetzmann, Hansen and Miiller, 2007; Zelle, Fiedler and Haueisen, 2012; Cheng et
al., 2008; Fuhrhop, Lamparth and Heuer, 2009; Acar ef al., 2019; Lee and Cho,
2019). The material of the electrodes is required to be suitable for long-term

applications.

For long-term monitoring, dry electrodes are more preferred than
conventional wet/gelled electrodes. Its gel-free characteristic can reduce adverse
effects on the skin, e.g., irritation (Hoffmann and Ruff, 2007). Due to these reasons,
dry electrodes have been employed widely. Unfortunately, some problems that
decrease the SNR remain with the use of dry electrodes; for example, motion
artifacts and baseline drift caused by respiration and muscle activity (Takeshita ez al.,
2019; Xiong and Chen, 2019; Cho, Lim and Cho, 2016; Tsukada ef al., 2019).
Reducing motion artifacts to obtain a high SNR has been a significant challenge in
the ECG smart garment design (Xiong ef al., 2019). Hence, non-contact electrodes
(e.g., capacitive sensors), which have high sensitivity to motion artifacts, are less
common (Chi, Jung and Cauwenberghs, 2010). Various hardware designs and signal
processing techniques have been implemented to reduce motion artifacts in order to

improve the SNR. This thesis aims to obtain a high SNR for the ECG T-shirt.

1.1.3 Limited-Lead Systems

Another concern in wearable ECGs is the number of electrodes. The number
of electrodes in wearable ECG should be less to minimize artifacts. Reducing the
number of electrodes resulted in less sensitivity to artifacts during moving the body
(Kaewfoongrungsi and Hormdee, 2018). The standard 12-lead ECG with ten
electrodes has been established as a gold standard in medical applications. Limb,
augmented, and precordial leads were introduced by Einthoven (in 1908),

Goldberger (in 1942), and Wilson (in 1944), respectively (Malmivuo and Plonsey,



1995). However, it needs ten electrodes; hence, impractical for long-term monitoring
(24-hour), wearable ECG, and ambulatory applications. Its high number of electrodes
affects sensitivity to wiring noise & motion artifacts as well as difficulties in
attaching electrodes (Kaewfoongrungsi and Hormdee, 2018). Furthermore, non-
clinical users are not well-trained to locate the electrodes properly, while misplacing

the electrodes causes misdiagnosis (Kania ef al., 2014).

Several systems which employ fewer electrodes, called "derived 12-lead ECG
systems" (or "limited-lead systems"), have been investigated to overcome this gap.
The goal is to capture the ECG signal using a limited number of electrodes (i.e., less
than ten as in the 12-lead system) without significantly reducing the amount and

reliability of the acquired information.

Various studies in the limited-lead systems have been carried out since 1968,
aiming to reduce the number of electrodes (Tomasic and Trobec, 2014). Several lead
systems with a limited number of electrodes have been introduced, e.g., the EASI
lead system (Philips-Medical-Systems, 2007; Dower ef al., 1988), which employs
five electrodes only. Eigenleads, which employ three bipolar leads, were introduced
to reconstruct the standard 12-lead ECG identified from the extrema of the resulting
eigenvectors (Finlay ef al., 2010). Another approach utilized three differential leads
to synthesize a 12-lead ECG (Trobec and Tomasi¢, 2011). EASI has been widely
implemented due to its simplicity (Jahrsdoerfer, Giuliano and Stephens, 2005).

The basic principle of the limited-lead system is synthesizing a 12-lead ECG
(ie, I, I, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6) from ECG signals
captured by the limited-lead system using a transformation matrix. Coefficients of
the transformation matrix need to be optimized to maximize the accuracy (minimize
the error) and maximize the correlation of the derived signals. Optimizing the

transformation coefficients is one of the objectives of this thesis.



1.1.4 FElectrode Placement

Electrode placement is critical for ECGs. Electrode misplacement may result
in an incorrect diagnosis. Misplacing electrodes has been a problem for years. This
kind of technical errors may cause misinterpretation of the ECG signal. A
prepositioned-electrode system has been introduced by researchers to overcome this

problem (Roy et al., 2020).

Electrodes should be placed on locations that capture the highest signal
amplitude and lowest artifacts to obtain maximum SNR. Some researchers connected
sensing technologies (including wearable ECG sensors) with chemistry, material
science, and engineering research. They concluded that electrode placement causes

constraints on electrode materials and system designs (Ray ez al., 2019).

A survey of electrode placement has been presented by some researchers
(Soroudi ef al., 2019). Unfortunately, those electrode placement methods were based
on the consideration of electrophysiological aspects only (i.e., the ECG signal
amplitude or correlation with the standard 12-lead) without considering the practical
aspects. Due to their dynamic environment, both electrophysiological and practical
aspects need to be considered for ECG T-shirt application (Finlay ef al., 2008; Cheng
et al., 2013; Soroudi ef al., 2019; Cho and Lee, 2015). This thesis uses the term

practical to describe aspects in electrode placement other than electrophysiology.

Several studies introduced qualitative consideration of practical scenarios for
electrode placement (Finlay ef al., 2008). However, quantifying the practical aspects
is necessary for mathematical calculation. After quantified, both electrophysiological
and practical aspects need to be included to optimize the electrode placement. Since
both are independent of each other, a compromise (trade-off) of both aspects is

proposed in this thesis.



1.1.5 Personalized ECG

The most effective electrode placement is different for each person and each
ECG feature, i.e., disease-specific and patient-specific (Troster, 2011). ECG signal
distribution varies among individuals. Personalized treatment may result in better
diagnosis and, in turn, will reduce the healthcare cost. A project about personalized
and integrated cardiac care using patient-specific cardiovascular modeling (named
EuHeart) has been performed (Smith ef al., 2011; Krueger ef al., 2013) by involving
16 partner organizations from six countries. Besides the mentioned advantages, the
personalized design of the ECG T-shirt also may increase the level of comfort for the
users as the size is appropriate for them instead of the general sizing system. The

electrode placement method in this thesis is limited to personalized T-shirts.

1.2 Problem Statement

Obtaining the best SNR in ECG T-shirts remains challenging. Limited-lead
systems, which employ fewer electrodes than the standard 12-lead system, are
recommended for ECG T-shirts to minimize artifacts. Electrophysiological and

practical aspects need to be considered for electrode placement.

For ECG T-shirts, the number of electrodes should be less to minimize noise
caused by artifacts, which decreases the SNR. Some studies have derived the
standard 12-lead ECG from limited-lead systems. However, the accuracy and
correlation of the derived 12-lead ECG still need to be improved. This thesis
hypothesizes that accuracy and correlation can be improved by segmenting the ECG
waveform instead of calculating a full-cycle ECG like the existing studies. The EASI
lead system, which is one of the limited-lead systems, was utilized in this thesis to

evaluate the hypothesis as it has been widely used in medical applications.



To maximize SNR, electrode placement for ECG T-shirts should consider
two aspects: electrophysiological and practical. Practical aspects should be
concerned due to its dynamic environment. These two aspects need to be quantified
into normalized numbers in the range of [0,1] for computing purposes, e.g.,
optimization. Quantifying the electrophysiological can be performed by measuring
the ECG signal amplitude. Unfortunately, the existing studies have not quantified the
practical aspects. Besides quantifying the electrophysiological, this thesis proposes
quantifying the practical aspects, including the skin-shirt gap, relative shirt

movement, and regional sweat rate (RSR).

Electrophysiological and practical aspects need to be optimized to obtain
electrode placement with a high SNR. Since both aspects are independent of each
other, a compromise (trade-off) is proposed in this thesis instead of formulating them
in a single objective function as presented by the existing studies. Each aspect is
represented in an objective function; hence there will be two objective functions.
This thesis proposes an optimization method to place electrodes by compromising

these two objective functions.

1.3  Aim and Objectives of the Study

The major aim of this study is to maximize the SNR of ECG T-shirts using

limited-lead systems. This study has three objectives:

1) To improve accuracy and correlation of the synthesized 12-lead ECG, which

is derived from the EASI lead system, by segmenting the ECG waveform,;

2) To quantify some factors in electrode placement, including ECG signal
amplitude, skin-shirt gap, relative shirt movement, and RSR, into normalized

numbers in the range of [0,1] for optimization purposes;

3) To improve SNR by compromising electrophysiological and practical aspects

in electrode placement.



1.4  Significance of the Study

Wearable healthcare devices (particularly personalized medical devices),
including ECG T-shirts, are emerging technologies with a continuously growing

market. Therefore, research in this field has significant impacts.

This study proposes some techniques that may help manufacturers to place
electrodes in an ECG T-shirt. Firstly, this thesis proposes a new approach to improve
the transformation accuracy and correlation of the derived 12-lead ECG. By this
approach, the 12-lead ECG can be synthesized by a limited-lead system. After that, a
method is proposed to quantify some factors affecting the electrode placement (ECG
signal amplitude, skin-shirt gap, relative shirt movement, and RSR) into normalized

numbers in the range of [0,1]. It is beneficial for computation/optimization purposes.

Lastly, a new method is proposed to improve SNR by compromising
electrophysiological and practical aspects of electrode placement instead of
formulating them in a single objective function. This study may provide a
comprehensive method for determining the location of the electrodes to help ECG T-

shirt manufacturers.

1.5 Scope of the Study

The scope of the study is described as follows:

o This study aims to maximize the SNR of ECG T-shirts from a personalized-
design point of view, instead of a generic approach which requires many
experiment subjects for the statistical hypothesis. However, this personalized

approach has advantages, as mentioned earlier in Problem Background.



o This study focuses on the optimization method. Some simulation data and
optimization parameters were taken from other published papers as the
experiments were too complex and out of the focus of this study. The validity
of some of the optimization parameters can be more deeply investigated in
separate studies, which are not in the scope of this thesis.

o This study used the male model and subject; however, the proposed method
can be applied to females. The human model was assumed as a solid collision
object in the simulation; some of its physical properties were not covered.

o This study focuses on electrode placement. The electrode dimension, which
influences the placement, was not considered in this thesis.

o The EASI lead system was utilized in this study to evaluate the hypothesis;

however, the proposed method can be applied to other limited-lead systems.

1.6 Thesis OQutline

This thesis is arranged into six chapters. Chapter 1 starts with the background
of the study, including wearable ECG, dry electrodes, SNR, limited-lead systems,
electrode placement, and personalized ECG. Some research gaps are discussed.
Hypothesis and proposed solutions are then formulated in Problem Statement. The
aims and objectives of this study are determined based on the hypothesis and the
proposed solutions. The significance of the study is presented in this chapter to
describe the research impacts. This chapter also explains the scope of the research

and the thesis outline.

Chapter 2 discusses state-of-the-arts related to this study. It covers dry-
contact electrodes, electrode connection, limited-lead systems, electrode placement,
electrophysiological & practical aspects of electrode placement, and relationships
among factors affecting electrode placement. Some research gaps are mentioned in

this literature review.

10



Chapter 3 explains the methodology of this study through a flowchart. This
chapter also explains the detail of simulations and experiments to achieve the study's
objectives, which cover placement using the standard lead system, practical and
electrophysiological — aspects, and compromise between practical and

electrophysiological aspects.

Chapter 4 presents simulation and experimental results conducted in Chapter
3. Data are presented in tables and graphs, followed by some discussions. Some data
are attached in Appendixes. This chapter concludes with a chapter summary to

ensure the research objectives are achieved.

Chapter 5 discusses the results from Chapter 4 in more detail. Some related
works are also mentioned in the discussion. This chapter also discusses the

limitations of the study for future investigations.

Finally, Chapter 6 concludes and summarizes the works in this study. The
contribution of the research to the existing knowledge is also presented in this

chapter as well as recommendations for future work.
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