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ABSTRACT 

Polyamide (PA) thin film composite (TFC) nanofiltration (NF) membranes are 

widely used for the treatment of water and wastewater treatment. However, they still 

experience lower permeability and rapid flux decline within short period of time 

particularly in the case where the feed solutions contain high levels of organic 

pollutants. To solve this problem, a co-amine monomer in the presence of an inorganic 

additive can be introduced during interfacial polymerization process to alter the PA 

layer properties of membrane, aiming to improve its water flux and antifouling 

properties without affecting salt rejection. The main objective of this work is to 

determine the effects of sodium bicarbonate (NaHCO3) additive loading (0.5, 1.5 and 

0.25 wt.%) and piperazine (PIP)/2-(2′aminoethoxy) ethylamine (AEE) co-amine 

weight ratio (2:0, 1.75:0.25, 1.50:0.50, 1.0:1.0 and 0:2) on the properties and 

performance of TFC membranes for water and wastewater treatment, respectively. The 

chemical composition and morphology of the resultant TFC membranes were 

characterized by field emission scanning electron microscopy (FESEM), surface 

chemistry through attenuated total reflectance Fourier transform infrared analysis 

(ATR-FTIR) and hydrophilicity through contact angle measurement. Results showed 

that polymerization successfully took place forming a thin PA layer on the support 

membrane pore size within the range of NF. 0.5 wt% NaHCO3 was the best loading to 

improve membrane water permeability without really affecting Na2SO4 rejection. This 

modified membrane showed 37% higher water permeability than that of membrane 

without additive. In the presence of 0.5 wt% NaHCO3, it is found that the introduction 

of AEE into PIP solution at PIP:AEE ratio of 1:1 could more greatly improve the salt 

rejection of PIP-based membrane from 97.1% to 98.5%, producing a permeate of better 

quality. The improved separation rate was due to the formation of denser and rougher 

PA layer upon  AEE incorporation. Further characterization on the selected TFC 

membranes for aerobically treated palm oil mill effluent (AT-POME) treatment 

indicated that the membrane made of PIP:AEE of 1:1 was able to achieve improved 

performance, recording 79.15%, 94.26% and 89.3% rejection  for conductivity, colour 

(ADMI) and COD reduction. This work demonstrated the importance roles of additive 

and co-amine monomer in improving characteristics of TFC membrane for water and 

wastewater treatment. 
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ABSTRAK 

Membran penuras nano (NF) komposit filem tipis (TFC) poliamida (PA) telah 

digunakan secara meluas untuk rawatan air dan air sisa. Walau bagaimanapun, ianya 

masih mengalami kebolehtelapan yang lebih rendah dan penurunan fluks yang 

mendadak dalam jangka waktu yang pendek terutamanya apabila larutan suapan 

mengandungi percemar organik pada kopekatan yang tinggi. Untuk menyelesaikan 

masalah ini, monomer ko-amina dan bahan tambahan bukan organik boleh 

diperkenalkan semasa proses pempolimeran antara muka (IP) untuk mengubah sifat 

lapisan membran PA, bertujuan untuk meningkatkan fluks air dan sifat anti-kotoran 

tanpa mempengaruhi penyingkiran garam. Objektif utarna kajian ini adalah untuk 

mengkaji kesan muatan bahan tambahan seperti natrium bikarbonat (NaHCO3) (0.5, 

1.5 dan 0.25 % berat) dan piperazine (PIP)/2- (2′aminoetoksi) etilamina (AEE) nisbah 

berat ko-amina (2:0, 1.75:0.25, 1.50:0.50, 1.0:1.0 dan 0:2) pada sifat lapisan membran 

TFC untuk rawatan air dan air sisa. Komposisi kimia dan morfologi membran TFC 

yang dihasilkan dicirikan oleh mikroskopi medan pengimbas elektron (FESEM), kimia 

permukaan melalui spektroskopi inframerah transformasi Fourier pantulan total 

dilemahkan (ATR-FTIR) dan kehidrofilikan melalui pengukuran sudut sentuh air. 

Hasil kajian menunjukkan bahawa proses pempolimeran berjaya membentuk lapisan 

PA yang nipis pada pori membran sokongan dalam ukuran lingkungan NF. 0.5 % berat 

NaHCO3 adalah muatan terbaik untuk meningkatkan kebolehtelapan air membran 

tanpa mempengaruhi penyingkiran Na2SO4. Membran yang telah diubah suai ini 

menunjukkan kebolehtelapan air 37% lebih tinggi daripada membran tanpa sebarang 

bahan tambahan. Dengan adanya 0.5 % berat NaHCO3, ianya didapati bahawa 

pengenalan AEE ke dalam larutan PIP pada nisbah PIP:AEE 1:1 dapat meningkatkan 

penyingkiran Na2SO4 membran berasaskan PIP dari 97.1% hingga 98.5%, 

menghasilkan resapan lebih berkualiti. Tahap pemisahan yang lebih baik adalah 

disebabkan oleh pembentukan lapisan PA yang lebih padat dan kasar semasa 

penggabungan AEE. Pencirian lebih lanjut pada membran TFC yang dipilih untuk 

rawatan efluen minyak kelapa sawit yang dirawat secara aerobik (AT-POME) 

menunjukkan bahawa membran yang diperbuat daripada PIP:AEE 1:1 dapat mencapai 

prestasi yang terbaik, mencatatkan penolakan 79.15%, 94.26% dan 89.3% untuk 

kekonduksian, pengurangan warna masing-masing (ADMI) dan COD. Hasil Kajian ini 

menunjukkan pentingnya peranan bahan tambahan dan monomer ko-amina dalam 

meningkatkan ciri-ciri membran TFC untuk rawatan air dan air sisa. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1       Research Background 

Water is indispensable to life and is a major constituent of living tissues. Now, 

humans and ecosystems are in a distressing situation due to the depletion of freshwater 

resources. Industrialization and globalization have made the water crisis even more 

serious in many developing countries. Also, there is gross inaccessibility to portable 

water in many parts of the world even though water covers about 70% of the earth 

(Abdikheibari et al., 2020 and Ormanci-Acar et al., 2020). To address this problem, 

many studies have been conducted on water treatment and several techniques have 

been successfully employed in the elimination of pollutants from wastewater. They 

include chemical precipitation, coagulation, adsorption, ion-exchange, electrodialysis 

and membrane technology. Of all these, the most prominent one is membrane 

technology for its versatility, efficiency, ease of operation and being low energy 

intensive (Gohil and Ray., 2017). 

The use of membrane-based separation in water treatment has been a 

technology that is easy to scale up and energy-efficient (Jiang et al., 2019).  Amongst 

different types of membrane structure, thin film composite (TFC) membranes have 

experienced tremendous development since the concept of interfacial polymerization 

(IP) was first introduced by Morgan in the 1960s (Cadotte, 1981). 

 

TFC membranes fabricated by IP overwhelmingly dominate the markets for 

nanofiltration (NF) and reverse osmosis (RO) processes. They are made up of a thin 

polyamide (PA) layer which is interfacially polymerized onto a microporous substrate 

(Zhai et al., 2020). Current developments in membrane technology show that the PA 

film and support layer of TFC membrane can be independently optimized to enhance 

the membrane performance (Lau et al., 2015). Despite this, it is widely believed the 
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strongest influence on mass transport of the membrane, which generally determines 

membrane performance, comes from the chemical structure and the surface properties 

of the PA layer (Jiang et al., 2019).  

 

The primary choice for treatment of water and wastewater remains TFC 

membranes and some major characteristics of TFC membranes, as pertaining to 

filtration, is reported to be its good hydrophilicity, surface charge, surface roughness 

and its enhanced pure water flux, salt rejection and foulant adhesion. Therefore, TFC 

membrane with advanced PA layer properties for wastewater treatment is worthy of 

investigation as it is more effective and the process is relatively simple (Misdan et al., 

2013). 

1.2       Problem Statement 

The presence of an active PA separation layer above the support membrane has 

granted TFC membranes extensive attention in membrane technology (Zhai et al., 

2020). The active layer which is typically prepared by IP between two immiscible 

active monomers in an aqueous phase and an organic phase allows for a promising 

solute rejection from wastewater (Xiao et al., 2019). PA active layer prepared by the 

conventional IP process usually possesses an excellent performance for solute 

rejection including organic pollutants present in AT-POME with the porous substrate 

providing a stable support. Nevertheless, TFC membranes used for NF usually possess 

a comparative low water flux and a poor antifouling property after a short period of 

time, which restrains its practical application. Therefore, fabricating an excellent thin 

PA layer with improved fouling resistance is a good way to reduce trans-membrane 

pressure while improving filtration performance. Some of the common strategies used 

in enhancing PA layer properties are incorporation of inorganic nanoparticles (e.g., 

graphene oxide, titania nanotubes and carbon nanotubes) into PA matrix, coating via 

polyelectrolyte self-assembly method, posttreatment optimization (e.g., thermal 

treatment and rinsing method), introduction of additive/surfactant (e.g., sodium lauryl 

sulfate and lithium bromide) and utilization of advanced active monomers 

(Origomisan et al., 2020). 
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Above all, membranes made with the additive’s incorporation have exhibited 

several shortcomings in treating water and wastewater. In a work done by Shen et al. 

(2020), NaCl and glycolic acid were used as additives in aqueous solution to tune PA 

structure of TFC membrane for water treatment. Results showed a very thick PA layer 

with a poor pure water flux and antifouling performance. Wu et al. (2013) also 

investigated the performance of dimethyl sulfoxide (DMSO) and glycerol on the 

properties and performance of TFC membrane. Findings revealed that membrane 

surface became rougher with a poor salt rejection compared to control membrane. This 

is as a result of the fluctuating interface reducing the immiscibility between aqueous 

and organic phases by DMSO hereby causing a poor membrane structure. In another 

study, Hao et al. (2019) used calcium chloride as an additive to enhance PA layer of 

TFC membrane. The results demonstrated that the rejection and foulant repulsion of 

the membrane decreased despite the slight increase in pure water flux. The reason for 

the decrease of rejection is as a result of calcium ions consuming free carboxyl acid 

groups, resulting in the decrease of the charge repulsion effect. Most recently, Liu et 

al. (2020) utilized 1-methylimidazole in preparing PA TFC membrane. It was found 

that performance with respect to salt rejection decreased as a result of its thin and 

loosed PA layer with more opened pores caused by the hydrolysis of 1-

methylimidazole into TMC during the IP process.  

 

Furthermore, introducing a co-monomer into the PA layer could potentially 

improve TFC membrane performance and its positive impacts on water flux, rejection, 

and antifouling properties, however varied depending on the properties of monomers 

used as well as IP process conditions. Yan-Li et al. (2019) fabricated a TFC membrane 

fabricated using single amine monomer 3,3’ diaminobenzidine (DAB) gave a very 

poor salt rejection (<15%) although the flux could be retained. Li et al. (2019) also 

made a PA TFC membrane with a single zwitterionic amine monomer. Resultant 

membranes experienced a severe absorption of foulants on membrane surface which 

eventually reduced pure water flux after a short period of time. Guo et al. (2020) also 

introduced N,Ndiethylethylenediamine (DEEDA) into PIP aqueous solution followed 

by IP with TMC to develop a cross-linked PA layer. The resultant membrane achieved 

a drop (~0.2%) in salt rejection which was attributed to the single functionality of 

DEEDA participating in the IP process and reduced cross-linking structure of PA 
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layer. In another work by Yao et al. (2018), 4,4'-((1,4-phenylenebis(methylene)) 

bis(azanediyl))dibenzenesulfonic acid, a sulfonated diamine monomer was 

synthesized and used as a sole aqueous reactant with MPD. Despite the nerve-racking 

and multiple steps involved in this monomer synthesis, results still gave a poor 

performance and a lower water permeation of <0.7 L/m2.h.bar compared to the control 

membrane. 

 

So far, there has not been enough research effort concentrating on how both a 

co-monomer and an inorganic salt (additive) influences the morphology and filtration 

performance of the PA layer of TFC membrane for water treatment. Thus, in this study, 

IP between the effects of NaHCO3 additive and the presence of secondary amine 

monomer - 2-(2′Aminoethoxy) ethylamine (AEE) during IP process were studied in 

order to improve the typical piperazine (PIP)-based NF membrane for water 

application. 

1.3       Research Objectives  

In the interest of the growing potential of TFC NF membranes for effective 

water/wastewater treatment, the aim of this research is to develop a new type of TFC 

NF membrane with improved properties for effective AT-POME treatment. The 

specific objectives of this work are: 

 

1. To investigate the impacts of NaHCO3 additive on the PA layer properties of 

TFC NF membrane and its filtration performance. 

2. To assess the effect of co-amine monomers on the PA layer properties of TFC 

NF membranes by varying PIP: 2,2’-AEE weight ratios in the presence of 

NaHCO3 additive during IP process for water filtration. 

3. To evaluate performance of the TFC NF membranes for AT-POME treatment 

by examining water flux, solute rejection rate as well as conductivity, colour, 

and chemical oxygen demand (COD) removal. 
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1.4       Scope of Work  

The scope of this study to achieve the objective stated above are as follows. 

 

a) Studying the impacts of NaHCO3 additive loading (0.5, 1.5, 2.5 and 3.5 wt.%) 

added to the PIP (2 wt.%) aqueous solution on the PA layer properties of TFC 

membranes fabricated on a polysulfone (PSf) substrate. 

b) Investigating the effect of PIP:AEE co-amine monomer in varying weight 

ratios (2:0, 1.75:0.25, 1.50:0.50, 1.0:1.0 and 0:2) during IP process in the 

presence of fixed NaHCO3 concentration on the PA layer properties of TFC 

membranes.  

c) Drying all resultant TFC membranes (after IP process) at 50oC and stored in 

RO water at room temperature prior to any characterization. 

d) Characterizing the fabricated membranes for structural morphology through 

field emission scanning electron microscopy (FESEM), surface chemistry 

through attenuated total reflectance Fourier transform infrared analysis (ATR-

FTIR) and membrane hydrophilicity through contact angle measurement (CA). 

e) Evaluating the filtration performance of all the resultant TFC membranes with 

respect to water flux and Na2SO4 rejection using feed solution containing 1000 

ppm at 10 bar. 

f) Studying the antifouling properties and flux recovery rate (FRR) of the TFC 

membranes using feed solution containing 500-ppm bovine serum albumin 

(BSA). 

g) Assessing the performance of resultant TFC membranes with respect to water 

flux, solute rejection as well as conductivity, colour, and chemical oxygen 

demand (COD) removal properties during AT-POME treatment. 

 

1.5       Significance of Research  

Over the past several years, TFC membranes have always been identified as a 

promising candidate to tackle the trade-off between selectivity and permeability in 

pressure-driven membrane processes. Notwithstanding, just few research have been 

conducted to study the effect of a co-monomer in the presence of an additive in 
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fabricating TFC NF membrane for wastewater treatment. With the tremendous 

development in TFC NF membranes, this research showed that the presence an 

additive and a co-monomer in fabricating the PA active layer could improve resultant 

TFC membrane’s filtration properties in treating water and AT-POME wastewater 

with respect to solute, conductivity, colour, and COD removal. The treated water also 

possessed a pH value which is near to the neutral conditions (~pH 7) and would not 

possess a threat upon discharge. Furthermore, both materials - NaHCO3 and AEE 

which were used in this work to modify PA layer are commercially available and thus 

researchers do not need to speed time for their synthesis process and can speed up their 

usage for commercial membrane fabrication and usage.   
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