
 

MATHEMATICAL ANALYSIS OF DISPERSION OF SOLUTES IN BLOOD 

FLOW USING HERSCHEL-BULKLEY FLUID MODEL THROUGH AN 

INCLINED UNIFORM ARTERY

 

 

 

 

 

 

 

INTAN DIYANA BINTI MUNIR 

 

 

 

 

 

 

 

A dissertation submitted in partial fulfilment of the  

requirements for the award of the degree of 

Master of Science 

 

 

 

Faculty of Science 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

DECEMBER 2020 



iv 

DEDICATION 

 

 

 

 

 

 

 

 

 

This dissertation is dedicated to both of my parents, who supported me 
unconditionally in completing my Master’s degree.  

  



v 

ACKNOWLEDGEMENT 

In preparing this dissertation, various challenges have been encountered along 
the way. Many people have helped me in facing those challenges physically and 
emotionally. In the academic aspect, I wish to express my sincere appreciation to my 
main supervisor, Dr Nurul Aini Jaafar, for her persistent guidance and constructive 
criticism in helping me finish my research. She has been patient with my pace and 
never stopped encouraging me to keep going. I am also very grateful to my co-
supervisor Dr Mohammad Faisal Mohd Basir for his continuous supervision and 
motivational support. Their time and effort spent on helping me have led me to achieve 
my best possible thesis outcome. 

Not to mention my family members who kept pushing me forward when I was 
having a hard time staying motivated. Their optimistic attitude has thought me to be 
more resilient in enduring hardship. My fellow friends and acquaintances should also 
be recognised for their support.  

  



vi 

ABSTRACT 

This study aims to analyse the effect of inclination of the artery on the blood 
velocity and solute dispersion in an artery when it is inclined to a certain angle. 
Herschel-Bulkley fluid model is considered in representing the blood flow. The 
method of integration and perturbation are used to obtain the solution for the velocity 
of the steady and unsteady blood flow, respectively. The steady convection-diffusion 
equation is solved for the concentration of the solute using method of integration.
Taylor-Aris method has been implemented to obtain the effective and relative axial 
diffusion. This present work focuses on the effect of arterial inclination angle on the 
blood flow characteristic in terms of velocity, concentration of solute, effective axial 
diffusion and relative axial diffusion. Other parameters’ effect such as yield stress, 
gravitational acceleration and power-law index on the behaviour of the blood are also 
investigated and presented by graph representation. Observation shows that the angle 
of artery inclination directly influences the gravitational acceleration parameter, which 
correlates to the resulting blood velocity and solute concentration. 90  and 270  
angles of inclination have the highest effect in increasing and decreasing the velocity, 
concentration of solute and diffusivity, respectively. Meanwhile, 0 ,  180  and 360  
angles eliminate the gravitational acceleration effect on the blood behaviour and 
dispersion process. This study concludes that the angle of inclination has a strong 
impact on blood flow and solute dispersion behaviour.  
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ABSTRAK 

Kajian ini adalah bertujuan untuk menganalisis kesan kecenderungan arteri 
pada halaju darah dan penyebaran zat terlarut dalam arteri apabila arteri tersebut 
cenderung pada sudut-sudut tertentu. Model bendalir Herschel-Bulkley digunakan 
bagi mewakili aliran darah. Kaedah pengamiran dan usikan, masing-masing digunakan 
untuk mendapatkan penyelesaian bagi halaju aliran darah yang stabil dan tidak stabil. 
Persamaan perolakan-penyebaran yang stabil diselesaikan untuk mendapatkan solusi 
bagi kepekatan zat terlarut menggunakan kaedah pengamiran. Kaedah Taylor-Aris 
telah digunapakai untuk mendapatkan kemeresapan paksi efektif dan relatif. Kajian ini 
memberi tumpuan kepada pengaruh sudut kecenderungan arteri pada tingkah laku 
aliran darah dari segi halaju, kepekatan zat terlarut, kemeresapan paksi efektif dan 
kemeresapan paksi relatif. Kesan parameter lain seperti tekanan hasil, pecutan graviti 
dan indeks hukum-kuasa pada tingkah laku bendalir juga disiasat dan dianalisa melalui 
graf. Pemerhatian menunjukkan bahawa sudut kecenderungan arteri secara langsung 
mempengaruhi parameter pecutan graviti yang berkorelasi dengan halaju darah dan 
kepekatan zat terlarut yang dihasilkan. Sudut kecenderungan 90  dan 270  
mempunyai kesan tertinggi dalam meningkatkan dan menurunkan halaju, kepekatan 
zat terlarut dan penyerapan. Sementara itu, sudut kecenderungan 0 , 180  dan 360  

menghilangkan kesan pecutan graviti pada tingkah laku aliran darah dan tingkah laku 
penyebaran zat terlarut. Kajian ini menyimpulkan bahawa sudut kecenderungan 
mempunyai kesan yang kuat terhadap aliran darah dan tingkah laku penyebaran zat 
terlarut.  
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INTRODUCTION 

1.1 Introduction 

This chapter discusses the background of study conducted on the problem 

concerning the solute dispersion, Herschel-Bulkley fluid model and inclination of the 

artery. The effectiveness of the solute dispersion is affected by several factors, such as 

the angle of artery inclination, gravitational acceleration, core flow radius and power-

law index. This study focuses on blood flow and solute dispersion through an inclined 

narrow artery. 

Many studies have been conducted to formulate an equation describing the 

blood flow and its relation to the factors affecting the blood flow. The most well-

known equation is the Hagen-Poiseuille equation, which considers the viscosity of the 

fluid, pressure gradient at the constant cross-section of the pipe, length and diameter 

of the pipe. The equation was derived independently by Jean Léonard Marie Poiseuille 

in 1838 and continued by Gotthilf Heinrich Ludwig Hagen in 1839 (Sutera & Skalak, 

1993). The ability to mathematically approach the behaviour of blood flow gives many 

contributions to the medical field in which one of those is the theory of dispersion of 

solute in blood flow. Many researchers and scientists have explored the study of solute 

dispersion as it contributes to findings and applications in the medical field. The 

medical field concerning the circulatory system implements the knowledge of solute 

dispersion in solving problems related to the transport of solute in the blood circulation 

system. Since the human circulatory system diverse from one patient to another, 

studies on solute dispersion are still being extended to further explore problems and 

solutions under various other conditions. For instance, cardiovascular diseases, 

specifically atherosclerosis (stenosis) which claims the lives of people, make the study 

of blood flow through arteries significant as it is closely related to the nature of blood 

movement and the dynamic behaviour of blood vessel (Ratchagar & Kumar, 2019). 
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Thus, studies on solute dispersion benefit not only the researchers but also the society 

who depends on these study developments to live a better life.  

 

Figure 1.1 (a) Arteries in the circulatory system and (b) the direction of blood flow 
inside the heart (Huttunen et al., 2019). 

 
There are many types of arteries inside the human body, as shown in Figure 

1.1. Figure 1.1 illustrates the various inclination of the artery as it branches out from 

the heart to carry the blood to their specific target body and the anatomy of the heart 

that generates the pressure to pump blood through the artery. Each artery has its own 

orientation according to their position in the circulatory system. The velocity of the 

blood flow and solute dispersion inside those arteries are affected by the angle of artery 

inclination. Furthermore, an inclined artery coupled with a disease such as 

atherosclerosis leads to the narrowing of the artery that affects drug delivery through 

the artery. Figure 1.2 shows a normal artery and an artery with atherosclerosis. The 

artery with atherosclerosis has a narrowed opening caused by the cholesterol deposit 

that accumulates at the wall of the artery known as stenoses. The blood in a narrowed 

artery requires a fluid model that can represent its behaviour flowing through a small 

radius opening. Therefore, studies on the behaviour of blood flow and solute dispersion 

inside an inclined artery that is narrowed by stenoses are deemed to be significant. 
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Figure 1.2 Normal artery and narrowed artery (Hui, n.d.). 

 
Drugs are commonly administrated through the vein via intravenous injection.

However, the practice of administrating drugs through the artery known as the intra-

arterial injection is sometimes performed for a specific treatment and situation. 

Administrating drugs intravenously requires knowledge of the dispersion rate of the 

drug solutes in the blood since many drugs are therapeutic at low concentrations and 

harmful at high concentrations (Rana & Murthy, 2016). This knowledge also applies 

to drug administration through the artery, but more caution is needed as the risk of 

developing complications is higher. Increased risk of complications is due to the nature 

of the artery having a higher blood pressure compared to the veins and could 

potentially damage the tissue surrounding it as the drug is injected into the artery. Not 

to mention, the high blood pressure inside the artery could lead to heavy bleeding when 

the artery is punctured by the needle. The method of administrating drugs through the 

artery has a high risk of developing clinical trauma such as paraesthesia, severe pain, 

motor dysfunction, compartment syndrome, gangrene and limb loss (Sen et al., 2005). 

Nevertheless, in the event of intravenous cannulation (injection) is impossible and 

intraosseous access is considered too invasive, cannulation through the artery might 

be an alternative (Fikkers et al., 2006). Therefore, studies on behaviour of blood flow 

and solute dispersion inside an inclined artery are vital to reduce the risk of 

complications from an intra-arterial injection. An extensive study on solute dispersion 

inside an artery helps doctors and pharmacists in deciding the dose and distribution 

rate of medication to patients with less risk of causing toxicity and bleeding.  

In representing the physiology of blood flowing inside an inclined artery, a 

circular pipe with various inclination is used to represent the inclined artery and non-

Newtonian fluid is used to represent the blood. The primary concern of this study is 
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the dispersion of solute in blood flow, especially in an inclined pipe as many ducts in 

a physiological system have some inclination rather than being horizontal (Prasad & 

Radhakrishnamacharya, 2008). Thus, adding an inclination to the study gives insights 

on the blood behaviour when gravity is considered.  

A vast number of researches have been conducted to study the blood flow and 

solute dispersion behaviour due to the various type of fluid models being used to 

represent the blood properties known as Newtonian and non-Newtonian fluids. The 

viscosity of a Newtonian fluid is independent of the shear rate, while the viscosity of 

a non-Newtonian fluid is dependent on the shear rate. Blood has a viscosity that 

decreases with shear stress, and this shear-thinning property is closely related to the 

dynamics and mutual interactions of red blood cells (Lanotte et al., 2016). Since blood 

exhibits a shear-thinning property, non-Newtonian fluids are more suitable to represent 

the blood in studies involving haemodynamics. Non-Newtonian fluid such as Casson, 

Carreau, Carreau-Yasuda and Herschel-Bulkley has been proven to be useful in 

haemodynamics and to be applied in the study of the solute dispersion process in blood 

flow (Rana & Liao, 2019). 

Nevertheless, for a low shear rate of blood flow with high yield stress in a very 

narrow artery, the Herschel–Bulkley fluid model is more suitable (Sankar & 

Hemalatha, 2007). An appropriate choice of a parameter for the power-law index of 

the Herschel-Bulkley fluid model can reduce it to other non-Newtonian fluid models 

such as power law and Bingham model. Therefore, Herschel-Bulkley fluid model is 

more fitting to describe the blood property flowing in a narrow artery. 

In previous studies, non-Newtonian Herschel-Bulkley fluid is widely used in 

representing blood when it comes to solving problems related to solute dispersion in 

blood flow, mainly in small circular channel since blood vessels are relatively small. 

However, the study on solute dispersion using Herschel-Bulkley fluid in an inclined 

pipe has not yet been explored. Therefore, this present study focuses on the effect of 

pipe inclination on the behaviour of the Herschel-Bulkley fluid model and dispersion 

of solute to extend the study of previous researches and obtain results under different 

conditions. In this study, the application of fluid mechanics knowledge helps to 
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measure the velocity profile, the concentration of solute, the rate of dispersion and the 

transport coefficients for the Herchel-Bulkley model in an inclined pipe.  

1.2 Problem Statement 

Solute dispersion occurs when solutes are injected into a circular pipe 

containing fluid that is flowing. This can be seen in the medical field when a doctor 

injects the drug into patients. However, the concentration of the drug being injected 

must be carefully calculated to avoid overdosing or damage to the blood vessel. Factors 

such as the velocity of the blood, the radius of the blood vessel and the rate of 

dispersion of the drugs should be considered in determining the dosage of medicine to 

be injected. Thus, the study of solute dispersion in a pipe contributes to understanding 

the dispersion process. Many researchers used the Newtonian fluid in representing the 

blood in studying its flow in a large diameter artery. However, in a real-life problem, 

certain artery has a narrow diameter due to underlying medical conditions. Thus, it is 

significant to study the blood flow in a narrow artery at a low shear rate to give a life-

like description of blood flow. A fluid model of Herschel-Bulkley is used to represent 

the blood in a narrow diameter artery.   

Not to mention, studies that used a horizontal pipe can deviate from a close 

representation of the real-life situation as blood flowing in the artery is not always or 

never in a perfect horizontal state. Therefore, the inclination of the pipe has been 

considered to study the blood flow in the real-life situation.  

1.3 Research Objectives 

The objectives of this present study are:  

 

(a) To formulate the fluid flow model of the Hershel-Bulkley through an inclined 

uniform artery. 

 



 

6 

(b) To solve the momentum and constitutive equations for finding the velocity 

using the method of integration for steady blood flow and perturbation method 

for unsteady blood flow. 

 

(c) To solve the steady dispersion analytically for finding effective and relative 

axial diffusion using the Taylor-Aris method. 

 

(d) To analyse the graphical data of velocity profile, solute concentration, effective 

axial diffusion and relative axial diffusion at various angles of inclination and 

under the influence of different values of power-law index, gravitational 

acceleration and core flow radius. 

 

 

 

1.4 Scope of Study 

The scope of the study is limited to solving for the fluid velocity, solute 

concentration, effective axial diffusion and relative axial diffusion of steady dispersion 

of solute in a steady and unsteady, laminar, fully-developed Herschel-Bulkley flow in 

an inclined pipe. The governing equations are solved analytically for both momentum 

and convection-diffusion equations. The data of the velocity of Herschel-Bulkley fluid 

flow, the concentration of solute, the effective axial diffusion and relative axial 

diffusion are obtained using Mathematica software. 

1.5 Significance of Study 

Research on solute dispersion in blood flow through an inclined artery has 

many benefits in the science field such as medical, pharmaceutical and bioengineering 

fields. In the medical field, the study on solute dispersion helps doctors in deciding the 

suitable dosage of medicine to be given to patients. The findings of this present study 

can also help to depict a realistic description of solute dispersion through an inclined 



 

7 

artery for future researchers in extending studies related to circulatory system or 

cardiovascular diseases. Therefore, the significance of this study are: 

(a) In-depth insight on the flow and dispersion characteristics of the Herschel-

Bulkley model in an inclined pipe may help future studies in extending research 

revolving the Herschel-Bulkley fluid model. 

 

(b) The result of this research can help doctors in understanding the behaviour of 

the dispersion process of solute in treating diseases that involves injecting 

drugs into the artery by observing the behaviour of blood flow and solute 

dispersion under the influence of artery inclination. 
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