EFFECTS OF SALINITY ON NANOSILICA APPLICATIONS IN ALTERING LIMESTONE ROCK WETTABILITY FOR ENHANCED OIL RECOVERY

ABDULLAH OMER JABER ADALA

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Science (Petroleum Engineering)

Faculty of Petroleum and Renewable Energy Engineering

Universiti Teknologi Malaysia

JUNE 2014

To my beloved The Almighty, Allah S.W.T.,

To my beloved Prophet Muhammad S.A.W.,

To my beloved mother and father

ACKNOWLEDGEMENT

In the Name of Allah, the Most Beneficent, the Most Merciful, Who made all things possible and gave me the strength and power to complete this project successfully. All Thanks be to Allah (SWT).

This research project would not have been possible without the support of many people. First of all, I would like to express my deep appreciation and gratitude to my supervisor, Assoc.Prof.Dr. Radzuan Junin, for his guidance, suggestions and support throughout my project.

In addition, I would like to thank those who have given the constructive comments and ideas in completing this project especially Dr. Wan Rosli Wan sulaiman. Not forgetting also, to Mr. Roslan and Zulkifle Bin Nasir from Reservoir Engineering Laboratory, and Mr. Fairus from Geology laboratory for their assistance and support. I am also indebted to Universiti Teknologi Malaysia (UTM). Not to be forgotten are my thanks to my course mates and fellow friends for their continuous support, kindness and their true friendship. I really appreciate it. Thank you so much.

Last but not least, my thanks to my family and also to the many that have directly or indirectly helped in preparing this report. May God bless all of you for your wonderful support and encouragement that have kept me working to the best of my ability and turned in a project I can be proud of. Thank you all.

ABSTRACT

The role of nanoparticles in enhancing oil recovery from oil reservoirs is an increasingly important topic of research. Nanoparticles have the properties that are potentially useful for enhanced oil recovery processes, as they are solid and two orders of magnitude smaller than colloidal particles. One of the important roles of nanoparticles in petroleum industry is to change the wettability of reservoir rocks. However, there are many parameters that can affect nanoparticles applications in porous media. Parameters such as various concentrations of nanoparticles, presence of different salinities, amount of clays, type of crude oil and temperature. The main objective of this project was to investigate the efficiency of silica nanoparticles in enhancing oil recovery in the presence of formation brine with different concentrations. The methodology of this study involved several laboratory tests. It is divided into two main sections with the aim of enhance oil recovery of oil wet reservoirs. First, the wettability alteration and oil-water interfacial tension modification induced by introducing different concentrations of nanosilica (0.01, 0.05, 0.1wt%) and different concentrations of NaCl formation brine (0.3, 1, 2, 3, 4 wt%) was studied by experimental approach. Second, the displacement test for determining oil recovery for those different concentrations of nanosilica and formation brine. There exists an optimal nanoslica concentration for varying salinity and an optimal salinity for varying nanosilica concentration at which the wettability alteration on oil wet limestone is the maximum for the study. The results revealed that IFT and contact angle tests were found to have the same optimal salinity (0.3 wt%) and optimal nanosilica concentration (0.1 wt%) where by these concentrations the IFT reduced in reservoir to 12 mN/m and the lowest contact angle (53°) was obtained. Furthermore, the highest value of displacement efficiency obtained at nanosilica 0.05wt% and salinity 0.3 wt% NaCl where the reduction of residual oil saturation was less than 6 points %. As conclusion, as the salinity increases, the extent of wettability alteration, IFT reduction, and enhanced oil recovery by nanosilica decreases.

ABSTRAK

Peranan nanopartikel dalam meningkatkan perolehan minyak dari reservoir minyak adalah satu topik yang semakin penting dalam penyelidikan. Nanopartikel mempunyai ciri-ciri yang berguna untuk proses perolehan minyak tertingkat, kerana ia adalah pepejal dan bersaiz lebih kecil daripada zarah koloid. Salah satu peranan penting nanopartikel dalam industri petroleum adalah untuk mengubah kebolehbasahan batuan reservoir. Walau bagaimanapun, terdapat banyak parameter yang boleh menjejaskan aplikasi nanopartikel dalam media berliang. Parameter seperti pelbagai kepekatan nanopartikel, kehadiran kemasinan yang berbeza, jumlah lempung, jenis minyak mentah dan suhu. Objektif utama projek ini adalah untuk menyiasat kecekapan nanopartikel silika dalam perolehan minyak tertingkat dengan kehadiran air garam formasi dengan kepekatan yang berbeza. Metodologi kajian ini melibatkan beberapa ujian makmal. Ia dibahagikan kepada dua bahagian utama dengan tujuan untuk meningkatkan perolehan minyak bagi reservoir basah minyak. Pertama, pengubahan kebolehbasahan dan pengubahsuaian ketegangan antara muka minyak-air disebabkan dengan memperkenalkan kepekatan nano silika (0.01, 0.05, 0.1wt%) dan kepekatan NaCl yang berbeza air garam formasi (0.3, 1, 2, 3, 4% berat) telah dikaji oleh pendekatan eksperimen. Kedua, ujian anjakan untuk menentukan perolehan minyak yang berbeza kepekatan nanosilika dan air garam formasi. Kewujudan kepekatan nanoslika optimum untuk pelbagai kemasinan dan kemasinan optimum untuk pelbagai kepekatan nanosilika di mana pengubahan kebolehbasahan pada batu kapur basah minyak yang maksimum bagi kajian ini. Keputusan mendedahkan bahawa ujian IFT dan sudut sentuh didapati mempunyai kemasinan yang sama yang optimum (0.3% berat) dan kepekatan nanosilica optimum (0.1% berat) di mana dengan kepekatan ini, IFT batuan reservoir berkurang kepada 12 mN / m dan sudut sentuh yang paling rendah (53°) telah diperolehi. Disamping itu, nilai kecekapan anjakan tertinggi nanosilika 0.05wt% dan kemasinan 0.3% berat NaCl, didapati pengurangan ketepuan minyak baki adalah berkurang kepada 6 mata%. Kesimpulannya, apabila kemasinan yang meningkat didapati tahap pengubahan kebolehbasahan, pengurangan IFT, dan perolehan minyak dengan menggunakan nanosilika didapati berkurang.

TABLE OF CONTENTS

CHAPTE	R TITLE	PAGE
	DECLARATION	i
	DEDICATION	ii
	ACKNOWLEDGEMENT	iii
	ABSTRACT	iv
	ABSTRAK	V
	TABLE OF CONTENTS	vi
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF ABBREVIATIONS	xiv
	LIST OF SYMBOLS	XV
1 IN	FRODUCTION	1
1.1	Background	1
1.2	Problem Statement	4
1.3	Objectives	5
1.4	Scope of Work	6

LIT	ERATI	URE REVIEWS	7
2.1	Encha	nced Oil Recovery	7
	2.1.1	Types of Enchanced Oil Recovery	10
	2.1.2	Environmental Impacts	13
2.2	Secon	dary Recovery (Water Flooding)	14
	2.2.1	Background of Water Flooding	14
	2.2.2	Water Flooding Considerations	15
	2.2.3	Reservoir Geology Considerations	16
	2.2.4	Limitations of Water Flooding Technology	17
	2.2.5	Brine Salinity and Composition	18
2.3	Nanot	echnology	21
	2.3.1	Properties of Nanoparticle	22
	2.3.2	Structural Properties of Nanoparticle	23
	2.3.3	Chemical Properties of Nanoparticle	23
	2.3.4	Mechanical Properties of Nanoparticle	24
	2.3.5	Application of Nanoparticles, Nanofluids and	24
		Nanosensors for the Oil Industry	
	2.3.6	Nanosilicon	25
	2.3.7	Classification of Nanosilicon	26
	2.3.8	Application of Nanosilicon in Enhanced Oil Recovery	26
	2.3.9	Retention of Nanoparticle	28
2.4	Surfac	ce Tension and Interfacial Tension	30
	2.4.1	Molecular Theory of Interfacial Tension	30
	2.4.2	Effect of Brine Salinity/Composition on Interfacial Tension	31

2

	2.4.3	Effect of Concentration of Nanofluids on IFT	32
	2.4.4	Methods of Interfacial Tension Measurements	33
2.5	Reserv	voir Rock Wettability	34
	2.5.1	Carbonate Rock Wettability	35
	2.5.2	Effect of Brine Salinity/Composition on Wettability	36
		and Oil Recovery	
	2.5.3	Wettability Alteration by Nanoparticle	37
	2.5.4	Measurement of Wettability	40
RESEARCH METHODOLOGY 44			
3.1	Exper	imental Raw Materials	44

3

	3.1.1	Silicon Dioxide Nanoparticles	44
	3.1.2	Sodium Chloride (NaCl)	45
	3.1.3	De ionized water	45
	3.1.4	Crude Oil	45
	3.1.5	Limestone Rock	46
3.2	Exper	imental Equipments	46
	3.2.1	Sieve Shaker Machine	46
	3.2.2	Analytical Balance	46
	3.2.3	Ultrasonic Apparatus	46
	3.2.4	Hot Plate and Magnetic Stirrer	47
	3.2.5	Vacuum Pump	47
	3.2.6	Electronic Syringe Pump	47
	3.2.7	Stand – Alone Tensiometer	47

	3.2.8	Pcynometer	48
	3.2.9	Centrifuge Machine	48
3.3	Exper	imental Methods	48
	3.3.1	Experiments Overview	48
	3.3.2	Preparation of Nanofluid	49
	3.3.3	Sand Pack Model	50
	3.3.4	Contact angle measurement	53
	3.3.5	Interfacial Tension Measurement	56
	3.3.6	Displacement Test	59
	3.3.7	Displacement efficiency	61

4 **RESULTS AND DISCUSSION**

63

4.1	Introduction	63
4.2	Fluid Properties of Artificial Core Flooding Experiments	64
4.3	Sandpack Characterization	65
4.4	Effects of Different Concentrations of Nanofluid and Brine on Con Angle	tact 66
4.5	Effects of Different Concentrations of Nanofluid and Brine Interfacial Tension	on 69
4.6	Effects of Different Concentrations of Nanofluid and Brine on Recovery	Oil 71
4.7	Displacement Efficiency (E _D)	75

5	CON	NCLUSION AND RECOMMENDATIONS	77
	5.1	Conclusion	77
	5.2	Recommendations	79

REFERENCES

80

LIST OF TABLES

TABLE NO.	TITLE	PAGE

3.1	Characteristics of Porous Media	51
3.2	Test Description for Effects of Different Concentrations of Nanoflui	d and
	Brine on Contact Angle	55
3.3	Test Description for Effects of Different Concentrations of Nanoflui	d and
	Brine on IFT	58
3.4	Test Description for Effects of Different Concentrations of Nanoflui	d and
	Brine on Oil Recovery	61
4.1	Fluid Properties	64
4.2	Properties for Each Sand Pack Prepared	65
4.3	Contact Angles Obtained after Introducing Different Fluids	68
4.4	Effects of Different Concentrations of Nanofluid and Brine on IFT	70
4.5	Effects of Different Concentrations of Nanofluid and Brine on Oil Rec	overy
		73
4.6	Effects of Different Concentrations of Nanofluid and Brine on Oil Rec	overy
	and Displacement Efficiency	74

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	World EOR Project Subcategories (1959–2010)	9
2.2	Typical Viscosity–Temperature Relationships for Several Crude Oils	11
2.3	The Impact of Modifying Water Salinity	21
2.4	The Particles Accumulate and Consolidate at Bottleneck Points	29
2.5	Surface Tension – Capillary Equilibrium of a Spherical Gap	30
2.6	Ring Method	33
2.7	Oil Drop Placed on a Solid Surface	39
2.8	Nanoparticle Structuring in the Wedge-Film	39
2.9	The Image System Set-Up	43
3.1	Magnetic Stir Bar	49
3.2	Sand Pack Model	50
3.3	Permeability test set up	53
3.4	Contact Angel Measurement Set Up	54
3.5	Kruss Easy Dyne Tensiometer for IFT Measurement	56
3.6	Displacement Test Set Up and Oil Flooding	60
4.1	Wetting Condition of Limestone Slices	66

FIGUR	RE NO. TITLE PA	AGE
4.2	Effects of Nanofluid Concentrations on Contact Angle for Va	rying
	Brine Concentrations	67
4.3	Effects of Nanofluid Concentrations on IFT for Varying	Brine
	Concentrations	69
4.4	Oil Recoveries after Water Flooding OOIP%	72
4.5	Oil Recovery after Nanofluid Injection OOIP%	72
4.6	Final Oil Recovery in Each Test OOIP%	75
4.7	Displacement Efficiency of Tertiary Recovery E _D %	76

LIST OF ABBREVIATIONS

ASP	-	Alkali-Surfactant-Polymer	
AP	_	Alkali-Polymer	
API	_	American Petroleum Institute	
BPD	_	Barrel Per Day	
EOR	_	Enhanced Oil Recovery	
HPAI	_	High Pressure Air Injection	
IFT	_	Interfacial Tension	
IOR	_	Improved Oil Recovery	
MEOR	_	Microbial Enhanced Oil Recovery	
PAM	_	Polyacrylamide	
PV	_	Pore Volume	
SP	_	Surfactant-Polymer	
TDS	_	Total Dissolved Solids	
NP	_	Nanoparticle	
LHNP	_	Lipophobic Hydrophilic Nanoparticle	
HLNP	_	Hydrophobic Lipophilic Nanoparticle	
WF	_	Water Flooding	

LIST OF SYMBOLS

D, dim.	-	Diameter
l	-	Length
Δ	-	Difference
W	-	Weight
Р	-	Pressure
Q, q	-	Volumetric flow-rate
Т	-	Temperature
h	-	Thickness
V	-	Volume
ϕ	-	Porosity
ρ	-	Density
μ	-	Viscosity
PV	-	Pore Volume
K	-	Permeability
R_L	-	Length-to-Thickness Ratio
Θ	-	Angle (°)

CHAPTER 1

INTRODUCTION

1.1 Background

Energy resources demand is always up and increasing since the wheel of economy is creating new opportunities to cover up the increasing population of the earth. Depletion of oil reservoir is one of the major problems faced by the petroleum industry and great part of this industry technology is focused on retrieving oil portions left in formation's strata after the reservoir has exhausted its natural energy. Every reservoir, whether mature, recently discovered or even yet to be discovered, are all potential candidates for enhanced oil recovery (EOR). During the past five decades or so, an array of improved/enhanced oil recovery methods have been developed and applied to mature and mostly depleted oil reservoirs. These methods help improve the efficiency of oil recovery by extracting a good part of oil left behind in the reservoir after primary and secondary recovery processes. Primary recovery process involves displacing oil from porous rocks in the reservoir towards the production well using its own reservoir energy such as natural water drive, gas-cap drive or gravity drainage. Primary methods extract only about 30% to 40% of the original oil in place (Nielson, 1989).

In secondary recovery, a fluid (most commonly water) is injected into the reservoir in order to maintain reservoir pressure and continue oil displacement into the wellbore. Brine salinity has been studied in the literature that it has a profound effect on the interfacial tension, reservoir wettability and oil recovery. Saline water is classified into three categories by US Geological Survey according to the salinity concentration level. The slightly saline water has around 1000 to 3000 ppm of salt. Moderately saline water is roughly about 3000 to 10,000 ppm, and highly saline water is in the range of 10,000 to 35,000 ppm. Seawater has a salinity of roughly 35,000 ppm, and it varies with location. Based on the fact that an optimal salinity of the dissolved solids in the injection water may yield the highest oil recovery, the application of suitable brine salinity is important to improve oil recovery in existing and future water flooding projects.

Chemical EOR had been most active in 1980s and although thermal and gasmiscible EOR had the leading place for EOR methods; chemical EOR is still used until today effectively in many reservoir cases (Gogarty, 1983). Different chemical methods which use, has different effects on the reservoir or crude oil which involves the application of external forces, and substances to manipulate chemical and physical interactions in hydrocarbon reservoirs in a manner that promotes favorable recovery conditions.

Nanotechnology has been developed in various fields in the past few decades. In the petroleum industry, applications of nanoparticles contribute to the exploration, formation evaluation, well drilling, production, enhanced oil recovery, etc. (Shen et al., 2006). Potential applications of nanotechnologies in oil industry include: injection of nanoparticles (nano sensors) into tight oil-bearing sandstones for data collection/characterisation of reservoirs; drilling fluid mixed with nanoparticles for wettability alteration and drag reduction; effect of nanoparticle size exclusion on the efficiency of EOR. This new technology developed in Nano-science has provided an alternative for the generation of stable CO_2 foam. Generally injection of nanoparticles in an oil reservoir may modify the rheology, mobility, wettability and other properties of fluids and moreover need comprehensive investigation. For example certain types of nanoparticles can be used as tracers for oil exploration and other may be used in oil fields. Aluminium oxide (Al_2O_3) reduces oil viscosity while silicon oxide (SiO_2) changes rock wettability in addition to reduction of interfacial tension between oil and water caused by the presence of ethanol.

Taber et al. (1997) shows that 60 % of carbonate rocks were intermediate-wet, 28% were oil-wet and 8% were water-wet. Consequently controlling wettability is become a great challenge in oil and gas industry. Altering the rock wettability considers one of the most challenging problems. The ability of nanoparticles to alter the certain factors in the formation and in oil properties can be taken advantages of, to enhance oil recovery. This involves introducing these nanoparticles to the reservoir and studying its effects on oil properties. It has been reported that water wet formations produce better than oil formations. The wettability of a formation can be changed by using nanoparticles. So nanoparticles are able to change the wettability of rock which means they are able to lead us to enhance oil recovery.

Nanoparticles can improve fluid-rock interaction characteristics such as wettability alternation and heat transfer coefficient enhancement. Also, reduction of IFT and improving displacement efficiency is counted as its advantages (Ju et al., 2006). There are many parameters that can affect nanoparticles applications in porous media. These parameters are including nanoparticles characteristics, porous media features, fluid properties, and operational conditions. As it mentioned, the effects of parameters on application of these nanoparticles have been evaluated in porous media. Parameters such as various concentrations of nanoparticles, presence of different salinities, amount of clays, type of crude oil and temperature.

In this study, wettability alteration induced by introducing different concentrations of NaCl brine and different concentrations of nanosilica was studied by experimental approach. Effects of nanosilica on IFT in presence of different brine concentration are also studied. The influences of concentrations of both brine and nanosilica on oil recovery were analyzed by experimental tests.

1.2 Problem Statement

 SiO_2 Nano-Powder is a new type of augmented injection agent that has the ability of stronger hydrophobicity and lipophilicity, and can be adsorbed on the rock surface so that it changes the rock wettability. On the other hand, it can reduce the flow resistance between two phases (IFT), enhance oil effective permeability and reduce injection pressure and augment injection rate. Concentrations of brine salinity can have an effect on application of nanosilica to alter limestone rock wettability. There are many parameters that can affect nanoparticles applications in porous media. One of the most important parameter is the concentration of brine salinity.

As far as it goes, many studies addressed the issues of the application of nanosilica in oilfields to enhance water injection by virtue of changing the wettability of reservoir rock through their adsorption on porous walls of formations but unfortunately, no one of them mentioned the effects of different concentrations of brine on nanosilica applications.

The aim of this study is to investigate optimal nanosilica concentration for varying salinity and an optimal salinity for varying nanosilica concentration at which the wettability alteration on oil wet limestone rock obtained.

The mechanism of wettability alteration by nanosilica on carbonates has not been understood completely. There is lack of study on nanoparticles effect in presence of crude oil in porous media. Moreover no literature has shown the effects of brine concentration on nanosilica.

1.3 Objectives

The objectives of this study are:

- a) To determine the effectiveness of different formation brine concentrations on nanosilica applications in altering limestone rock wettability and reducing interfacial tension between fluids.
- b) To evaluate the performance of oil recovery by introduce nanosilica at different brine concentrations.

1.4 Scope of Work

The scopes of this study are including:

- 1. Preparation of SiO_2 nanoparticle suspension in different concentrations (0.01, 0.05, 0.1% wt) in de-ionized water.
- 2. Preparation of brine by making use of NaCl with different concentrations (0.3, 1, 2, 3, 4% wt).
- 3. Preparation of sandpack by crushing limestone and utilizing crushed limestone as porous media.
- 4. Sandpack characterization including determination of pore volume, porosity and permeability.

All tests are run at ambient condition.

REFERENCES

- Abtahi, M., and Torsaeter, O. (2002). *Experimental Reservoir Engineering -Laboratory Workbook*.
- Adasani, A., and Bai, B. (2011). Analysis of EOR Projects and Updated Screening Criteria. Journal of Petroleum Science and Engineering, 79(1): p. 10-24.
- Alotaibi, M., Azmy, R., and Nasr-El-Din, H. (2010). A Comprehensive EOR Study Using Low Salinity Water in Sandstone Reservoirs. In SPE Improved Oil Recovery Symposium.
- Amanullah, M. and Al-Tahini, A. (2009). Nano-Technology? Its Significance in Smart Fluid Development for Oil and Gas Field Application. in SPE Saudi Arabia Section Technical Symposium.
- Anderson, W., (1986) Wettability Literature Survey-Part 2: Wettability Measurement. Journal of Petroleum Technology,. 38(11): P. 1246-1262.
- Barenholtz, Y., Shimon G., and Gideon N. H. (1989). Enhanced Oil Recovery. U.S. Patent No. 4,811,791. 14.
- Bob, T., (2009). Nanotechnology Seen Boosting Recovery Factor. Oil and Gas Journal.

Bobek, J., Mattax, C., and Denekas, M. (1959). *Reservoir Rock Wettability and Its Significance*.

Burger, J., Pierre, S., and Combarnous, M. (1985). Thermal Methods of Oil Recovery.

- Chengara, A., Nikolov, A., Wasan, D., Darsh, T., Trokhymchuk, A. Henderson, D. (2004). Spreading Of Nanofluids Driven By The Structural Disjoining Pressure Gradient. Journal of Colloid and Interface Science, 280(1): p. 192.
- Chilingar, G.V., and Yen, T. (1983). Some Notes on Wettability and Relative Permeabilities of Carbonate Reservoir Rocks II. Energy Sources.
- Civian, F. (2007). Reservoir Formation Damage: Fundaments, Modeling, Assessment, and Mitigation.
- Donaldson, C., George, V., Chilingarian, C., and Yen, T (1985). Enhanced Oil Recovery, I: Fundamentals and Analyses.
- Dong, H., Yuan. H., Wang, H., and Dong, F. (2006). The Effect of Wettability on Oil Recovery By Alkaline/Surfactant/Polymer Flooding. In SPE Annual Technical Conference and Exhibition.
- Engeset, B. (2011). The Use of Nanotechnology in the Petroleum Industry.
- Gant, P., and Anderson, W. (1988). *Core Cleaning For Restoration of Native Wettability*. SPE Formation Evaluation, **3**(1): p. 131-138.
- Gao, C. (2007). Factors Affecting Particle Retention in Porous Media. Emirates Journal for Engineering Research.
- Hao, C., Lange, E., and Canella, W. (1990). Polymer Retention in PorousMedia. Seventh Symposium on Enhanced Oil Recovery. Tulsa, Oklahoma, USA.
- Hendraningrat, L., Li, S., and Torsæter, O., (2013). A Coreflood Investigation of nanofluid Enhanced Oil Recovery. Journal of Petroleum Science and Engineering.
- Hirasaki, G. (1991), *Wettability: Fundamentals and Surface Forces*. SPE Formation Evaluation, **6**(2): P. 217-226.

- Ju, B., and Fan, T. (2008). *Experimental Study and Mathematical Model of Nanoparticle Transport in Porous Media*. Powder Technology.
- Ju, B., and Fan, T. (2009). Experimental Study and Mathematical Model of Nanoparticle Transport In Porous Media. Powder Technology. 192(2): p. 195-202.
- Ju, B., Fan, T., and Li, Z. (2012). Improving Water Injectivity and Enhancing Oil Recovery by Wettability Control Using Nanopowders. Journal of Petroleum Science and Engineering, 86: P. 206-216.
- Ju, B., Fan, T., and Ma, M. (2006). Enhanced Oil Recovery By Flooding with Hydrophilic Nanoparticles. China Particuology .4(1): P. 41-46.
- Kakac, S., and Pramuanjaroenkij, A. (2009). *Review of Convective Heat Transfer Enhancement with Nanouids*. International Journal of Heat and Mass Transfer.
- Kelsall, R., Hamley, I., and Geoghegan, M., (2005). Nanoscale Science and Technology, John Wiley & Sons Ltd.
- Koederitz, L.F., Harvey, A.H., and Honarpour, M. (1989). *Introduction to Petroleum Reservoir Analysis;* Laboratory Workbook. Gulf Pub
- Kohler, M. and Fritzsche, W. (2007). Nanotechnology An Introduction To Nano-Structuring Techniques Second Completely Revised Edition.
- Kong, X., and Ohadi, M. M. (2010). Application of Micro and Nanotechnologies in the Oil and Gas Industry. An Overview of the Recent Progress, Abu Dhabi International Petroleum Exhibition & Conference.
- Leslie Zhang, D. (2006). Wettability Alteration and Spontaneous Imbibitions in Oil-Wet Carbonate Formations. Journal of Petroleum Science and Engineering, 52(1): P.213.

- Li,W., Ma, Li., Bao-jun, B., Jiang, G., feng,J., Zeng-bao, W. (2013). *Wettability Alteration of Sandstone by Chemical Treatments*. Journal of Chemistry.
- Mcelfresh, P., Holcomb, D., and Ector, D. (2012). Application of Nanofluid Technology to Improve Recovery In Oil And Gas Wells. In SPE International Oilfieldnanotechnology Conference.
- Miller, C.A. and Neogi, P. (1985). Interfacial Phenomena, Marcel Dekker Inc.
- Mokhatab, S., Fresky, M. A., and Islam, M. R. (2006). *Application of Nanotechnology in Oil and Gas E&P.* JPT, Society of Petroleum Engineers.
- Ogolo, N., Olafuyi, O. and Onyekonwu, M. (2012), *Enhanced Oil Recovery Using Nanoparticles*, SPE Saudi Arabia Section Technical Symposium And Exhibition, Al-Khobar, Saudi Arabia.
- Onyekonwu, M. O., and Ogolo, N. A. (2010). Investigating The Use of Nanoparticles In Enhancing Oil Recovery, Nigeria Annual International Conference Andexhibition, Tinapa - Calabar, Nigeria.
- Pourafshary, P., Azimipour, S., Motamedi, P., Samet, M., Taheri, S., Bargozin,H., and Hendi, S. (2009). Prior Assessment of Investment in Development of Nantechnology in Upstream Petroleum Industry. SPE Saudi Arabia Section Technical Symposium, Alkhobar, Saudi Arabia.
- Roehl, P.O., and Choquette, P.W. (1985), Carbonate Petroleum Reservoirs.
- Scheihing, M.H., Thompson, R.D., and Seifert, D. (2002). Multiscale Reservoir Description Models for Performance Prediction in the Kuparuk River Field, North Slope of Alaska. Presented at the SPE Western Regional/AAPG Pacific Section Joint Meeting, Anchorage SPE-76753-MS.
- Sefiane, K. J., Skilling, C., and MacGillicray, J. (2007). Contact Line Motion and Dynamic Wetting of Nanouid Solutions. Advances in Colloid and Interface Science, Volume 138.

- Seright, R., and Liang, J. (2009), A Comparison Of Different Types Of Blocking Agents . European Formation Damage Conference, the Hauge, Netherlands.
- Shah, R. D. (2009). Application of Nanoparticle Saturated Injectant Gases for EOR of Heavy Oil. SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA.
- Shidong, Li., Tinnen, A., Luky ,H., Torsæter, O. (2013). Effect of Silica Nanoparticles Adsorption on the Wettability Index of Berea Sandstone. Paper SCA2013-059 Will Be Presented At the International Symposium of the Society of Core Analysts Held In Napa Valley, California, USA.

Shihab-Eldin, A. (2002). *New Energy Technologies: Trends in the Development of Clean and Efficient Energy Technologies*, Organization of the Petroleum Exporting Countries - OPEC Review.

- Suleimanov, B., Ismalov, F., and Veliyev, E. (2011). *Nanouid for Enhanced Oilrecovery*. Journal of Petroleum Science and Engineering.
- Taber, J., and David Martin, F. (1983). Technical Screening Guides for the Enhanced Recovery of Oil. No. CONF-8310121-. New Mexico Inst. of Mining and Technology.
- Taber, J., Martin, F., and Seright, R. (1997). Introduction to Screening Criteria and Enhanced Recovery Field Projects. SPE Reservoir Engineering, 12(3): p. 189-198.
- Tang, G., and Morrow, N. R. (1999). Influence of Brine Composition and Fines Migration on Crude Oil/Brine/Rock Interactions and Oil Recovery.
- Vafaei, S., Tasciuc, T. B., Podowski, M. Z., and Purkayastha, A. (2006). Effect of Nanoparticles on Sessile Droplet Contact Angle. Institute of Physic Publishing.

- Wael, A., Buckley, J. S., Andrew, C., John, E., Bernd, H., Fordham, E., Arne, Graue., Habashy, T., Seleznev, N., and Signer, C., (1986). *Fundamentals of Wettability Technology.* 38: p. 1125-1144.
- Wasan, D., Nikoloc, A., and Kondiparty, K. (2011). The Wetting and Spreading of Nanouids on Solids: Role of the Structural Disjoining Pressure. Current Opinion in Colloid & Interface Science.
- Wasan, D.T., and Nikolov, A.D. (2003). Spreading of Nanofluids on Solids.Nature, 423(6936): P. 156-159.
- Willhite, G.P. (1986). *Water flooding*, Vol. 3. Richardson, Texas: Textbook Series, SPE.
- Zang, L., Yyan, J., Liang, H., and Le, K. (2008). Energy from Abandoned Oil and Gas Reserves. SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia.
- Zhang, T., Davidson, A., Brytant, S. L., and Huh, C. (2010). Nanoparticle Stabilized Emulsions for Application in Enhanced Oil Recovery. SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA.
- Zhao, X., Blunt, M.J., and Yao, J. (2010). Pore-Scale Modeling: Effects of Wettability on Waterflood Oil Recovery. Journal of Petroleum Science and Engineering. 71(3): P. 169-178.