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ABSTRACT

Following the stringent emission legislation in the major automotive markets, 
the downsized boosted engine becomes the engine design trend that almost all 
automakers have been adopted. A turbocharged engine has the disadvantages of high 
exhaust gas temperature at medium to high engine load and engine speed operations. 
Fuel enrichment is the common strategy used to control the high exhaust temperature 
within the permissible thermal limit of the catalytic converter and turbine vane. Water 
injection strategies have been proven to be a promising technique to improve the 
performance of boosted engine while reducing the NOx emission via the latent heat of 
vaporization of water. Plenty of water injection research was conducted on in-cylinder 
and intake port water injection. However, the water injection research on the spark 
ignition engine exhaust system section is still lacking. This research proposed a pre­
turbocharger turbine water injection concept to reduce the turbine inlet temperature. 
In turn, the stoichiometric engine operation could be achieved at the medium-high load 
and speed engine operation without resorting to fuel enrichment strategy in reducing 
the exhaust gas temperature. The purpose of this study was to investigate the effect of 
injecting water into the exhaust gas at the pre-turbine of a turbocharged spark-ignition 
engine. This study was initiated by experimenting using a 1.3-litre 4-cylinder 
turbocharged engine on a test bench to collect engine data for Computational Fluid 
Dynamics (CFD) baseline model validation. Simultaneously, a one-dimensional 
engine model was then developed based on the 1.6-litre 4-cylinder turbocharged 
engine experiment using AVL BOOST software. The CFD model was used to 
investigate the effects of water injection pressure, pipe diameter and water injector 
location. The CFD results showed that a 50 mm connecting pipe with 4 bar of injection 
pressure gives the most exhaust temperature drops. The CFD results were then applied 
to the one-dimensional engine model. The engine model simulation results showed 
that the fuel consumption can be reduced up to 13% at 4,000 rpm during wide-open 
throttle and 75% engine load. This research proved the potential of using water 
injection at the pre-turbine turbocharger to reduce the fuel consumption of a 
turbocharged spark-ignition engine. The pre-turbocharger turbine water injection is a 
new approach, requiring further optimisations and improvements to fulfil the market 
demand for a fuel-efficient vehicle with stringent emission regulations.
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ABSTRAK

Disebabkan undang-undang pelepasan yang ketat di pasaran automotif utama, 
enjin yang diperkecil menjadi trend reka bentuk enjin yang hampir diadaptasi oleh 
semua pembuat kenderaan. Enjin pengecas turbin mempunyai kelemahan suhu gas 
ekzos yang tinggi sewaktu operasi beban enjin yang sederhana tinggi. Pengayaan 
bahan api ialah strategi umum yang digunakan untuk mengawal suhu ekzos yang tinggi 
dalam had terma yang dibenarkan untuk penukar pemangkin dan ram turbin. Strategi 
suntikan air telah terbukti sebagai teknik yang menjanjikan peningkatan prestasi 
engine pengecas turbin sambil mengurangkan pelepasan NOx melalui haba pendam 
pengewapan air. Terdapat banyak penyelidikan suntikan air yang dilakukan pada 
suntikan air dalam silinder dan port pengambilan. Namun demikian, kajian suntikan 
air pada bahagian sistem ekzos enjin pencucuhan bunga api masih berkurangan. 
Konsep yang baru dicadangkan dalam penyelidikan ini, iaitu suntikan air pra-pengecas 
turbin bertujuan untuk mengurangkan suhu salur masuk turbin. Sebaliknya, operasi 
enjin stoikiometrik dapat dicapai tanpa menggunakan strategi pengayaan bahan api 
dalam mengurangi suhu gas ekzos pada pengoperasian enjin dalam kelajuan tinggi dan 
beban tinggi. Tujuan kajian ini adalah untuk mengkaji kesan penyuntikan air ke dalam 
gas ekzos pada pra-turbin enjin pencucuhan bunga api pengecas turbin. Kajian ini 
dimulakan dengan melakukan eksperimen dengan menggunakan enjin pengecas turbin
4 silinder 1.3 liter di bangku uji untuk mengumpulkan data enjin untuk pengesahan 
model asas Dinamik Bendalir Pengkomputeran (CFD). Model enjin satu dimensi 
dikembangkan berdasarkan eksperimen enjin pengecas turbin 4 silinder 1.6 liter 
dengan menggunakan perisian AVL BOOST secara serentak. Model CFD digunakan 
untuk menyiasat kesan tekanan suntikan air, diameter paip dan lokasi penyuntik air. 
Hasil CFD menunjukkan bahawa paip penghubung yang lebih besar dengan tekanan 
suntikan 4 bar memberikan penurunan suhu ekzos yang paling banyak. Hasil CFD 
kemudian diterapkan pada model enjin satu dimensi. Hasil simulasi model enjin 
menunjukkan bahawa penggunaan bahan api dapat dikurangkan sehingga 13% pada
4,000 rpm semasa pendikit terbuka luas dan 75% beban enjin. Hasil daripada 
penyelidikan ini membuktikan potensi menggunakan suntikan air pada pra-pengecas 
turbin dapat mengurangkan penggunaan bahan api enjin pencucuhan percikan turbo. 
Suntikan air pra-turbin pengecas adalah pendekatan baru yang memerlukan 
pengoptimuman dan peningkatan lebih lanjut bagi memenuhi permintaan pasaran 
kenderaan yang efisien bahan api dengan peraturan pelepasan yang ketat.
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CHAPTER 1

INTRODUCTION

The first chapter will provide a brief overview of the research. First and 

foremost, the background of the current regulation and how it leads to the shift of 

engine design trends will be presented, followed by the problem statement and 

research gap, which lead to the motif of this research. The research objectives and 

scopes will also be well-defined.

1.1 Stringent emission regulation

Vehicle emission regulation is crucial to tackle air pollution in developed 

countries and cities. One of the primary automotive markets, Europe, has proposed an 

ambitious reduction in carbon dioxide (CO2) limit for both light and heavy-duty 

vehicles for the coming decade. Their Euro 6 regulation has been implemented for 

several years, and they have started to discuss on Euro 7 regulation which will be put 

into effect potentially in the year 2025 [1].

In the United States (US), their Environmental Protection Agency (EPA) and 

the National Highway Traffic Safety Administration (NHTSA) proposed to amend the 

existing Corporate Average Fuel Economy (CAFE) and specific greenhouse gas 

emission standards for passenger cars and light trucks. The amended standard will 

cover every vehicle coming out from 2021 to 2026 model years [2].

In 2018, China announced a 3-year action plan called the “Blue Sky” policy 

with a broad call to action for their local government to address various air quality 

goals. The critical regions involved are the major cities like Beijing, Tianjin, Hebei, 

Shanghai, etc. The policy ensures that China 6 fuel is introduced nationwide starting 

Jan 2019.
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The emission regulation will only be getting stricter year by year, as shown in 

Figure 1.1. The car manufacturers must find their way in every possible way to 

gradually reduce the CO2 emission of their fleet every year to comply with the 

regulation set by the major markets.

Figure 1. 1 CO2 target for light-duty vehicles in significant markets [1]

1.2 Engine downsizing trend

Due to the stringent emission standard, engine downsizing has been the engine 

design trend for the past decade. For example, the market share of the boosted 

downsized engine for light transportation in a vast market like the US has been 

increasing in recent years, as shown in Figure 1.2. This momentum is expected to 

continue for the coming years. Turbochargers are being used to compensate for the 

power loss from the downsized engine. The boosted engine can produce a flatter torque 

curve which improves the performance and efficiency at part load operation [3]. 

However, this downsized boosted engine has some drawbacks to overcome.
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Source: www.gran<^ie^vresearcfi com

Figure 1.2 Market share of the automotive turbocharger in the US [4]

Firstly, the compressed intake air causes the boosted engine to operate at higher 

indicated mean effective pressure (IMEP). This promotes engine knocking in the 

combustion chamber, which will damage the engine if  it occurs for a prolonged period. 

The compression ratio (CR) reduction and spark retard are required to prevent engine 

knock, leading to the deficit in engine efficiency. Hence, engine knocking is the 

limiting factor of extracting potential performance from a high power density engine 

[5].

The exhaust gas temperature may also exceed 900°C, which will cause the 

exhaust manifold and turbocharger turbine side to reach an extreme temperature, as 

shown in Figure 1.3. The turbine inlet temperature (TIT) is the critical parameter that 

needs to be maintained below 930C  so that it is below the permissible thermal limit 

of the turbine vane and catalytic converter. Fuel enrichment is the commonly used 

method to control the temperature of combustion and exhaust gas. Thus, the fuel 

consumption of a small displacement boosted engine is higher during high load engine 

operation.
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1.3 Problem Statement

As discussed in subchapters 1.1 and 1.2, car manufacturers face many 

challenges to meet the requirement of emission regulations of all the major car 

markets. Engine downsizing is one of the ways, but the internal combustion engine 

(ICE) still requires incremental improvement and breakthrough technologies to meet 

the emission reduction target for the coming years. Technologies such as cooled 

exhaust gas circulation (EGR), variable compression ratio, thermoelectric generators 

are some of the solutions and concepts proposed in the past five years to improve the 

efficiency of a turbocharged engine, up to 45% potential thermal efficiency [7], [8].

In general, water injection (WI) is a promising technology for knock 

suppression in the small-boosted engine. Followed by allowable spark advance, more 

power can be extracted from the engine. WI can also reduce the combustion
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temperature, which effectively reduces NOx emission. Besides, WI can also replace 

or reduce the fuel enrichment application, which reduces the brake specific fuel 

consumption (BFSC) of the engine [9]. This also allows the engine to operate on 

stoichiometric combustion. From here, WI is a technique that can be expected to 

improve engine performances without compromising fuel consumption. Furthermore, 

the reduction of NOx encourages the implementation of WI to meet the future exhaust 

emission standard.

WI strategies can be categorised into pre-combustion WI, direct WI (DWI), 

and post-combustion WI. Every design has its respective advantages and 

disadvantages. Under pre-combustion WI, there are port WI and intake manifold WI. 

Port WI is the most proposed strategy due to its versatility and easy installation. With 

few modifications, the gasoline fuel injection system can be directly used for water 

injection. Direct WI has been increasingly proposed in recent years due to the more 

precise water spray and evaporation control, just like direct fuel injection.

On the other hand, post-combustion WI was only proposed in the compression 

ignition (CI) engine. As the name suggested, the injected water does not involve 

combustion compared to the other two WI strategies. After all, post-combustion WI is 

the least exploited WI strategy. When this thesis was written, there were very few 

reports on the implementation of WI at exhaust manifold of CI engine found. However, 

there were even fewer applications onto the SI engine.

In this research, an investigation toward a newly proposed post-combustion WI 

strategy was carried out, known as pre-turbocharger turbine water injection (PTWI). 

The PTWI is used to cool down the turbine inlet temperature (TIT) instead of the 

combustion chamber, enabling the engine to run at stoichiometric (X=1) conditions. 

This research will focus on the effects of the PTWI on the performance and fuel 

consumption of a spark ignition (SI) engine across the operating state.
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1.4 Research objectives

The objectives of the research are:

(a) To characterise the behaviour of liquid water and exhaust gas in PTWI using 

three-dimensional (3D) Computational Fluid Dynamics (CFD).

(b) To investigate the effects of pre-turbine water injection on fuel consumption 

and engine performances using one-dimensional (1D) simulation.

1.5 Scope of research

The scope of this research covers both simulation and experiment to propose a 

new water injection strategy for a gasoline engine. The purpose of the experiment in 

this study was to validate the simulation model. The experiment was conducted on an 

engine test bench, and the modification was done at the turbocharger turbine upstream. 

All the sensitivity cases were investigated through the validated simulation models. 

3D CFD simulation focuses on the water spray behaviour in the hot exhaust gas stream. 

The parametric study was conducted on the injector pressure (4 bar, 7 bar, 9 bar), the 

diameter of the turbine inlet connecting pipe (30 mm, 40 mm, 50 mm) and the distance 

of the injector from the turbine inlet (150 mm, 250 mm, 450 mm). For 1D engine 

simulation, the engine model was developed based on existing engine setup 

specifications on the test bench. The baseline model was then validated with engine 

testing results. The baseline engine model will then use the results from CFD to 

investigate the effect of PTWI on the engine performances and fuel consumption 

during 3000 rpm, 4000 rpm and 5000 rpm at 100%, 75% and 50% of engine load.

1.6 Thesis layout

The thesis is organised into five chapters. The followings are the brief outline 

of each chapter.
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CHAPTER 1 INTRODUCTION

This chapter introduces the incoming emission regulations implemented in 

some major markets, followed by engine design trends to cope with the rules. Water 

injection is one technology that potentially improves engine efficiency, but many 

improvements still need to be made. Therefore, the research gap and problem 

statement are recognised. The objectives and scope of this research are established to 

fill up the research gap.

CHAPTER 2 LITERATURE REVIEW

The chapter introduces various water injection (WI) strategies that have been 

proposed. The author includes fuel-water emulsion as well since the water gets 

involved. Besides, the author also briefly discusses the application of WI on different 

engine configurations. The author also criticises and comments on the strength and 

weaknesses of each approach. The vaporisation of the water was discussed to optimise 

the WI research setup specifications.

CHAPTER 3 METHODOLOGY

This chapter showcases the workflow to obtain the research objectives. The 

author explains the experimental and simulation setup in detail. Firstly, the author 

describes the experimental work, test-rig design, and post-processing. Following the 

CFD baseline model validation, the author explains the 3D CFD setup and model used. 

Lastly, the author presents the 1D engine model validation and brings the result from 

CFD into the validated engine model for performance and fuel consumption 

simulation.

CHAPTER 4 RESULTS AND DISCUSSIONS

This chapter discusses 3D CFD model validation with experiment data and 

follows it by 1D engine model validation with the available engine testing data. The 

author evaluates the water spray flow over the hot exhaust gas under different 

sensitivity parameters. Then, the author highlights and discuss the fuel consumption 

and performance in 1D simulation in which the engine is running at stoichiometric 

condition.
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CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

The author makes sure the findings of this research achieve the objectives that 

have been set since the beginning. Lastly, the author closes the thesis by providing 

valuable recommendations for future works and researchers.
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