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ABSTRACT 

In literature, for the planning problem of simultaneous distributed generation 

(DG) and shunt capacitor banks (SCB) allocation in radial distribution networks 

(RDNs), researchers have focused mainly on the real power loss reduction and 

ignored the benefits of reactive power loss minimization, which might not distribute 

DGs and SCBs at the desirable locations. In addition, a variety of metaheuristic 

optimization techniques have been employed in literature whose implementation 

involves either the number of phases or tuning of certain algorithm-specific 

parameters. In contrast, the Jaya algorithm (JA) is a simple and efficient single-phase 

optimization algorithm that is free from any parameter tuning. However, the JA also 

suffers from inadequacies of population diversity and premature convergence; 

therefore, require a mechanism to overcome these deficiencies. Furthermore, past 

studies conducted for the islanded networks have followed the approach of isolated 

operation and did not consider the power supply-demand imbalance condition, which 

will result allocation of oversized DGs and SCBs. Considering these facts, this 

research work proposes a two-stage planning approach for the efficient utilization of 

DGs and SCBs for the simultaneous grid-connected and islanded operations of the 

RDNs. The first stage determines the optimal installation locations and capacities of 

DGs and SCBs, and operating power factor of DGs using an improved variant of the 

JA (IJaya) to minimize the total power loss and voltage deviation during the grid-

connected operation. For the proposed IJaya, a dynamic weight parameter based 

grid-search mechanism has been introduced to mitigate the problem of premature 

convergence and population diversity in JA. The performance of the IJaya was 

evaluated using the IEEE 33-bus and 69-bus RDNs. A comparative analysis with 

existing optimization methods reveals that the IJaya achieves up to 38.84% more 

reduction in power losses and 3.26% more voltage improvement. In the later part of 

the study, a methodology concerning the efficient and maximum utilization of the 

installed DG-SCB capacity in the islanded RDN under power imbalance conditions 

has been proposed. For that, a multiobjective minimization function incorporating 

the total power loss and under-utilization of available DG-SCB capacity has been 

established. To minimize the proposed function, an iterative analytical approach has 

been proposed to tune the source power factor. The results showed that the under-

utilization of available DG-SCB capacity varies up to 15.83% for the power factors 

ranging from 0.8 to 0.93. Expectedly, the proposed study will assist the utility 

companies to efficiently operate their distribution systems and to design effective 

energy management schemes for the customers.  
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ABSTRAK 

Dalam literatur, untuk masalah perancangan penempatan serentak penjanaan teragih 

(DG) dan bank kapasitor pirau (SCB) dalam rangkaian agihan jejari (RDN), para penyelidik 

hanya memfokuskan pada pengurangan kehilangan kuasa sebenar dan mengabaikan faedah 

pengurangan kehilangan kuasa reaktif, yang mana ini mungkin akan menyebabkan 

pengagihan DG dan SCB tidak pada lokasi yang dikehendaki. Selain itu, perbagai teknik 

pengoptimuman metaheuristik telah digunakan dalam literatur yang pelaksanaannya 

melibatkan samada jumlah fasa atau penalaan parameter khusus algoritma tertentu. 

Sebaliknya, algoritma Jaya (JA) adalah algoritma pengoptimuman fasa tunggal yang mudah 

dan cekap yang bebas daripada sebarang penalaan parameter. Walau bagaimanapun, JA juga 

mengalami kekurangan kepelbagaian populasi dan penumpuan pramatang; oleh itu, 

memerlukan mekanisme untuk mengatasi kekurangan ini. Tambahan pula, kajian masa lalu 

yang dilakukan untuk rangkaian berpulau telah mengikuti pendekatan operasi terpencil dan 

tidak mempertimbangkan keadaan ketidakseimbangan bekalan kuasa-permintaan tenaga, 

yang mana akan menghasilkan penempatan DG dan SCB yang bersaiz lebih. Dengan 

mempertimbangkan fakta-fakta ini, kerja penyelidikan ini mencadangkan pendekatan 

perancangan dua peringkat untuk penggunaan DG dan SCB yang cekap untuk operasi RDNs 

yang terhubung dengan grid dan  berpulau secara serentak. Tahap pertama adalah 

menentukan pemasangan lokasi dan muatan DG dan SCB yang optimum, dan faktor kuasa 

operasi DG menggunakan varian JA (IJaya) yang  ditambahbaik untuk meminimumkan 

jumlah kehilangan kuasa dan penyimpangan voltan semasa operasi bersambung dengan grid. 

Untuk IJaya yang dicadangkan, parameter berat dinamik diperkenalkan untuk mengurangkan 

masalah penumpuan pramatang dengan mengekalkan kepelbagaian populasi dalam Jaya.  

Prestasi IJaya dinilai menggunakan IEEE 33-bas dan RDN 69-bas. Analisis perbandingan 

dengan kaedah pengoptimuman yang sediada menunjukkan bahawa IJaya mencapai 

pengurangan kehilangan kuasa sehingga 38.84% dan peningkatan voltan  lebih dari 3.26%.  

Pada bahagian selanjutnya dari kajian ini, satu metodologi mengenai penggunaan yang cekap 

dan maksimum bagi muatan DG-SCB yang dipasang di RDN berpulau di bawah keadaan 

ketidakseimbangan kuasa dicadangkan. Untuk itu, fungsi pengurangan berbilang objektif 

yang merangkumi jumlah kehilangan kuasa dan kurang penggunaan muatan DG-SCB yang 

tersedia telah dihasilkan. Untuk meminimumkan fungsi yang dicadangkan, pendekatan 

beranalisis iteratif telah dicadangkan untuk menyesuaikan faktor kuasa sumber. Keputusan 

menunjukkan bahawa penggunaan yang kurang dari muatan DG-SCB yang tersedia berubah 

sehingga 15.83% untuk faktor kuasa antara 0.8 hingga 0.93. Dijangkakan, kajian yang 

dicadangkan akan membantu syarikat utiliti untuk mengendalikan sistem pengagihan mereka 

dengan cekap dan merancang skema pengurusan tenaga yang berkesan untuk pelanggannya. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

Ever since the first electrical power system was created, there is a continuous 

expansion in this most complex human-made system. The easy controlling, 

adaptable, and dispatchable nature of electrical energy are some of the fascinating 

reasons for its constantly increasing growth in demand [1]. According to the 

international energy outlook report 2016 [2], the worldwide net electricity demand 

was 22 trillion kWh in 2012, rising by 1.9% per year on average from 2012 to 2040. 

This rapid increase in load demand has resulted in a bottleneck in the transmission 

system [3]. Therefore, electric utilities face unavoidable issues, including increased 

line losses, deteriorating voltage profile, increase in generation cost, reduction in the 

electric grid's reliability, and general security issues. The possible solution to meet 

the increasing electricity demand is installing conventional fuel-based large power 

plants and replacing existing or integrating new transmission lines. However, these 

solutions are not recommended due to high investment costs and severe 

environmental concerns [4].  

As an alternative solution for centralized power generation, the optimal 

integration of distributed generation (DG) in the distribution networks has attracted 

the attention of the energy planners and policymakers due to their unavoidable 

technical, environmental, and economic benefits [5]. The International Energy 

Agency (IEA) defines DG as an electricity source connected directly to the 

distribution network to serve a local customer and provide support to the network 

[6]. DGs can either be based on renewable or non-renewable source [7]. In the case 

of a passive distribution network (i.e., without DG integration), the distribution 

network's total power demand is solely supported by the grid located far away from 
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the load center. As a result, when the load demand rises, the power losses also 

increase due to the current increase. On the other side, by locating DGs close to the 

load points, some of the loads' required power is supplied by the DGs, reducing the 

primary grid's transmitted power. This causes a considerable decrease in power 

losses. Besides, because of the DG's presence, the distribution network does not 

depend entirely only on a single power resource (i.e., electric substation) to fulfill the 

load demand, enhancing the distribution network's reliability. The installation of DGs 

in the power distribution networks has several other advantages: such as 

improvement in bus voltage profiles, power quality enhancement, and deferment in 

construction of new power plants, transmission and distribution lines [8]. Apart from 

that, DGs' existence in the distribution networks also enables the utility to utilize 

them as a backup solution. Thus, in case of eventualities giving the islanding 

capabilities offered by decentralized power generation units. Even if the DGs' 

installed capacity is lower than the network's connected load, at times of energy 

deficiency, the distribution network operators (DNOs) will supply the available 

power to a specific zone consists of the critical load in the distribution network. The 

DNOs could also influence the consumers to limit their electricity usage so that the 

installed DGs can supply at least a fraction of each consumer's load demand with 

available energy. Hence, in a context of increased uncertainty in electricity demand 

and supply, DGs present the advantage of being installed with lower risk and change 

in the existing infrastructure, transforming power systems from centralized to 

decentralized networks [9].  

On the other hand, shunt capacitor banks (SCBs) are the devices that have 

always been regarded as the most economical solution for power loss reduction and 

volt/var control of the distribution systems [10]. Capacitors are amongst the first 

pieces of equipment used to improve the power system voltage [11]. Although DGs 

alone offer better performance than SCBs [12] in the prospect of power losses and 

voltage regularity, however, the investment cost of DGs is very high compared to 

SCBs. The related control, protection, and interface components for the DGs further 

add to the capital cost. As an estimate, the capital cost of 1MW diesel generator-

based DG is 50 times greater than the SCB of 1 MVAR rating [12]. Therefore, 

considering modern distribution systems, DGs and SCBs coexist, and they share 

some of their operational tasks. Thus, to maximize the techno-economic benefits, 
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DGs and SCBs must be simultaneously allocated to distribution networks. However, 

it is a well-known fact that among three components of the power system, the 

distribution system has the highest power losses due to the higher line resistance (R) 

to reactance (X) ratio, lower voltage levels, and radial configuration [13]. As per the 

states, the distribution system accounts for almost 70% of the total power system 

losses [14]. Whereas the reference [15] has shown this range from 33.7% to 64.9%. 

In these circumstances, let's ensure that the DG's and SCB's outputs must be 

optimized before integrating them into the distribution networks to maximize their 

benefits. Without the optimal DG and SCB outputs, they might cause higher power 

loss and voltage deterioration in the distribution network than the initial condition 

when no DG or SCB is connected. Hence, an appropriate planning methodology 

must be carried out to incorporate DG and SCB units into the distribution network to 

get constructive benefits for grid-connected and autonomous operations. 

Therefore, this research's focus is to propose a technique that can find an 

optimal siting and sizing of DG and SCB units to achieve better performance of the 

grid-connected distribution network. Furthermore, this research work proposes a 

framework to maximize the utilization of the mounted DG and SCB units under the 

islanded operation of the distribution network for the scenario where the power 

supply is less than the power demand. The research questions highlighted while 

analyzing the impacts of DG and SCBs for both non-autonomous and autonomous 

operations of the distribution network are given below: 
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i. Which suitable method can be used to determine the optimal size and 

placement of DG and SCB units? 

ii. What will be the effect of optimal siting and sizing of DG and SCB units on 

the power/energy loss and voltage deviation in the distribution system?  

iii. What will be the impact of optimizing the operating power factor of DGs on 

the performance of grid-integrated distribution networks? 

iv. How can the installed DG and SCB units be utilized to their full capacities 

under the islanded operation of the distribution network so that the maximum 

share of the total network load can be supplied with accessible power? 

v. What will be the effect of the operating power factor of the DG and SCB 

combination on the power loss and utilization of the installed DG-SCB 

capacity under the islanded operation of the distribution network? 

All the listed problems will be analyzed and discussed in detail in this study.  

1.2 Problem Statement 

i. For the planning problem of simultaneous DG and SCB allocation in radial 

distribution networks (RDNs), researchers have focused mainly on the real 

power loss reduction and ignored the benefits of reactive power loss 

minimization. Targeting merely the real power loss minimization in the 

objective function might not distribute DG and SCB units at the most 

desirable sites since the objective may fail to pinpoint places in the network 

where reactive power is dominating. The fact that there are unknown line-

segments with a lot of reactive power flow makes it difficult to choose the 

ideal rating and position for the SCB. Knowing that reactive power flow 

causes real power loss and voltage drop in the RDNs, not addressing reactive 

power flow minimization with improper placement and sizing of the SCB 

directly affects the DG's rating and location in the network. Therefore, 

focusing on minimizing net reactive power flow is equally critical, and if a 

multiobjective function is developed to address both power components, 

system performance could be improved even more. 
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ii. In literature, simultaneous DG and SCB allocation optimization problems in 

the RDNs, a variety of metaheuristic optimization techniques has been 

employed whose implementation involves either the number of phases or the 

tuning of certain algorithm-specific parameters. To enhance such algorithms' 

performance and obtain a global solution, researchers must tune the special 

parameters properly; else, the performance of the algorithm will be affected. 

In contrast, the Jaya algorithm (JA) developed by R. Rao [16] involves a 

single step only and does not require algorithm-specified parameters. In 

contemporary literature [17–26], the JA has proved its dominant performance 

over various optimization algorithms applied in numerous fields. However, 

the JA also suffers from the deficiency that it does not take full advantage of 

population data. The JA learning approach uses the current best solution and 

the current worst solution to guide the population's search direction. As a 

result, once the current best individual has been stuck in local optimum, 

additional individuals will be drawn to approach this local optimum 

gradually. Hence, the population diversity will be lost as a result of this case 

[27]. Therefore, before deploying JA to solve the optimization problem of 

simultaneous DG and SCB allocation into the distribution networks, it is 

imperative to propose a mechanism for improving the JA's performance.  

iii. The presence of DGs-SCBs allow the RDN to operate as a microgrid (MG) in 

the times when the power grid faces malfunctioning, brief shortage of energy 

or is being maintained. To the best of author’s knowledge and literature 

presented in this thesis, so far only three studies [28–30] extracts this vital 

feature of MG formation while allocating the DGs and SCBs in the RDNs. 

Furthermore, while optimally allocating the DGs alone, a methodology for 

the optimal siting and sizing of DG units in an autonomous MG has been 

reported in very few studies [31–33]. However, in contemporary literature, 

the approach of isolated operation has been adopted for the islanded networks 

while the power supply-demand disparity situation has not been addressed. 

Remember that, although islanded and isolated MGs have almost equivalent 

control and operational requirements, they are different from a planning point 

of view due to the short time of MG operation in the islanded mode [34]. 

Installing larger-sized DGs to meet the energy demand of complete load for 
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this short duration can assure the islanded grid's sustainable operation. 

However, it will increase the power system's overall cost and make the 

electric grid more complex. Therefore, instead of allocating the oversized 

DGs and SCBs, there siting and sizing must be determined considering the 

grid-connected mode they have to serve for most of their service life. 

Furthermore, it is imperative to develop a mechanism to efficiently operate 

the installed same devices to their full potential during the islanded operation 

in order to serve the maximum possible share of total network load under 

supply-demand imbalance conditions.  

iv. In a RDN, once the DGs and SCBs are installed considering its grid-

connected operation, it is not easy to alter their sizes and bus positions during 

islanded mode. Therefore, a mechanism must be developed to tune their 

outputs, without affecting DGs-SCBs sizes and locations, in order to 

efficiently operate the islanded networks and serve the maximum possible 

share of total network load under supply-demand imbalance conditions. The 

development of such mechanism allows minimizing degree of difference 

between the energy supply and demand, Figure 1.1. The smaller the supply 

and demand gap, the easier will be the designing of energy management 

schemes for MGs.   
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Figure 1.1 Strategies to deal with the supply-demand imbalance (when, Pdemand ≥ 

Psupply) 

1.3 Research Objectives 

In view of the problems highlighted above, the objectives of this research 

work are as follows: 

i. To develop a multi-criterion minimization function incorporating the active 

power loss, reactive power loss, and voltage deviation to optimize the grid-

connected radial distribution networks' functioning.  

ii. To develop an improved variant of JA (IJaya) to minimize the developed 

multi-criterion function by optimizing the siting and sizing of DG and SCB 

units, as well as the power factor of DG units in the distribution networks. 



8 

iii. To develop a multi-criterion minimization function incorporating the total 

power loss (active and reactive) and under-utilization of the available DG-

SCB capacity to optimize the islanded distribution networks' functioning. 

iv. To develop an analytical framework correlating the efficient and maximum 

utilization of the DG and SCB capacities in the autonomous operation mode 

under the power supply-demand imbalance condition.  

1.4 Research Scope 

The scopes of this research work summarized as follow: 

i. The present study considers only the steady-state conditions; thus, transient 

analysis has not been conducted. 

ii. The technical constraints of the distribution system, such as bus voltage limit, 

power flow limits, DG's and SCB's size, and location constraints, are 

considered. However, control and protection attributes are not studied. 

iii. Economic and environmental study of the presented methodology is not 

carried out because further studies are required in the direction of these 

research topics.  

iv. The proposed research work has been evaluated using the IEEE 33-bus and 

69-bus test systems whose specifications were taken from the literature. 

v. The maximum number for each DG and SCB unit permissible to allocate in 

each test system is three because the percentage improvement in system 

performance is negligible with more units.  

vi. DGs and SCBs are considered in the forms with deterministic active and 

reactive power outputs, respectively. Hence, the intermittency in DG's and 

SCB's outputs is not considered. 

vii. The development of load shedding and energy management schemes is 

beyond the scope of this research. 
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1.5 Significance of the Research 

Compared to the transmission system, the distribution network is a more 

complex system due to the high R/X ratio and higher power losses in the electrical 

power system. Reduction of such power loss is of severe concern for distribution 

companies (DISCOs). Integration of DG and SCB units and network reconfiguration 

are significant standpoints for power loss reduction. For this reason, simultaneous 

DG and SCB placements in the distribution networks have become a renowned 

research area in the last few years. If appropriately positioned with optimum size, the 

simultaneous incorporation of both DG and SCB units in the distribution networks 

can play a vital role in reducing the power losses and improving the voltage level 

considerably.  

In the last few years, the researchers have utilized various metaheuristic-

based techniques to solve the complex combinatorial optimization problem of 

simultaneous DG and SCB allocation. The past studies have made valued 

contributions by improving the optimization algorithms in solving the planning 

problem of optimal siting and sizing of DG and SCB units in the distribution 

networks. Developing a suitable metaheuristic algorithm for the DG-SCB allocation-

planning problem is vital. Since a minor improvement in the metaheuristic 

algorithms would significantly positively affect the distribution networks' 

performance. This reason has inspired the author to develop an improved 

optimization algorithm and compare it with existing methods employed for the 

distribution networks' planning problem of simultaneous DG-SCB allocation. The 

no-free-lunch theorem [35] also states that no metaheuristic algorithm is specifically 

best for all types of optimization problems, thus emphasizing the need for 

comparisons and the development of new optimization approaches.  

Conversely, one of the vital aspects of DG integration into the distribution 

networks is that the DGs presence will allow an MG to establish when the primary 

grid faces fault or is under maintenance. This is one of the critical features of the DG 

integration into the distribution networks, which has not been explored extensively. 

During the grid-connected operation of the distribution networks, the active power 
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and reactive powers of DG and SCB units can be dispatched according to techno-

economic criteria conducted at the main grid. Thus, in grid-connected mode, the DG-

SCB integration's principal task minimizes the distribution network's power losses 

and voltage regulation. Whereas, during the islanded operation, the distribution 

network operates as an MG. This independent entity is solely responsible for 

maintaining the real and reactive power balance between supply and demand. If the 

net load demand is less than the total generation, the MG's central controller should 

decrease the net power generation. 

On the other hand, if the power generation within the MG is insufficient to 

meet the load demand, either the load shedding of the non-critical or activation of a 

demand-side management scheme (DSM) must be considered. While analyzing the 

performance of the distribution networks as an MG, past studies have mainly focused 

on the frequency control and voltage stability of the developed MGs. However, 

existing studies did not address the concern of utilizing the installed DG-SCB 

capacity to their full potential such that the maximum possible share of total network 

load can be served when the power demand exceeds supply. Therefore, it 

necessitates the development of a mechanism to resolve the issue posed. It will help 

utilities design effective load shedding and energy management schemes for their 

customers to make the autonomous networks more reliable. Such a methodology 

would also allow the utilities to deliver the same load with the lowest possible 

installed active-reactive power generation.  

1.6 Thesis Organization 

This thesis is divided into five chapters. The rest of the thesis is organized as 

follows:  

Chapter 2 presents the comprehensive review for the optimal planning of 

simultaneous allocation of DG and SCB units in the distribution networks. This 

chapter highlights the state-of-the-art optimization techniques, research objectives, 
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constraints, decision variables, operation modes, and load types of the distribution 

networks, which are the solid basis for this research work. The problem statement 

and research objectives, as stated in Chapter 1, are derived from this chapter. 

Chapter 3 provides the detailed formulation of the optimization problems and 

implementation of the proposed methodologies adopted to optimize the functioning 

of the distribution networks under both non-autonomous and autonomous operation 

modes. In the first part of the chapter, to solve the planning problem of simultaneous 

DG and SCB allocation in the grid-connected distribution network, an improved 

variant of the Jaya algorithm has been proposed. The developed problem formulation 

comprises bi-objectives that include minimizing total power loss (active and reactive 

power losses) and voltage deviation at the nodes, which are dealt with  -constraint 

and weighted-sum-based multiobjective optimization approaches. In the later part of 

the chapter, an analytical method has been proposed to solve the planning problem of 

efficient and maximum utilization of the mounted DGs and SCBs to their full 

potential during the network's autonomous operation under supply-demand 

imbalance conditions. For that, a weighted-sum-based multi-criterion minimization 

function incorporating the total (apparent) power loss and under-utilization of 

available DG-SCB capacity has been developed. 

Chapter 4 presents the outcomes of this research investigation. Similar to 

Chapter 3, Chapter 4 is also divided into two parts. The former part of the chapter 

discusses the results obtained for the standard benchmark functions, and the grid-

connected IEEE 33-bus and 69-bus test systems. The islanded 33-bus and 69-bus 

distribution networks are discussed in the latter part of this chapter. 

Chapter 5 summarizes the findings and contributions of the research work. 

Moreover, this chapter also provides recommendations for future research directions.  
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