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ABSTRACT 

The growth of polymer composite in technological advancement has 

contributed to the development of electrocardiogram (ECG) electrode, which gives 

better wearable conformality on human skin. This gives a promising alternative to 

Multi-Walled Carbon Nanotube (MWCNT) and polydimethylsiloxane (PDMS) due to 

its low cost, ease of manufacturing and flexibility. However, with the high aspect ratio 

and strong Van der Waals interaction forces, MWCNT easily agglomerates, and 

bundling to each other. An effective dispersion technique of MWCNT/PDMS 

composite is essential to enhance the electrical conductivity by controlling MWCNT 

content and maintaining electrode flexibility. Thus, this study disperses the 

MWCNT/PDMS composite using a solution mixing method: sonication process and 

mechanical stirring. The MWCNT is dispersed using toluene solvent to achieve 

uniform dispersion, where the MWCNT content varies from 2 wt% to 10 wt% in 

PDMS matrix. As a result, the MWCNT/PDMS composite conductivity is in the range 

of 0.30 × 10-9 S/cm to 6.14 × 10-6 S/cm. At 4 wt%, the MWCNT/PDMS composite 

reached the percolation threshold region. The fabricated polymer composite was 

further characterised in Raman spectroscopy and the measurement shows vibration 

peaks in the D-band at 1349 cm-1 and G-band at 1585 cm-1. This proves the dispersion 

of MWCNT in PDMS. In addition, the intensity of the D-band and G-band, ID/IG 

decreases when the MWCNT/PDMS concentration increases, indicating less defect of 

MWCNT during the sonication process. These findings show that the MWCNT/PDMS 

has the potential as an excellent polymer composite electrode. 
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ABSTRAK 

Perkembangan komposit polimer dalam kemajuan teknologi telah 

menyumbang kepada pembinaan elektrod elektrokardiogram (ECG) yang memberikan 

kesesuaian boleh pakai yang lebih bagus pada kulit manusia. Ini telah memberikan 

alternatif yang baik kepada karbon nanotiub pelbagai dinding (MWCNT) dan 

polydimethylsiloxane (PDMS) kerana kosnya yang rendah, pembuatan yang mudah 

dan fleksibel. Walau bagaimanapun, dengan nisbah aspek yang tinggi dan daya 

interaksi Van der Waals yang kuat, MWCNT mudah teraglomerati dan bergabung 

sesama sendiri. Teknik penguraian MWCNT/PDMS komposit yang efektif sangat 

penting bagi meningkatkan kekonduksian elektrik dengan mengawal kepekatan 

MWCNT sekaligus mengekalkan daya kelenturan elektrod. Oleh itu, kajian ini telah 

menguraikan komposit MWCNT/PDMS dengan menggunakan kaedah pencampuran 

larutan: proses sonifikasi dan proses pencampuran secara mekanikal. Untuk mencapai 

penguraian yang seragam, MWCNT/PDMS diurai dengan menggunakan pelarut 

toluene, dimana kandungan MWCNT berbeza dari 2 wt% hingga 10 wt% dalam 

PDMS. Hasilnya, kekonduksian komposit MWCNT/PDMS adalah dalam lingkungan 

0.30 × 10-9 S/cm to 6.14 × 10-6 S/cm. Pada 4 wt%, komposit MWCNT/PDMS 

mencapai kawasan ambang perkolasi. Komposit yang direka ini selanjutnya telah 

dicirikan dengan spektrokopi Raman dan bacaan data menunjukkan puncak getaran 

pada D-band di 1349 cm-1 dan G-band di 1585 cm-1. Ini membuktikan proses 

penguraian MWCNT dalam PDMS. Di samping itu, intensiti D-band dan G-band, 

ID/IG berkurang ketika kepekatan MWCNT/PDMS bertambah, menunjukkan 

kurangnya kerosakan MWCNT semasa proses sonifikasi. Keputusan ini menunjukkan 

bahawa MWCNT/PDMS mempunyai potensi sebagai elektrod komposit polimer yang 

sangat baik. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Recently, the demand for wearable medical electronic devices and sensors is 

growing due to the rise of cardiovascular disease. This market demand allows research 

and development of diagnostic tools in this area. Figure 1.1 clearly shows the need for 

medical wearable and sensors for Metabolic and Cardiovascular Monitoring (yellow 

colour) is expected to increase from 2018 to 2024 [1].  

 

Figure 1.1  Market forecast for medical wearable and sensor [1]. 
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Cardiovascular disease (CVD) refers to a condition that involves the heart and 

blood vessels such as atherosclerosis (heart disease), ischaemic disease, heart attack, 

stroke, and diabetes. According to the World Health Organization (WHO), CVD kills 

almost 17.9 million people every year around the world [2]. Besides, the Department 

of Statistics Malaysia (DOSM) also reports 8776 deaths in 2007 due to ischaemic 

disease. This mortality rate has increased by 54% after 10 years to 13 505 deaths in 

2017 [3]. This situation is a bit worrying because the initial symptom is frequently 

ignored, and thus many patients are treated only after suffering a heart attack or stroke. 

To prevent this situation, preliminary action is needed to diagnose CVD’s patients. 

Figure 1.2 shows the list of medical technologies used to diagnose 

cardiovascular diseases, such as a physical exam, imaging tests such as chest x-ray or 

CT scan, echocardiogram, blood tests such as ELISA, and electrocardiogram. Among 

existing medical techniques, electrocardiogram (ECG) is the most popular technique 

used to monitor CVD patients' health [4]. Electrocardiogram (ECG) is a method of 

collecting electrical signals from the heart. The electrical signals generated by the 

muscle depolarization of the heart is measured in minimal voltage in microvolt by 

placing the ECG electrode on the skin. 

 

Figure 1.2 Current diagnostic tools to diagnose Cardiovascular Disease [4] 
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An electrode is used to record the heart's electrical activity from human skin 

and interpret the signal into graphical form. This electrode can be classified into two 

types: wet electrode and dry electrode. It is imperative that the electrode types only 

referring to the electrical conductor from the electrochemical properties.  

Conventionally, wet electrodes or silver-silver chloride (Ag/AgCl) electrodes 

are commonly used in the clinical field. This is due to the electrolyte gel which helps 

to increase skin hydration, reduces the impedance of the skin, and produces good ECG 

signal quality. However, the electrolyte gel has a limitation, especially in the long-term 

monitoring. The signal degrades because the gel dried over time [5]. In addition, the 

electrolyte gel causes skin irritation and redness [6]. Besides, the wet electrode also 

consumes a long period of skin preparation, such as dirt-removing and hair cutting [7].  

To address these problems, dry electrodes are developed by removing the 

electrolyte part without reducing the signal quality. Dry electrodes can be categorised 

into three types; metal electrode, textile electrode, and polymer electrode. Among 

these three, this study focuses on developing dry polymer electrodes due to its 

flexibility and wearability in ECG performance. Although the polymers are widely 

used in the sensor field, but the electrical conductivity of polymer is low to achieve the 

requirement of ECG sensors. In order to achieve high electrical conductivity of 

polymer, a conductive filler is used. Conductive filler reinforces with the polymer 

matrices known as polymer composite. 

Previous studies have shown that the polymer composite is the most prominent 

feature of carbon nanotubes based devices, especially in wearable medical sensors [8]. 

The characteristics of carbon nanotube are high aspect ratio, high electrical 

conductivity, and large surface area. However, carbon nanotube materials have an 

issue of dispersing with polymer matrix. Thus, it is essential to disperse the carbon 

nanotube with polymer matrix in an efficient method. In conclusion, the type of dry 

electrodes, material challenges, an efficient dispersion method and electrical 

characterisations are discussed in this study. 
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1.2 Problem Statement 

Many polymer composites have been produced to encounter the demand in 

flexible and wearable devices to the human skin. Multi-Walled Carbon Nanotube 

(MWCNT) is a highly conductive material to develop conductive polymer composite. 

However, due to the high aspect ratio and strong Van der Waals forces, MWCNT 

seems inclined to bundling, aggregation and agglomeration [9].  

Previous studies showed that the exfoliation of MWCNT and polymer in 

surfactant liquid could improve the bundles of MWCNT into individual tubes. Many 

dispersion methods have been explored recently, including the melt mixing method, 

in-situ polymerisation and solution mixing method. Studies found that solution mixing 

methods are more facile in fabrication and low cost.  

In the solution mixing method, the MWCNT and polymer is dispersed in the 

solvent agent to de-bundle the MWCNT. This also allows the linkage interaction 

between the conductive filler, MWCNT with polymer matrix. Polydimethylsiloxane, 

PDMS is the most popular and flexible polymer matrix used in manufacturing 

composite electrode due to its hydrophobic and easy to manipulate during polymer 

composite manufacturing. 

However, poor dispersion may affect the electrical properties of the polymer 

composite. Thus, the physical mixing method such as shear mixer, sonication or 

mechanical stirring can enhance the proper solution mixing method to achieve a 

conductive polymer composite. The dispersion of MWCNT/PDMS composite is 

investigated using electrical characterisation to produce conductive MWCNT/PDMS 

composite.  
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1.3 Objectives  

The research objectives are: 

(a) To fabricate the MWCNT/PDMS composite electrode by using solution 

mixing method.  

(b) To optimize the concentration of MWCNT inside PDMS to produce 

conductive electrode.  

(c) To characterise electrical properties of the fabricated MWCNT/PDMS 

composite. 

 

1.4 Scopes 

This research is primarily concerned with the operation of dry electrode 

fabrication and characterisation. The research scope is limited to fabricating the 

conductive polymer composite using the Multi-Walled Carbon Nanotube (MWCNT) 

as conductive filler and polydimethylsiloxane (PDMS) polymer matrix. The facile 

solution mixing technique disperses MWCNT in PDMS using toluene as a solvent 

agent to obtain a better composite mixture as an electrode. This technique consists of 

a sonication process and a mechanical stirring process together to fabricate conductive 

polymer composite.  

The concentration of MWCNT varies from 2 wt% to 10 wt% of 

MWCNT/PDMS composite. The MWCNT/PDMS composite was fabricated in three 

different diameters; 1 cm, 2 cm and 3 cm. The thickness of the electrode is 0.1 cm 

similar to the conventional electrode thickness. Raman Spectroscopy analysis is used 

to characterise the dispersion quality of MWCNT in PDMS. The electrical properties 

of the fabricated MWCNT/PDMS composite electrodes are studied through I-V 

measurement. 
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1.5 Thesis Outline 

This subsection of introduction provides the work frame of this research 

project. The research project is divided into five chapters.  

Chapter 1 explains theoretically about electrical system occurred in the heart 

and clinical tools used. The motivation, problem, aim of the research and scope also 

stated in this chapter.  

Chapter 2 briefly describes the literature review of past research related to the 

research project. All subtopics will be discussed and reviewed in detail. 

Chapter 3 holds the methodology part where the chemical preparation and 

fabrication process of the fabricated electrode are explained. The measurement 

analysis also included in this chapter.  

Chapter 4 is about result and discussion of the fabricated electrode. The results 

obtained are then discussed in this chapter thoroughly.  

Lastly, Chapter 5 is about summary of the project regarding the research 

conducted and recommendation of this study for future work.  
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