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ABSTRACT

A rotating disc contactor (RDC) column is one of the equipments that is 

commonly used in the chemical industry. This column is used for the liquid-liquid 

extraction process where it is a method to separate compounds based on their 

insolubility differences. The mass transfer process in the RDC column occurs due to 

the counter-current motion of the drop and continuous phases. The mass transfer 

process that occurs in the RDC column is also can be modelled mathematically. 

Previously, this process is modelled by assuming that the drops were spherical. After 

considering the research done on the distribution of drops and column properties, the 

drops have shapes closer to spheroidal rather than spherical. Therefore, a new model 

of the mass transfer process in the RDC column is proposed. This new model is 

developed by assuming that the drops are taking prolate spheroidal shape instead of 

oblate due to the properties of the column. The mass transfer process of the prolate 

spheroidal drops is determined by using Fick's second law in Cartesian coordinates to 

predict the diffusion for rectangular shape body. By using a suitable transformation 

equation, a three-dimensional partial differential equation is obtained. However, 

instead of solving Fick's second law analytically, the numerical approach is used. In 

this study, the finite difference method (FDM) is chosen. Since FDM is one of the 

methods that engineers usually use to solve modelling problems, the algorithm for this 

three-dimensional partial differential equation would help engineers increase the 

capability of the RDC column only by simulation, thus reducing the experimental cost. 

The algorithm developed in this study can be adjusted depending on the initial value 

and the boundary value of the system. This new model shows that the results obtained 

are satisfying the profile of concentration in the RDC column. After comparing the 

numerical results with the experimental results, this model's relative error was between

0.1% until 9%, which varied due to some stages. In conclusion, the results from the 

new model are closer to the experimental results compared to the older model. The 

algorithm obtained in this study can be used for references in solving the three­

dimensional partial differential equation and this model would help engineers in 

improving the RDC column performance.



ABSTRAK

Turns pengekstrakan cakera berputar (RDC) adalah salah satu peralatan yang 
biasanya digunakan di dalam industri kimia. Turns ini digunakan untuk proses 
pengekstrakan cecair-cecair di mana ia adalah satu kaedah untuk mengasingkan 
sebatian bergantung kepada perbezaan keterlarutan masing-masing. Proses 
pemindahan jisim dalam turns RDC wujud disebabkan oleh pergerakan arus 
bertentangan di antara titisan dan fasa selanjar. Proses pemindahan jisim dalam turus 
RDC ini juga boleh dimodelkan secara matematik. Sebelum ini, proses tersebut 
dimodelkan dengan beranggapan bahawa titisan adalah berbentuk sfera. Setelah 
mengambil kira kajian yang telah dilakukan terhadap taburan titisan dan ciri-ciri turus, 
titisan lebih berbentuk kepada sferoid berbanding sfera. Oleh itu, model pemindahan 
jisim baharu dalam turus RDC telah dicadangkan. Model baharu ini dihasilkan dengan 
menganggap bahawa titisan adalah berbentuk sferoid bujur menegak daripada bujur 
melintang berdasarkan kepada ciri-ciri turus. Proses pemindahan jisim untuk sferoid 
bujur ini ditentukan menggunakan hukum kedua Fick pada koordinat Cartes untuk 
meramalkan resapan bagi bentuk segi empat tepat. Dengan menggunakan persamaan 
penjelmaan yang sesuai, satu persamaan pembezaan separa tiga dimensi diperoleh. 
Namun, daripada menyelesaikan hukum kedua Fick secara analitis, pendekatan 
berangka telah digunakan. Dalam kajian ini, kaedah perbezaan terhingga (FDM) telah 
dipilih. Oleh kerana FDM merupakan salah satu kaedah yang selalu digunakan oleh 
jurutera dalam menyelesaikan masalah permodelan, algoritma bagi persamaan 
pembezaan separa tiga dimensi ini akan membantu jurutera untuk meningkatkan 
kebolehan turus RDC melalui simulasi sahaja sekaligus mengurangkan kos 
eksperimen. Algoritma yang dihasilkan dalam kajian ini boleh dilaraskan bergantung 
kepada nilai awal dan nilai sempadan sistem tersebut. Model baharu ini menunjukkan 
bahawa keputusan yang diperoleh memenuhi profil kepekatan titisan di dalam turus 
RDC. Selepas membandingkan keputusan berangka dengan keputusan eksperimen, 
ralat relatif model ini adalah di antara 0.1% hingga 9% bergantung kepada tahap 
tertentu. Kesimpulannya, keputusan dari model baharu ini lebih menghampiri 
keputusan eksperimen berbanding dengan model yang lama. Algoritma yang diperoleh 
dalam kajian ini boleh digunakan sebagai rujukan dalam menyelesaikan persamaan 
pembezaan separa tiga dimensi dan model ini akan membantu jurutera dalam 
menambahbaikkan prestasi turus RDC.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Liquid-liquid extraction has become an important subject of discussion among 

engineers and mathematicians. Liquid-liquid extraction is a method to separate 

compounds based on their differences in insolubility. This extraction process is 

commonly used in the food industry, for example, the extraction of coffee with water 

in the production of instant coffee, and the process of perfume manufacturing; even 

biodiesel production (Assmann et al., 2013; Mustafa & Turner, 2011; Rezaee et al., 

2010; Todd, 2014). Mathematical modelling commonly employed in this type of 

separation process is mass transfer model, which is important in determining the 

optimum concentration that has been absorbed by the substance. This mathematical 

model helps in determining the mass transfer process simply by using simulation only, 

thus concentration of a substance can be determined without needing manual 

measurement.

This mathematical modelling on mass transfer is usually applied with the use 

of an extraction machine. In order to determine the efficiency of the machine, a 

simulation is done, which can be used to improve the machine. Accurate design of the 

extraction column is important; sometimes, it requires experiment at a pilot-plant scale, 

which is expensive. By introducing accurate model of the mass transfer process, total 

cost can be reduced due to no requirement of the pilot-plant scale. In this study, the 

machine taken into consideration is a rotating disc contactor (RDC) column with a 

chemical system of cumene/isobutyric acid/water. This is one of the extraction
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equipment commonly used on a huge scale liquid-liquid extraction process in the 

industry (Aiffah et al., 2014; Attarakih et al., 2013; Ismail et al., 2015). Firstly, the 

whole column is filled with continuous phase. Then, the drops are dispersed by the 

disperser located at the bottom of the column. Due to difference in density, the drops 

float up to the end of the column, while the continuous phase flows down to the bottom 

of the column. This movement is known as countercurrent motion (Fakhrhoseini et al., 

2013; Shehata et al., 2011).

Previous researchers such as Ford Versypt & Braatz (2014), Ismail et al. 

(2014), Kadam et al. (2009), Maan (2005), Mohamed Nor (2000), Shehata et al. 

(2011), and Talib (1994) modelled the mass transfer process inside the column based 

on the diffusion of a sphere, where the drops were assumed to be spherical. The 

diffusion equation of the sphere was as given by Crank (1999). The analytical solution 

for the diffusion equation was then published, and a lot of modifications have been 

developed ever since.

These days, most researchers have turned their focus from heat and mass 

transfer from a sphere to flowing continuous phase, due to its wide range of scientific 

and industrial applications. However, according to Juncu (2010), in many applications, 

the particle have shapes that are closer to spheroidal rather than spherical. Despite this 

fact, less attention is given to the transport phenomena around spheroids.

For example, in this study, due to the RDC column properties, the continuous 

phase, which has a higher density, enters the column from the top of the column, and 

then flows downwards before it exits through the bottom of the column. Meanwhile, 

the disperse phase, which has a lower density, is dispersed through a disperser at the 

bottom of the column, and then floats upward in the continuous phase due to different 

density. This movement in the RDC column is called counter current motion.
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Due to this motion, drag force, which acts oppositely to the direction of the 

oncoming flow velocity, occurs, as stated by Liu et al (2019). The drag force drags the 

surface of the drops and elongates it into the shape of spheroidal instead. The drops 

size distribution is influenced by several factors, such as the liquid density, viscosity, 

and surface tension. Peng et al (2019) cited that liquid viscosity and surface tension 

are two parameters that affect the fluid dynamics in a column. Jildeh et al (2013) 

proposed a study on drops coalescence model in the RDC column. Instead of drops 

breaking, they suggested that the drops should collide and remain in contact for 

sufficient time, so that the process of film drainage, film rupture, and coalescence, can 

occur. Here, the possibility of the drops to be dragged into a prolate spheroidal shape 

is higher. Thus, this study is proposed, with assumption that the drops are to be in 

prolate spheroidal shape instead.

Experiments on mean drop size and drop size distribution in a liquid-liquid 

extractor had been done by Jildeh et al. (2013), Hemmati et al. (2015), Schmidt et al. 

(2006) and Hosseinzadeh et al. (2018). However, they assumed the drops were 

spherical, despite some pictures taken showing that the drops were spheroidal. 

Therefore, by considering spheroidal shape being more legit, a new model of mass 

transfer process in the RDC column was then proposed (Favelukis & Ly, 2005; V. A. 

B. Oliveira & Lima, 2002).

In the previous study of the mass transfer process in the RDC column, the drops 

were assumed to be spherical. It means that the drops have the same radius from the 

center to the surface of the drops. Thus, the rate of diffusion for the drops are constant 

at all surface leads to the constant concentration on the whole drops. However, even 

from the previous study, there are proofs that the drops are in spheroidal shape instead. 

In RDC column, the drops are taking the prolate spheroidal shape where the distance 

from the center to the surface of the drops varies. Thus, the rate of diffusion is different 

and the concentration at each surface also different. This is the major difference 

between the spherical and the spheroidal drops.
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A number of researchers had presented the analytical solution of mass transfer 

process in prolate spheroidal drops. On the contrary, for this study, a numerical 

approach had been used. A method known as the finite difference method (FDM) was 

implemented into the improved mass transfer model (Abadie & Chamorro, 2013; 

Duffy, 2013; Mish, 2016). An algorithm for this simulation had been presented. From 

engineering point of view, this method is more accessible and more practical since, 

researchers can manipulate the information quickly. Afterward, the stability of this 

numerical approach was tested. A constraint equation was presented after multiple 

tests of stability for different sizes of drops.

In order to determine the reliability of this FDM, this method had been 

implemented on the existing model, where the drops were assumed to be spherical. 

Another algorithm was evaluated as well, whose results obtained from simulation had 

been used in the comparison of data with those of prolate spheroidal.

1.2. Statement of Problem

A lot of modifications have been done to improve the performance of the RDC 

column, whether by the physical properties of the system, or the geometrical properties 

of the column itself. The most popular study is the mass transfer process that occurs 

inside the column. This is because the mass transfer process affects the performance 

of the column directly. Therefore, a model to help the engineers in adjusting the 

column’s input whenever they need to has been developed, covering the transfer rate, 

the dispersed phase rate, the size of the disperser, etc.

Even with alterations by several researchers in this field, there is always room 

for improvement for the designated mathematical model. According to a previous
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research, the drops dispersed into this column are assumed to be spherical; therefore, 

the approach of diffusion equation for sphere is used in this mass transfer model.

However, the continuous phase in the RDC column moves downward through 

the inlet at the top of the column, and the drops are dispersed by disperser at the bottom 

of the column. The two liquids are brought into contact with each other, in which the 

frictional drag of the continuous phase will make it impossible for the drops to maintain 

their spherical shape. Therefore, a new assumption for the shape of the drop had been 

taken into consideration in order to develop mass transfer model in the RDC column.

In order to solve this problem, the drop is assumed to be a prolate spherical 

shape instead, and Fick's second law will be used. Instead of solving this problem 

analytically, numerical approach will be used. Then, finite difference method (FDM) 

is implemented into the initial boundary value problem (IBVP). Next, the stability of 

this numerical approach is determined to find the effect of step size on the process. 

Therefore, these are the research questions that need to be answered :

1. How to develop an improved mass transfer model for a single drop based on 

the concept of diffusion in prolate spheroidal drops and molarity?

2. How to develop an improved mass transfer model of multiple drops in the RDC 

column?

3. How to solve the two models?

4. How to validate the modified model?
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1.3 Objectives of Study

1. To develop an improved mass transfer model for single drop based on the 

concept of diffusion in prolate spheroidal drops.

2. To develop an improved mass transfer model of multiple drops in the RDC 

column based on the developed model (from objective No 1) with 

consideration of the molarity of both phases.

3. To solve the two models by using finite difference method.

4. To validate the improved model by applying numerical approach to the existing 

mass transfer model.

1.4 Scope of the Study

In this study, the rotating disc contactor (RDC) column with height of 1.75m 

had been used. Previously, RDC column was usually modelled into 23 stages, while 

in this study, the column is divided into partitions, where the number of partitions are 

the same as the time step size, n t . The time steps vary, depending on the simulation 

being done. The partitions are set equal to the number of stages. For example, if  the 

number of time steps, nt chosen is 100, then the partitions are divided by 25. It is 

because, stage 0 is between the bottom of the column and the first stator ring, while 

stage 24 is between the 24th stator ring and the top of the column. Thus, there are 25 

stages overall. The partitions are divided into 25 to ease selecting which concentration 

of drops to be compared with the experimental data.

The chemical system used for the RDC column is a cumene/isobutyric 

acid/water. The physical properties of the column are given in Appendix A. This study 

focuses on developing a numerical scheme and algorithm in finding the total 

concentration of a prolate spheroidal drop. This algorithm is then used to develop a
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complete model for the mass transfer process in the RDC column, which involves 

multiple drops with various sizes, and a new algorithm will be developed.

In the RDC column, the whole column is assumed to be divided into 23 same 

size stages. Stage 1 is located in between the first and the second stator ring while stage

2 located in between the second and the third stator ring. The sequence continues till 

the stage 23 which is located between 23rd and 24th stator ring.

Continuous phase inlet Drop phase

Stage outlet

Stage 3

Stage 2 •  C„„

Stage 1

Stage 0

Continuous phase 

outletDisperser

Figure 1.1 : Mapping of the process in the RDC column
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The drops are dispersed into stage 0, located before the stage 1 which starts 

from the bottom of the column till the first stator ring. Here, the concentration of drops 

are assumed as Cin and the drops moves up to stage 1. With the initial concentration 

Cin, the new concentration for drops in stage 1, Q ,i(J is obtained after diffusing from

the concentration of dispersed phase which already filled the whole column and exited 

through the outlet at the bottom of the column. This new concentration becomes the 

new initial concentration for drop in stage 2. This process continues for all the drops 

and finally, the drops coalescence at the end (top) of the column, stage 24, located 

between 24th stator ring and the top of the column. It finally exited through the heavy 

phase outlet located at the top of the column. This process is shown in Figure 1.1 given 

below. Further explanation is given in Chapter 4.

1.5 Methodology

In order to determine the concentration of a prolate spheroidal drop, the Fick's 

second law in Cartesian coordinates is used. This equation is said to be the most 

appropriate equation to predict the mass transfer in bodies with a rectangular shape. 

With suitable transformation, which in this case is the prolate spheroidal coordinate 

system, the mass transfer process for the prolate spheroid dal drop can be determined.

After completing the transformation of the equation, a three-dimensional 

partial differential equation is obtained. It involves time, radius of the drops, and angle 

of rotation that generates the body of the prolate spheroidal. This equation is used to 

determine the concentration of prolate spheroidal drops with the most suitable initial 

and boundary value. However, instead of solving this equation analytically, a 

numerical approach is used.
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The numerical approach taken into consideration in this study is finite 

difference method (FDM). This method discretises the cross-section of the drops into 

a mesh grid. Thus, each layer of the drops, from the center to the surface concentration 

of the drops, can be calculated. However, in this case, only the surface concentration 

of drops is considered. This method is frequently used to solve differential equations 

by replacing the derivatives in the equation with differential quotients. The domain is 

partitioned in space and in time, and approximations of the solution are computed at 

the space and time points.

Numerical method is a method to solve mathematical modelling which 

involves partial differential equation. One of the commonly used methods is finite 

difference method, usually to obtain numerical solution for a PDE. Zhang & Guo 

(2018) applied finite difference method into fractional diffusion equation. Gelu et al. 

(2017) applied a sixth order compact finite difference method into a ID reaction 

diffusion problem. Prieto et al. (2011) described how generalized finite difference 

method is used to solve the advection-diffusion equation. Martin-Vaquero & 

Sajavicius (2019) explained a two-level finite difference scheme for heat equation with 

nonlocal initial conditions. Malek & Momeni-Masuleh (2008) solved a novel 

microscopic heat evacuation by using mixed-collocation finite difference method in 

and on the boundaries of a particle when the thickness was much smaller than both the 

length and width. Recktenwald (2014) applied a finite difference approximation into a 

heat equation.

The application of finite difference method into partial differential equation of 

diffusion/heat equations by all the above mentioned researchers has inspired this 

research to use the same method in solving the diffusion equation of prolate spheroidal 

drops in RDC column.
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CHAPTER 3
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Figure 1.2 : The flow chart of the project.



The molarity of the concentration for both phases has also been taken into 

consideration. First, the total concentration of drops is calculated by using molarity. 

Once the total concentration is obtained, the balance concentration for the continuous 

phase is calculated. In order to determine the balance concentration of the continuous 

phase inside the column, molar concentration concept is used. The comparison 

between the numerical results and the experimental results is done since there is no 

numeric results obtained from the previous study. Most of the researchers presented 

their results using graph. The profile of this graph is used as well. The flow of this 

project is as expressed in Figure 1.2.

1.6 Significant of Study

RDC column is widely used in industry, as part of large scale extraction 

process. It is tedious for engineers to check each machine manually. This study is 

aimed to contribute significantly in the form of algorithms, which is hoped able to help 

engineers in increasing the capability of the machine only by simulation, thus reducing 

experimental cost. The results of this study indicate that these algorithms are able to 

calculate the mass transfer process for prolate spheroidal drops in the RDC column. 

This shall also be future reference for diffusion equation for prolate spheroidal drops 

and the application for the mass transfer process in RDC column.

1.7 Thesis Organization

Chapter 2 presents literature review of the RDC column and the liquid-liquid 

process in general. Mass transfer process that occurs in the column will also be 

discussed thoroughly. Previous researches on mass transfer and finite difference
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method are deliberated as well. These reviews have been used in developing the 

modified mass transfer model, which will be discussed in Chapter 3.

Chapter 3 gives the formulation of the diffusion equation for the prolate 

spheroidal drops, which is the main purpose of this study. In this method, FDM is 

applied to the partial differential published by using Fick's second law. This equation 

is used to determine the concentration of drops in the stagnant medium for some time. 

The solution for different sizes of drops is also presented, along with analysis on the 

stability of this model.

Chapter 4 entails the solution for multiple drops in the RDC column. Mass 

transfer by using molarity will be discussed thoroughly, followed by explanation on 

tests of different step sizes for all spaces and time steps, to choose which one is the 

most suitable choice for the RDC column.

Chapter 5 explains the application of FDM into the mass transfer process for 

the spherical drops. This is to validate the modified model developed before. This 

chapter presents comparison of results of this study with the results of the modified 

model. Verification of this method by assuming that a spherical drop is brought in 

contact with a stagnant medium. The concentration at some time is then determined 

before the model of mass transfer in the RDC column is developed by implementation 

of FDM in the diffusion equation.

Chapter 6 presents the results, conclusion, and suggestions for future 

researches; more into two-dimensional diffusion equation, which has not been widely 

explored. Perhaps the analytical solution for this particular differential equation can be 

developed, or another numerical approach that can give better solution can be used.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter explains the application of rotating disc contactor (RDC) column 

in general. The process involved in the RDC column in this study is liquid-liquid 

extraction. Discussion also covers the theoretical concept and mathematical equation 

involved in the RDC column such as hydrodynamics, drops distribution, and general 

form of the mass transfer process. Previous works with regards to mass transfer process 

in RDC column are also discussed. Finally, the application of numerical approach 

involved in this study is explained.

2.2 Rotating Disc Contactor Column

Rotating disc contactor (RDC) column is one of the process columns that is 

used in chemical industry to extract impurities from liquids. This equipment consists 

of a vertical cylindrical vessel, whose length is divided into a number of equally spaced 

compartments by a series of stator rings. In the center of each compartment, there is a 

rotor disc supported by a shaft. In the RDC column, the process involved in the column 

is called solvent extraction, where liquid is brought in contact with another liquid.
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In the column, the drops (lower density liquid) are dispersed through the 

bottom of the column, while the continuous phase (higher density liquid) enters the 

column through the vessel at the top, which is called the counter current principle. Due 

to the difference in their density, the drops will move up inside the continuous phase 

along the column. The rotation of rotor discs may influence the process of extracting 

the two liquids. The column length, compartment height, column diameter, flow speed, 

and rotational speed also affect the droplet size.

One of the phase’s flow rate can be controlled, while the other maximum rate 

will be limited, due to the rate of the first phase and physical properties of the system. 

However, there is still a maximum rate at which the phases can flow through the 

column; once this happens, the column is considered flooded, and the dispersed phase 

is rejected at its point of entry. This will influence the rate of extraction process that 

occurs in the column.

The separation efficiency of this type of extractors is very high compared to 

the mixer settler. There are several important factors that need to be considered when 

selecting extractor types, such as the stage requirements, fluid properties, and 

operational considerations. Table 2.1 summarizes the abilities and characteristics of 

different extractor-types.

The column contactors performance is more efficient and gives better 

operational flexibility compared to non-agitated column type.

The rotating disc contactor (RDC) column, schematically shown in Figure 2.1, 

was developed in Europe by Reman in 1951. They used the shearing action of a rapidly 

rotating disc to interdisperse the phases. Since then, RDC contactors have been widely 

used in large scale liquid-liquid extraction in industry, particularly in the petroleum 

and petrochemical industries because of their high throughput, low investment, as well
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