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ABSTRACT 

 

 

 Foam is employed to improve the efficiency by which the displacing fluid 

sweeps the reservoir and contacts and recovers oil. However, it is known that foam 

are both thermodynamically and kinetically unstable systems that readily destruct as 

a result of film drainage, drying, film breakup and gas diffusion. Study had found 

that solid nanoparticle may promote foam stabilization. The foams stability depends 

on the particle size, shape, concentration and hydrophobicity, as well as on the type 

of surfactant used. The objectives of this study are to determine the effectiveness of 

different type of salt on CO2 foam stability by using various concentrations of 

nanoparticle at fixed surfactant concentration (AOS) and dispersion salinity, and to 

determine oil recovery performance of each type of salt and compare the results. 

Three types of salt (Sodium Chloride, Calcium Chloride and Magnesium Chloride) 

were used to create six different compositions of brine with total salinity of 3 wt%. A 

silicon dioxide nanoparticle was used in this study at four different concentrations; 0 

wt%, 0.1 wt%, 0.5 wt% and 1.0 wt%. Alpha olefin surfactant (AOS) was used as the 

foaming agent at fixed concentration of 0.5 wt%. Red dye paraffin oil is used to 

represent the oil in formation. In the foam stability test, it was found that different 

type of salt requires different concentration of SiO2 to give optimum stabilization on 

foam. From this study, it was found that different type of salt would affect the 

stability of nanoparticle-stabilized foam. The 3 wt% CaCl2 at 0.5 wt% SiO2 gave 

most stable foam and highest oil recovery because of the greater stability of micelles 

to cause enhanced foam stability. Thus, one can conclude that the foam stabilities 

can only be enhanced by packing micelles of high stability in the foam lamellae.  
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ABSTRAK 

 

 

 

Busa digunakan untuk meningkatkan kecekapan bendalir anjakan menyapu 

reservoir dan menyentuh dan mengeluarkan minyak. Walau bagaimanapun, sistem 

busa secara termodinamik dan kinetiknya adalah tidak stabil, dan mudah musnah 

akibat daripada saliran filem, pengeringan, pepecahan filem dan peresapan gas. 

Kajian telah mendapati bahawa nanopartikal pepejal boleh menggalakkan 

penstabilan busa. Kestabilan busa bergantung kepada saiz partikal, bentuk, 

kepekatan dan hidrofobisiti, dan juga jenis surfaktan yang digunakan. Objektif kajian 

ini adalah untuk menentukan keberkesanan berlainan jenis garam ke atas kestabilan 

busa CO2 pada perlbagai kepekatan nanopartikal dengan kepekatan tetap bagi 

surfaktan (AOS) dan kemasinan larutan; dan untuk menentukan prestasi perolehan 

minyak bagi setiap jenis garam dan membandingkan keputusannya. Tiga jenis garam 

(Natrium Klorida, Kalsium Klorida dan Magnesium Klorida) telah digunakan untuk 

menghasilkan enam komposisi yang berbeza dengan jumlah kemasinan 3% berat. 

Nanopartikal silika dioksida digunakan dalam kajian ini pada kepekatan yang 

berbeza; 0% berat, 0.1% berat, 0.5% berat dan 1.0% berat. Surfaktan Alfa Olefina 

(AOS) digunakan sebagai ejen pembusa pada kepekatan tetap 0.5% berat. Minyak 

parafin diwarnai merah untuk mewakili minyak dalam formasi. Dalam ujian 

kestabilan, didapati bahawa kompisisi air garam yang berbeza akan memberi kesan 

kepada kestabilan busa yang distabilkan oleh nanosilika. 3% berat CaCl2 pada 0.5% 

berat SiO2 menghasilkan busa yang paling stabil dan perolehan minyak yang paling 

tinggi kerana misela yang lebih stabil mempertingkatkan kestabilan busa. Dengan 

itu, boleh disimpulkan bahawa kestabilan busa hanya boleh dipertingkatkan dengan 

kepadatan misela yang berkestabilan tinggi dalam lamela busa. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

1.1 Background 

 World production capabilities of oil by conventional means will no longer 

meet energy demands. As a result, oil price will continue to soar. The soaring of oil 

price is speculated could make enhanced oil recovery very economically attractive, 

and could be the beginning of an era when unconventional petroleum sources 

become economic. These potential oil resources include heavy oils, tar sands, oil 

shale, and enhanced recovery from know reservoirs. Despite the convenience and 

adaptable of petroleum as energy resource, it is non-renewable. However, through 

enhanced oil recovery technique, it is possible to increase or maintain the current 

levels of production further for many years to come. 

Enhanced oil recovery technique can improve the percentage of discovered 

oil that can be used. It can be classified into thermal processes, chemical processes, 

and miscible displacement. One of the techniques of enhanced oil recovery is 

miscible gas injection. Usually, conventional gas or water-drive will leave 25-50% 

of the original oil in the reservoir. A portion of this oil can be recovered if the oil is 

contacted by a fluid with which it is miscible. Carbon dioxide (CO2) and flue gas has 

become recognised as a useful substitute for light hydrocarbon gases in enhance oil 

recovery of crude oil where CO2, know to be highly soluble in crude oils, and in 

water, causing 20 to 90% reduction in crude oil viscosities, and also an appreciable 

swelling (up to 50%) of crude oil when it is saturate with CO2 above about 700 psi. 

However, most gas flooding field projects often faced with problem of early CO2 
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breakthrough, poor sweep efficiency, and inefficient oil recovery due to viscous 

fingering resulted from low gas phase viscosity and an unfavourable mobility 

control. 

 One potential solution for reducing gas mobility is the use of foam. By the 

use of foam, the gas mobility is reduced by liquid films trapping gas in the porous 

media and reducing the gas fraction available for flow. Foam are also much efficient 

than water in controlling gas fingering. It can also decrease aqueous permeability by 

increasing gas saturation. Furthermore, the surfactant concentration required to 

formed foams is low, thus resulted in a potential cost effective process. Foam system 

is also reversible and is best suited where total blockage is not desired or feasible. 

However, it is known that foam are both thermodynamically and kinetically unstable 

systems that readily destruct as a result of film drainage, drying, film breakup and 

gas diffusion.  

 Solid particles may promote foam stabilization. Studies found that foams 

stability depends on the particle size, shape, concentration and hydrophobicity, as 

well as on the type of surfactant used. Much study had been conducted to study the 

stability of CO2 foam. This study focused on the effects of different type of salt with 

various concentrations of nanoparticle on stabilized CO2 foam for mobility control in 

immiscible flooding with fixed concentration of anionic surfactant (AOS) and brine 

salinity. 

1.2 Problem Statement 

Gases used in gas-flooding (such as CO2, Hydrocarbons, N2, etc.) are 

normally less viscous (more than one order of magnitude less) and less dense than 

both water and crude oil, which results in gas channelling through the high 

permeability zones and gravity overriding. Thus, gas flooding normally has poor 

volumetric sweep efficiency, especially in an immiscible displacement, with the 

displacing phase being a lower viscosity. The main advantage of gas is its better 

microscopic sweep leading to lower residual oil saturation in the pores compared to 

waterflood however, the major challenge associated with gas injection is its poor 
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volumetric sweep efficiency, as a result of which gas does not contact a large 

fraction of oil and, thus, the overall recovery remains low.  

A need for mobility control in gas flooding has led to the use of foam for 

sweep improvement and profile modification. Foam is employed to improve the 

efficiency by which the displacing fluid sweeps the reservoir and contacts and 

recovers oil. 

Foam stability and mobility reduction characteristics depend on the 

properties of rock and fluids and process-design parameters such as formation 

permeability, injection foam quality and the size of the chemical slug. The effects of 

these parameters on the performance of the foam flooding process needs to be 

ascertained in order to determine its optimal potential for EOR. Most foam owes its 

existence to the presence of surfactants, that is, materials which are surface active.  

They are concentrated at the interface of a fluid and act to reduce the surface 

tension between interfaces. More importantly for preventing foam termination, they 

stabilize the thin fluid film against rupture. In aqueous foams, surfactant molecules 

are amphiphilic; their two parts are hydrophobic and hydrophilic so that they can 

stay on the water surface. In porous media, foam exists as gas bubbles whose shapes 

conform to the solid matrix. Hirasaki (1989) defined foam in porous media as “a 

dispersion of a gas in a liquid such that the liquid phase is continuous and at least 

some part of the gas phase is made discontinuous by thin liquid films called 

lamellae.” 

Solid-stabilized emulsions, known as “pickering emulsions”, have drawn 

active research interest for use under harsh conditions, because solid particles are 

generally more stable than surfactant under high temperature, and/or high salinity 

conditions. Their application in the upstream oil has been limited because the solids 

available to use were colloidal size with wide size distribution; and consequently it is 

not feasible for them to propagate long distance in oil reservoir formations with pore 

throat having similar sizes to those particles. It was also difficult to make with those 

colloids very stable and dense emulsions that are useful for upstream applications.  

With the recent rapid nanotechnology advancement, nanoparticles with 

uniform size and shape and desired surface properties can be produced in large 
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quantities at economic cost. The surface properties (“wettability”) of the nanoparticle 

can be adjusted to generate desired types of emulsion droplet with desired uniform 

sized. Being solid particles, the nanoparticles can not only endure the harsh reservoir 

conditions, but also carry some additional functionality, such as paramagnetism or as 

a catalyst. Very stable emulsions and foams with desired internal structure and 

functionality can now be accordingly produced for potential oil recovery 

applications. 

1.3 Objective of study 

The objectives of this study are: 

a) To determine the effectiveness of different type of salt on CO2 foam stability 

by using various concentration of nanoparticles at fixed surfactant 

concentration (AOS) and dispersion salinity. 

b) To determine oil recovery performance of each type of salt and compare the 

results. 

1.4 Scope of study 

In this thesis, the interested parameters to enhance the performance of foam 

are type of salt (Sodium chloride (NaCl), Calcium chloride (CaCl2) and Magnesium 

Chloride (MgCl2)) and nanoparticles concentration (0 wt%, 0.1 wt%, and 0.5 wt%, 

1.0 wt %) with fixed concentration of 0.5 wt% anionic surfactant (AOS) and 3 wt% 

water salinity. 

For the purpose of this study, glass bead pack models with 30.5 cm of length 

and 5.4 cm of diameter made from Acrylic (Perspex) were used and packed with 

granule sized of glass bead in range between 90 to 150 µm. Porosity and 

permeability of glass bead packs were measured. 

The stability test was prepared and modified based on ASTM-D 6082-62, 

D892-06 and D1881-87 (Borole and Caneba, 2013). In this study, the stability of the 
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aqueous foam was evaluated by the Ross-Miles method, using half-life 

measurements. The technique used in to generate the foam is air expansion this 

technique was used to evaluate the stability of foam in presence of nanoparticles, 

surfactant and brine. 

Displacement tests were performed by using seven unconsolidated glass bead 

pack models. The glass bead packs were located in the horizontal position to neglect 

the effect of gravity forces. Initially, the glass bead pack was saturated with 3 wt% 

NaCl brine for measurement of porosity and absolute permeability. Then, the glass 

bead pack models were saturated with red dye paraffin oil to create the initial oil 

saturation. Next, water flooding was done by injection of 2 PV of 3 wt% brine at 

flow rate of 3 cc/min. The oil recovery after water flooding was calculated. Finally, 

the glass bead pack model were subjected to foam flooding by injecting aqueous 

nanoparticles dispersion with flow rate 3 cc/min followed by co-injection of CO2 

gases with 9 cc/min for further oil recovery and better volumetric sweep efficiency. 
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