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ABSTRACT 

Excessive amount of phosphate (PO4
3−) released from sewage treatment plant 

effluent (STPE) may trigger eutrophication of water causing degradation of aquatic 

ecosystem and human health. Even though the presence of PO4
3− ions in aqueous 

solution can be removed using adsorption techniques, detailed description of 

adsorption kinetics is still not fully understood. In this study, the isotherm and kinetic 

adsorption of PO4
3− from aqueous solution onto porous material were conducted in 

batch experiments. A typical design of the hybrid plug flow column reactor (HPFCR) 

was used to remove PO4
3− from STPE. The kinetic models (i.e., pseudo-first-order 

(PFO) and pseudo-second-order (PSO)) and the isotherm models (i.e., Freundlich and 

Langmuir) were used to determine the adsorption kinetics and isotherms of PO4
3− from 

STPE onto waste mussel shell (WMS) and iron-coated waste mussel shell (ICWMS) 

adsorbents. The empirical models of bed depth service time (BDST), Thomas, and 

modified mass transfer factor (MMTF) were used to describe the adsorption kinetic 

processes of PO4
3− of WMS and ICWMS applied in the HPFCR. The experimental 

data for the adsorption of PO4
3− onto both WMS and ICWMS adsorbents fitted very 

well with the PSO kinetic model and Freundlich isotherm model, respectively. The 

dynamic adsorption capacity of WMS and ICWMS described by the BDST model has 

shown to increase with increase in the plug flow column (PFC) depth. The 

hydrodynamic behavior of PO4
3− global mass transfer can be described using the 

Thomas models for predicting the PFC performance. Employing the MMTF models 

enabled differentiation between the behavior of film mass transfer and porous 

diffusion. The resistance of PO4
3− mass transfer is dependent on porous diffusion and 

this contributes to the development of advanced WMS and ICWMS adsorbents in 

enhancing the performance of the HPFCR system in the future. 
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ABSTRAK 

Jumlah fosfat (PO4
3−) berlebihan yang dilepaskan daripada efluen loji rawatan 

kumbahan (STPE) boleh menyebabkan eutrofikasi air lalu menyebabkan kemerosotan 

ekosistem air dan kesihatan manusia. Walaupun kehadiran ion PO4
3− dalam larutan 

akueus boleh disingkirkan menggunakan teknik penjerapan, keterangan terperinci 

kinetik penjerapan masih tidak difahami sepenuhnya. Dalam kajian ini, isoterma dan 

kinetik penjerapan PO4
3− daripada larutan akueus ke atas bahan berliang telah 

dijalankan dalam eksperimen kelompok. Reka bentuk tipikal reaktor turus aliran palam 

hibrid (HPFCR) digunakan untuk menyingkirkan PO4
3− daripada STPE. Model-model 

kinetik (iaitu, tertib pertama pseudo (PFO) dan tertib kedua pseudo (PSO)) dan model-

model isoterma (iaitu, Freundlich and Langmuir) digunakan untuk menentukan kinetik 

dan isoterma penjerapan PO4
3− daripada STPE ke atas bahan penyerap daripada sisa 

cangkerang kupang (WMS) dan sisa cangkerang kupang bersalut ferum (ICWMS). 

Model-model empirik seperti masa penggunaan kedalaman lapisan (BDST), Thomas, 

dan faktor pindahan jisim terubahsuai (MMTF) digunakan untuk menggambarkan 

proses kinetik penjerapan dan penyingkiran PO4
3− daripada STPE ke atas bahan 

penjerap daripada WMS dan ICWMS yang digunakan dalam HPFCR. Data 

eksperimen bagi penjerapan PO4
3− ke atas bahan penjerap daripada WMS dan ICWMS 

masing-masing sangat sepadan dengan model kinetik PSO dan model isoterma 

Freundlich. Keupayaan penjerapan dinamik WMS dan ICWMS digambarkan oleh 

model BDST yang didapati meningkat dengan peningkatan turus aliran palam (PFC). 

Kelakuan hidrodinamik pindahan jisim global PO4
3− boleh diterangkan dengan 

menggunakan model Thomas untuk meramalkan prestasi PFC. Penggunaan model 

MMTF dapat menerangkan perbezaan sebenar antara kelakuan pindahan jisim filem 

dan peresapan berliang. Kerintangan pindahan jisim PO4
3− adalah bersandarkan pada 

peresapan berliang dan ini menyumbang kepada pembangunan bahan penjerapan 

termaju WMS dan ICWMS dalam meningkatkan prestasi sistem HPFCR pada masa 

akan datang. 

  



viii 

TABLE OF CONTENTS 

 TITLE PAGE 

 

DECLARATION iii 

DEDICATION iv 

ACKNOWLEDGEMENT v 

ABSTRACT vi 

ABSTRAK vii 

TABLE OF CONTENTS viii 

LIST OF TABLES xii 

LIST OF FIGURES xiv 

LIST OF ABBREVIATIONS xviii 

LIST OF SYMBOLS xx 

LIST OF APPENDICES xxii 

1.1 Background 1 

1.2 Problem Statement 5 

1.3 Objectives 6 

1.4 Scope of The Study 7 

1.5 Significance of The Study 8 

1.6 Thesis Organization 8 

2.1 Introduction 11 

2.2 Chemistry of Phosphorus 11 

2.3 Constituents of Concern in Sewage Treatment 12 

2.4 Phosphorus in Waters 15 

2.5 Regulations 16 

2.6 Phosphorus Removal Processes 18 

2.7 Adsorption 19 



ix 

2.7.1 Basic Concepts and Definitions 19 

2.7.2 Adsorption Mechanisms 21 

2.7.3 Adsorbents Derived from Waste Shell 22 

2.7.3.1 Waste Egg Shell 24 

2.7.3.2 Waste Oyster Shell 25 

2.7.3.3 Waste Cockle Shell 26 

2.7.3.4 Waste Mussel Shell 26 

2.8 Adsorption Kinetics and Isotherms 28 

2.8.1 Adsorption Kinetics Models 28 

2.8.2 Adsorption Isotherms Models 33 

2.9 Empirical Adsorption Models 38 

2.9.1 Bed Depth Service Time Models 38 

2.9.2 Thomas Models 39 

2.9.3 Modified Mass Transfer Factor Models 40 

2.10 Summary 47 

3.1 Introduction 49 

3.2 Experiments for the Adsorption of PO4
3− 51 

3.2.1 Adsorbents 51 

3.2.2 Synthetic Solutions 53 

3.2.3 Analytical Methods 53 

3.2.4 Sewage Treatment Plant Effluent 55 

3.2.5 Batch Experiments 56 

3.2.6 Hybrid Plug-flow Column Reactor 58 

3.2.6.1 Experimental Set Up 58 

3.2.6.2 Operation Procedure of Hybrid Plug-

flow Column Reactor  60 

3.3 Summary 62 

4.1 Introduction 63 

4.2 Adsorption of PO4
3− onto Waste Mussel Shell 63 



x 

4.2.1 Physical and Chemical Characteristics of the 

Waste Mussel Shell 63 

4.2.2 Adsorption of PO4
3− onto Waste Mussel Shell 

from Synthetic Solution 68 

4.2.3 Adsorption of PO4
3− onto Waste Mussel Shell 

from Sewage Treatment Plant Effluent 70 

4.2.4 Adsorption Kinetics of PO4
3− onto Waste 

Mussel Shell 72 

4.2.5 Adsorption Isotherms of PO4
3− onto Waste 

Mussel Shell 77 

4.3 Adsorption of PO4
3− onto Iron-coated Waste Mussel 

Shell 81 

4.3.1 Physical and Chemical Characteristics of the 

Iron-coated Waste Mussel Shell 81 

4.3.2 Adsorption of PO4
3− onto Iron-coated Waste 

Mussel Shell from Synthetic Solution 85 

4.3.3 Adsorption of PO4
3− onto Iron-coated Waste 

Mussel Shell from Sewage Treatment Plant 

Effluent 87 

4.3.4 Adsorption Kinetics of PO4
3−onto Iron-coated 

Waste Mussel Shell 89 

4.3.5 Adsorption Isotherms of PO4
3−onto Iron-coated 

Waste Mussel Shell 93 

4.4 Summary 97 

5.1 Introduction 99 

5.2 Application of the Bed Depth Service Time Models 99 

5.2.1 Analysis of the PO4
3− Adsorption onto Waste 

Mussel Shell 100 

5.2.2 Analysis of the PO4
3− Adsorption onto Iron-

coated Waste Mussel Shell 102 

5.3 Application of the Thomas models 104 

5.3.1 Analysis of the PO4
3− Adsorption onto Waste 

Mussel Shell 104 

5.3.2 Analysis of the PO4
3− Adsorption onto Iron-

coated Waste Mussel Shell 106 



xi 

5.4 Application of the Modified Mass Transfer Factor 

Models 108 

5.4.1 Analysis of the PO4
3− Adsorption onto Waste 

Mussel Shell 108 

5.4.2 Resistance of Mass Transfer for the Adsorption 

of PO4
3− onto Waste Mussel Shell 110 

5.4.3 Analysis of the PO4
3− Adsorption onto Iron-

coated Waste Mussel Shell 116 

5.4.4 Resistance of Mass Transfer for the Adsorption 

of PO4
3− onto Iron-coated Waste Mussel Shell 117 

5.5 Summary 123 

6.1 Conclusions 125 

6.2 Recommendations 126 

REFERENCES 129 

APPENDIX 149 
 

LIST OF PUBLICATIONS 166 

 

  



xii 

LIST OF TABLES 

TABLE NO. TITLE PAGE 

Table 2.1 Constituents of concern in wastewater (Malik et al., 2019; 

Metcalf and Eddy, 2012)  13 

Table 2.2 Effluent standards according to the Malaysia 

Environmental Quality (Sewage) Regulations 2009 17 

Table 2.3 Effluent standards enacted by the USEPA and the EU 

Wastewater Directive 17 

Table 2.4 Comparison of adsorption kinetics parameters of PO4
3− 

removal 31 

Table 2.5 Comparison of adsorption isotherm parameters of PO4
3− 

removal 36 

Table 3.1 Analytical methods applied for the experiments 54 

Table 3.2 The instrument analysis for the material of WMS and 

ICWMS 55 

Table 3.3 Operating conditions of the HPFCR for the removal of 

PO4
3– from STPE 61 

Table 3.4 Amount of adsorbents filled in PFC 61 

Table 4.1 The chemical composition of WMS (wt.%) from different 

countries 64 

Table 4.2 FTIR spectral characteristics of the WMS material before 

and after adsorption of PO4
3– ions 68 

Table 4.3 Kinetic parameters obtained from the PFO and PSO models 

for the adsorption of PO4
3− onto WMS from synthetic 

solution and STPE 77 

Table 4.4 The parameters n, KF, qmax and KL for the adsorption of 

PO4
3− onto WMS from synthetic solution and STPE 78 

Table 4.5 The chemical composition of ICWMS (wt.%) analyzed by 

the EDXRF Spectrometer 81 

Table 4.6 FTIR spectral characteristics of ICWMS material observed 

before and after the adsorption of PO4
3– ions 85 

Table 4.7 Kinetic parameters obtained from the PFO and PSO models 

for the adsorption of PO4
3− onto ICWMS from synthetic 

solution and STPE 93 



xiii 

Table 4.8 The parameters n, KF, qmax and KL for the adsorption of 

PO4
3− onto ICWMS from synthetic solution and STPE 94 

Table 5.1 The parameters No and Ka calculated using the BDST 

models to describe the adsorption of PO4
3− onto the WMS 

adsorbent 102 

Table 5.2 The parameters No and Ka calculated using the BDST 

models to describe the adsorption of PO4
3− onto the 

ICWMS adsorbent 103 

Table 5.3 The parameters KT and qo calculated using the Thomas 

models to describe the adsorption of PO4
3− onto the WMS 

adsorbent 106 

Table 5.4 The parameters KT and qo calculated using the Thomas 

models to describe the adsorption of PO4
3− onto the 

ICWMS adsorbent 108 

Table 5.5 The parameters 𝛽 and B calculated using the MMTF models 

to describe the kinetic behaviors of PO4
3− adsorption onto 

WMS adsorbent 110 

Table 5.6 The parameters 𝛽 and B calculated using the MMTF models 

to describe the kinetic behaviors of PO4
3− adsorption onto 

ICWMS adsorbent 117 

  

 

 

 

  



xiv 

LIST OF FIGURES 

FIGURE NO. TITLE PAGE 

Figure 2.1 Diagram of the influence of pH on the distribution of 

orthophosphate species in solution (Chen et al., 2018; 

Karageorgiou et al., 2007) 12 

Figure 2.2 Eutrophication from PO4
3− contamination (Zhang et al., 

2017) 15 

Figure 2.3 Fish kill as a result of eutrophication (Nancharaiah et al., 

2016) 16 

Figure 2.4 Diagram of physical and chemical adsorption 20 

Figure 2.5 Distinction between physical and chemical adsorption 21 

Figure 2.6 Transportation of solute onto an adsorbent 22 

Figure 2.7 Types of waste shell 24 

Figure 2.8 Diagram of the flowing model 42 

Figure 3.1 Flowchart of framework of the study 50 

Figure 3.2 Images of (a) WMS adsorbent and (b) ICWMS adsorbent 

used in batch and column experiments 52 

Figure 3.3 Waste mussel shell dumped on the riverbank at Kampung 

Pasir Puteh, Pasir Gudang, in Johor state of Malaysia 52 

Figure 3.4 Sewage treatment plant at Taman Sri Pulai, Johor,  

Malaysia 56 

Figure 3.5 The experimental setup for laboratory-scale of HPFCR 

system 59 

Figure 3.6 Schematic of hybrid plug flow column reactor with (1) 

storing tank, (2) perforated acrylic fleet with a hole 

diameter of 2 mm, (3) sand filter, (4) silicon tube, (5) 

peristaltic pump, (6) plug flow columns, and (7) sampling 

bottles 60 

Figure 4.1 SEM images of the WMS material with the magnification 

of (a) 1500 times, (b) 6000 times, and (c) 10000 times 65 

Figure 4.2 XRD pattern of the WMS material 66 

Figure 4.3 The FTIR spectra of the WMS material of before and after 

PO4
3– adsorption 67 



xv 

Figure 4.4 Variations of removal efficiency for the adsorption of PO4
3− 

onto WMS from a synthetic solution 69 

Figure 4.5 Relationship of: (dashed line) the removal efficiency and 

the amount of WMS (solid line) the adsorption capacity and 

the amount of WMS; (a) E for the adsorption of PO4
3– and 

(b) q for the adsorption of PO4
3– onto WMS from a synthetic 

solution 70 

Figure 4.6 Variations of removal efficiency for the adsorption of PO4
3– 

onto WMS from STPE 71 

Figure 4.7 Relationship of: (dashed line) the removal efficiency and 

the amount of WMS (solid line) the adsorption capacity and 

the amount of WMS; (a) E for the adsorption of PO4
3– and 

(b) q for the adsorption of PO4
3– onto WMS from STPE 72 

Figure 4.8 Linear regression analysis for the adsorption of PO4
3− onto 

WMS from a synthetic solution using (a) PFO model and 

(b) PSO model 75 

Figure 4.9 Linear regression analysis for the adsorption of PO4
3− onto 

WMS from STPE using (a) PFO model and  

(b) PSO model 76 

Figure 4.10 Linear line of plotting (a) ln(qe) versus ln(Ce) and (b) 1/qe 

versus 1/Ce for the adsorption of PO4
3– onto WMS from a 

synthetic solution 79 

Figure 4.11 Linear line of plotting (a) ln(qe) versus ln(Ce) and (b) 1/qe 

versus 1/Ce for the adsorption of PO4
3– onto WMS from 

STPE 80 

Figure 4.12 SEM images of the ICWMS material with the 

magnification of (a) 1500 times, (b) 6000 times, and (c) 

10000 times 82 

Figure 4.13 XRD pattern of the ICWMS material 83 

Figure 4.14 The FTIR spectra of ICWMS material observed before and 

after the adsorption of PO4
3− ions 84 

Figure 4.15 Variations of removal efficiency for the adsorption of PO4
3− 

onto ICWMS from a synthetic solution 86 

Figure 4.16 Relationship of: (dashed line) the removal efficiency and 

the amount of ICWMS (solid line) the adsorption capacity 

and the amount of ICWMS; (a) E for the adsorption of 

PO4
3− and (b) q for the adsorption of PO4

3–  onto ICWMS 

from a synthetic solution 87 

Figure 4.17 Variations of removal efficiency for the adsorption of PO4
3− 

onto ICWMS from STPE 88 



xvi 

Figure 4.18 Relationship of: (dashed line) the removal efficiency and 

the amount of ICWMS (solid line) the adsorption capacity 

and the amount of ICWMS; (a) E for the adsorption of 

PO4
3− and (b) q for the adsorption of PO4

3– onto ICWMS 

from STPE 89 

Figure 4.19 Linear regression analysis for the adsorption of PO4
3− onto 

ICWMS from a synthetic solution using (a) PFO model and 

(b) PSO model 91 

Figure 4.20 Linear regression analysis for the adsorption of PO4
3− onto 

ICWMS from STPE using (a) PFO model and (b) PSO 

model 92 

Figure 4.21 Linear line of plotting (a) ln(qe) versus ln(Ce) and (b) 1/qe 

versus 1/Ce for the adsorption of PO4
3– onto ICWMS from 

synthetic solution 95 

Figure 4.22 Linear line of plotting (a) ln(qe) versus ln(Ce) and (b) 1/qe 

versus 1/Ce for the adsorption of PO4
3– onto ICWMS from 

STPE 96 

Figure 5.1 Curves of plotting t versus h according to the equation: t = 

a x e(b x h) for the adsorption of PO4
3− onto WMS, with the 

percentage of the PO4
3− breakthrough at: (i) 5%, (ii) 10%, 

(iii) 20%, (iv) 50%, and (v) 90% 101 

Figure 5.2 Curves of plotting t versus h according to the equation t = a 

x e(b x h) for the adsorption of PO4
3− onto ICWMS, with the 

percentage of the PO4
3− breakthrough at: (i) 5%, (ii) 10%, 

(iii) 20%, (iv) 50%, and (v) 90% 103 

Figure 5.3 Curves of plotting ln(Co/Cs - 1) versus t according to the 

equation:  ln(Co/Cs – 1) = − c x t + d for the adsorption of 

PO4
3− onto WMS adsorbent at the various depths of PFC, 

with (i) h = 3 cm, (ii) h = 5 cm, (iii) h = 7 cm, (iv) h = 10 

cm, (v) h = 13 cm, and (vi) h = 16 cm 105 

Figure 5.4 Curves of plotting ln(Co/Cs - 1) versus t according to the 

equation:  ln(Co/Cs – 1) = − c x t + d for the adsorption of 

PO4
3− onto ICWMS adsorbent at the various depths of PFC, 

with (i) h = 3 cm, (ii) h = 5 cm, (iii) h = 7 cm, (iv) h = 10 

cm, (v) h = 13 cm, and (vi) h = 16 cm 107 

Figure 5.5 Curves of plotting ln(q) versus ln(t) for the adsorption of 

PO4
3− onto WMS adsorbent at the various depths of PFC, 

with (i) h = 3 cm, (ii) h = 5 cm, (iii) h = 7 cm, (iv) h = 10 

cm, (v) h = 13 cm, and (vi) h = 16 cm 109 

Figure 5.6 Variations of [kLa]g pursuant to the PO4
3− breakthrough for 

the adsorption of PO4
3− onto WMS adsorbent at the various 

depths of PFC, with the h values of (i) 3 cm, (ii) 5 cm, (iii) 

7 cm, (iv) 10 cm, (v) 13 cm, and (vi) 16 cm 111 



xvii 

Figure 5.7 Variations of [kLa]f ((a-1) total monitoring, (a-2) after 10% 

breakthrough) pursuant to the PO4
3− breakthrough for the 

adsorption of PO4
3− onto WMS adsorbent at the various 

depths of PFC, with the h values of (i) 3 cm, (ii) 5 cm, (iii) 

7 cm, (iv) 10 cm, (v) 13 cm, and (vi) 16 cm 113 

Figure 5.8 Variations of [kLa]d ((a-1) total monitoring, (a-2) after 10% 

breakthrough) pursuant to the PO4
3− breakthrough for the 

adsorption of PO4
3− onto WMS adsorbent at the various 

depths of PFC, with the h values of (i) 3 cm, (ii) 5 cm, (iii) 

7 cm, (iv) 10 cm, (v) 13 cm, and (vi) 16 cm 115 

Figure 5.9 Curves of plotting ln(q) versus ln(t) for the adsorption of 

PO4
3− onto ICWMS adsorbent at the various depths of PFC, 

with (i) h = 3 cm, (ii) h = 5 cm, (iii) h = 7 cm, (iv) h = 10 

cm, (v) h = 13 cm, and (vi) h = 16 cm 116 

Figure 5.10 Variations of [kLa]g pursuant to the PO4
3− breakthrough for 

the adsorption of PO4
3− onto ICWMS adsorbent at the 

various depths of PFC, with the h values of (i) 3 cm, (ii) 5 

cm, (iii) 7 cm, (iv) 10 cm, (v) 13 cm, and (vi) 16 cm 118 

Figure 5.11 Variations of [kLa]f ((a-1) total monitoring, (a-2) after 10% 

breakthrough) pursuant to the PO4
3− breakthrough for the 

adsorption of PO4
3− onto ICWMS adsorbent at the various 

depths of PFC, with the h values of (i) 3 cm, (ii) 5 cm, (iii) 

7 cm, (iv) 10 cm, (v) 13 cm, and (vi) 16 cm. 120 

Figure 5.12 Variations of [kLa]d ((a-1) total monitoring, (a-2) after 10% 

breakthrough) pursuant to the PO4
3− breakthrough for the 

adsorption of PO4
3− onto ICWMS adsorbent at the various 

depths of PFC, with the h values of (i) 3 cm, (ii) 5 cm, (iii) 

7 cm, (iv) 10 cm, (v) 13 cm, and (vi) 16 cm 122 

 

  



xviii 

LIST OF ABBREVIATIONS 

APHA - American Public Health Association 

BDST - Bed Depth Service Time 

BET - Brunauer, Emmett, and Teller 

BOD - Biochemical Oxygen Demand 

COD - Chemical Oxygen Demand 

DO - Dissolve Oxygen 

EDXRF - Energy Dispersive X-Ray Fluorescence 

EU - European Union 

FMT - Film Mass Transfer 

FTIR - Fourier Transform Infrared 

GMT - Global Mass Transfer 

HPFCR - Hybrid Plug Flow Column Reactor 

ICWMS - Iron-coated Waste Mussel Shell 

MMTF - Modified Mass Transfer Factor 

MTF - Mass Transfer Factor 

P - Phosphorus 

PD - Porous Diffusion 

PFC - Plug Flow Column 

PFO - Pseudo-first Order 

PSO - Pseudo-second Order 

SEM - Scanning Electron Microscope 

SF - Sand Filtration 

SS - Suspended Solid 

STP - Sewage Treatment Plant 

STPE - Sewage Treatment Plant Effluent 

USEPA - United States Environmental Protection Agency 

WCS - Waste Cockle Shell 

WES - Waste Egg Shell 

WMS - Waste Mussel Shell 

WOS - Waste Oyster Shell 



xix 

XRD - X-Ray Diffraction 

   

   

   

   

   

   

  



xx 

LIST OF SYMBOLS 

[𝑘L𝑎]d - The internal mass transfer (porous diffusion) factor (h−1) 

[𝑘L𝑎]f - The external (film) mass transfer factor (h−1) 

[𝑘L𝑎]g - The global mass transfer factor (h−1) 

𝐶e - The concentration of the adsorbate in the equilibrium solution (mg 

L−1) 

𝐶f - The concentration of PO4
3– solute in the aqueous solution (mg L−1) 

𝐶i - The initial concentration of PO4
3– solute in the aqueous solution (mg 

L−1) 

𝐶o - The concentration of PO4
3− solute entered the PFC (mg L−1) 

𝐶s - The concentration of PO4
3− solute passed through the PFC (mg L−1) 

𝐹e - The error function (dimensionless) 

𝐾a - The adsorption rate constant (L h−1 mg−1) 

𝐾F - The Freundlich constant (mg g−1) 

𝐾L - The adsorption energy coefficient (L mg−1) 

𝐾T - The kinetic coefficient or the Thomas rate constant (L h−1 mg−1) 

𝑁o - The dynamic adsorption capacity per unit volume of the plug flow 

column (mg L−1) 

𝑅2 - The correlation coefficient 

𝑘1 - Pseudo-first order constant (min–1) 

𝑘2 - Pseudo-second order constant (g mg−1 min−1) 

𝑞e(exp) - The equilibrium amount of adsorbate adsorbed by per unit mass of 

adsorbent obtained from the measurement during the experiments 

(mg g–1) 

𝑞e(theo) - The equilibrium amount of adsorbate adsorbed by per unit mass of 

adsorbent calculated by the model (mg g–1) 

𝑞e - The equilibrium amount of adsorbate adsorbed by per unit mass of 

adsorbent (mg g–1) 

𝑞max - The maximum adsorption capacity of the adsorbent (mg g−1) 

𝑞o - The equilibrium PO4
3− solute uptake per gram of the adsorbent (mg 

g−1) 



xxi 

𝑞t(exp) - The experimental q value obtained from the measurement during 

the experiments (mg g−1) 

𝑞t(theo) - The theoretical q value calculated by the model (mg g–1) 

𝑞t - The amount of adsorbate adsorbed at adsorption time t (mg g–1) 

ℎ - The depth of PFC (cm) 

𝐵 - The potential mass transfer index relating to driving force of the 

PO4
3− mass transfer from bulk water to acceptor sites (mg g−1) 

𝐸 - The removal efficiency (%) 

𝑄 - The volumetric flow rate (L h−1) 

𝑉 - The solution volume (L) 

𝑎 - The retention coefficient relying the speed of solute passed through 

the adsorbent (h cm−1) 

𝑏 - The contact time constant relying to the availability of porous 

surface and acceptor sites (h) 

𝑐 - Constant (h−1) 

𝑑 - Constant (dimensionless) 

𝑚 - The amount of adsorbent (g) 

𝑛 - The heterogeneity factor (dimensionless) 

𝑞 - The cumulative quantity of PO4
3− deposited on the adsorbent (mg 

g−1) 

𝑡 - The service time (h) 

𝑡 - The interval time (min) 

𝑣 - The linear flow rate (cm h−1) 

𝛽 - The absorbate-adsorbent affinity parameter (g h mg−1) 

  



xxii 

LIST OF APPENDICES 

APPENDIX TITLE PAGE 

Appendix A Characterization of STPE 149 

Appendix B Analytical Data of Batch System 150 

Appendix C Analytical Data of HPFCR Treatment System 152 

Appendix D Experimental Breakthrough Curves for the Adsorption of 

PO4
3− at the Various Depths of PFC 158 

Appendix E Research Output 1525 

 

 

 

 

 



 

1 

  

 

 

INTRODUCTION 

1.1 Background 

Since the 20th century, the presence of phosphorus (P) in sewage treatment plant 

effluent (STPE) has received attention due to the realization of its negative impacts on 

receiving waters. In sewage treatment processing, P is a vital nutrient for bacteria 

needed to degrade and biologically stabilize the organic wastes (Nielsen et al., 2019). 

P appears exclusively as condensed phosphates (polyphosphates), and organically 

bound phosphate. Condensed phosphates are used extensively as builders in 

detergents, and organic phosphates are constituents of body waste and food residue 

(Gomes et al., 2016; Naden et al., 2016). The discharge of excessive amount of 

phosphate (PO4
3–) from STPE is of concern as it is one of the key nutrients that have 

the potential to contribute to eutrophication in surface water (Gu et al., 2021).  

Oversupply of PO4
3– release from sewage into an aquatic ecosystem leading to 

the eutrophication, excessive growth of algae, and oxygen depletion may pose serious 

threat to the environment, aquatic life, and human health (Fink et al., 2018).  Briefly, 

the presence of phytoplankton in water surface may utilize the PO4
3– compounds 

causing an excessive algae growth and giving rise to the appearance of cyanobacteria 

(Kakade et al., 2021). Sufficient light and nutrients induced cyanobacteria to release 

the toxic secondary metabolites/cyanotoxins which are responsible for aquatic life 

illnesses and death, including humans via direct contact, inhalation, or ingestion 

(Dwivedi, 2018). The commonly found cyanotoxins are Microcystins, 

Cylindrospermopsin, Anatoxins, Saxitoxins, and Lyngbytoxins (Wang and Wang, 

2018). These toxins are capable of accumulating in water, aquatic plants and the food 

web sequentially. Zooplanktons can accumulate cyanotoxins through phytoplankton 

grazing, which further bioaccumulates to higher trophic organisms such as fish and 

humans (Wang and Wang, 2018). For example, the fish population in Lake Victoria 
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was decreased due to hypoxia and high cyanotoxin accumulation in them (Olokotum 

et al., 2020). The accumulation of toxins in fish affects their growth, development, 

reproduction and causes severe histopathological damages, reducing their survival 

chances (Drobac et al., 2016). Further, these algal mats on water surface decrease light 

penetration and cause hypoxia, which results in flora and fauna death. The severe 

anoxia at the bottom of deep lakes is because of the high respiratory activity of organic 

matter degrading bacteria produced by cyanobacteria. The toxins released from these 

blooms cause several hazards in humans such as headache, sore throat, and diarrhea 

(Szlag et al., 2015). As a result, declined dissolve oxygen (DO) and the released toxins 

cause disturbance in the aquatic food web and harm humans by contact or 

consumption. 

Eutrophication threatens human health and aquatic life. For example, 

eutrophication in Lake Taihu, China has endangered the drinking water supply of 

millions of people in Shanghai (Fink et al., 2018). The discharge of a high amount of  

PO4
3– from domestic wastewater effluent into Lake Izabal, Guatemala stimulated algal 

blooms and killed fish (Obrist-Farner et al., 2019). The city of Toledo, Ohio, United 

States had to shut down the drinking water supply of half a million people due to the 

presence of harmful algal blooms near the intake pipes of the water treatment plant on 

Lake Erie, in North America (Isaac, 2020). The increased amount of PO4
3– inputs from 

residential areas triggered eutrophication in Slim River Lake, Perak, and consequently 

degraded the lake water quality (Aeriyanie et al., 2021). The most severe fish kill event 

occurred in Tebrau River, Johor, due to the presence of harmful algal blooms (Yñiguez 

et al., 2021). 

In order to alleviate eutrophication, the acceptable limits of PO4
3– discharged 

into surface waters have been regulated by the Malaysia Environmental Quality 

(Sewage) Regulations 2009, the United States Environmental Protection Agency 

(USEPA), the European Union (EU) Wastewater Directive, the Swiss Federal Water 

Protection Law (SFWPL) and the China's Water Quality Regulations (CWQR). The 

acceptable limit for PO4
3– concentration according to the Malaysian effluent standards 

is 5 mg L−1. The USEPA permits the PO4
3– concentration of less than 0.8 mg L−1 in the 

effluent and the effluent limit of PO4
3– regulated by the EU Wastewater Directive is 2 
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mg L−1 for every agglomeration with population equivalent of 10,000-100,000 

(Fulazzaky et al., 2014; Kumar et al., 2019). Swiss and China effluent standards allow 

the PO4
3–concentration is set at the level of 0.8 and 0.5 mg L−1, respectively to prevent 

eutrophication (Preisner et al., 2020). It seems that the Malaysian effluent standards 

can tolerate the amount of PO4
3− in effluent up to 5 mg L−1 higher than  EU Wastewater 

Directive, USEPA, Swiss and China effluent standards (Osman et al., 2020; Sabeen et 

al., 2018). This argues that the higher concentration of PO4
3− permitted by the 

Malaysian effluent standards make the operator of sewage treatment plant (STP) less 

sensitive to the eutrophication of aquatic environment. The limit of environmentally 

realistic PO4
3− concentration regulated by the Malaysian Environmental Quality Act 

is required to avoid the eutrophication of water body in Malaysia. 

The various methods of the physical, chemical, and biological processes have 

been proposed for the removal of PO4
3− from an effluent. Using the biological method 

can achieve a high efficiency of PO4
3− removal but it has several types of variables to 

be controlled to ensure optimum performance of the treatment process (Bali and 

Gueddari, 2019; Nagoya et al., 2019). The application of chemical method requires 

the cost of chemical usage in a sewage treatment system (Lalley et al., 2016). The 

combination of biological and chemical processes can allow to protect the 

eutrophication of receiving water from PO4
3− pollution while saving on PO4

3−-sludge 

disposal costs (Tomei et al., 2020) but it is still complicated and expensive. Among all 

these purification methods, adsorption is a promising and attractive method of PO4
3− 

removal from effluent due to the adsorption process may gain popularity for the 

reasons of simplicity of operation and cost effectiveness while the possibility of 

producing secondary pollutant is minimal (De Gisi et al., 2016; Zhang et al., 2019). 

Different types of materials such as activated carbon, laterites, metal oxides, and metal 

sulfate can be used as adsorbents for the removal of inorganic and organic pollutants 

from waters (Fulazzaky et al., 2014; Huang et al., 2017). The promising potential of 

waste mussel shell (WMS) can be proposed for the removal of  PO4
3−  from wastewater 

since the interaction of nanocalcium hydroxide with PO4
3− ions allowing a 

precipitation in the form of value-added hydroxyapatite on the WMS surface may 

increase the adsorption capacity of  PO4
3− compared to activated carbon, laterites, 

metal oxides and metal sulfate (Khan et al., 2020). In addition, the calcium oxide 
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content of the WMS adsorbent has exhibited promising performance for the adsorption 

of PO4
3− ions from water (Barbachi et al., 2019; Romar-Gasalla et al., 2016). 

In Malaysia, about 1,800 metric tonnes per year of WMS are produced from 

food industry and dumped into landfills; approximately 500 metric tonnes of WMS in 

Malaysia are used for fertilizers and handicrafts while the remainder (1,300 metric 

tonnes) constitutes a serious solid waste problem (Sainudin et al., 2019). Scientific 

optimism and societal concerns of using the WMS as an alternative low-cost adsorbent 

for the removal of PO4
3− needs to be scrutinized due to it is abundantly produced in 

Malaysia with no economical value. The modification of calcined mussel shell powder 

decorated with surfactants has been proposed to improve the oil-cleaning and antistatic 

properties that offer a green solution to reduce the environmental pressures (Wei et al., 

2018). The addition of powdered WMS into an activated sludge process can increase 

the removal efficiency of heavy metals enabling the formation of heavier activated 

sludge flocs to enhance the settling properties of activated sludge (Papadimitriou et 

al., 2017).The practical application of the WMS adsorbent has been investigated by 

using the calcined mussel shells for the removal of basic fuchsin dye (El Haddad, 

2016) and by using the mussel-inspired Fe3O4@Polydopamine(PDA)-MoS2 core-shell 

nanosphere for the removal of Pb2+ from aqueous solutions (Wang et al., 2019). The 

adsorption isotherm of PO4
3− onto WMS has been investigated following the Langmuir 

model for a short contact time and the Freundlich model for the longer batch and 

column contact times (Paradelo et al., 2016). 

Many recent studies have been focused on the interpretation of adsorption 

kinetic and isotherm models to understand the mechanism of PO4
3− adsorption onto 

the various types of adsorbents, but these models are limited to the batch experiments 

(Fulazzaky et al., 2019; Khan et al., 2020; Paradelo et al., 2016). Two types of 

empirical adsorption models of such as the bed depth service time (BDST) and Thomas 

have been broadly used for predicting the breakthrough curves of adsorption process 

in continuous mode of operation (Charola et al., 2018; Rout et al., 2017; Wang et al., 

2016). The BDST models can be used to determine the effect of various operating 

variables on the performance of adsorbent to remove the PO4
3– ions from aqueous 

solution. However, the dispersion of PO4
3– caused by mass transfer resistance is 
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negligible during the adsorption process (Pember et al., 2016). The Thomas models 

assume the kinetic process of PO4
3– adsorption onto adsorbent from aqueous solution 

needs to follow the adsorption-desorption kinetics of the  Langmuir model with no any 

axial dispersion and neglect any mass transfer resistances (Ahmed and Hameed, 2018). 

Even though several empirical adsorption models have been proposed to improve the 

adsorption performance of removing a solute from aqueous solution, the application 

and validity of the empirical adsorption models to describe the mass transfer factors of 

PO4
3− adsorption onto the WMS and iron-coated waste mussel shell (ICWMS) from 

aqueous solution is still not fully understood. Therefore, a mechanistic understanding 

of the global, external, and internal mass transfer of the adsorption kinetics and 

mechanisms revealed by the modified mass transfer factor (MMTF) models needs to 

be understood. 

1.2 Problem Statement 

In 2019, there were 7,115 public STP operated in Malaysia with a total capacity 

of 27.06 million population equivalent (SPAN, 2019). Of these, old treatment systems 

such as oxidation ponds are still being widely used until today. These old plants are 

not effectively designed to remove nutrients, particularly PO4
3−. The concentration of 

PO4
3− released into water bodies contravenes with the Environmental Quality 

(Sewage) Regulations 2009 that would only allow 5 mg L−1. Moreover, the standards 

set by EU Wastewater Directive, USEPA, Swiss, and Russia are stricter than Malaysia. 

An excessive amount of PO4
3− in the aquatic environment can cause an increased 

growth of algae and other aquatic plants, which can result in a decreased level of DO 

in water leading to depopulate the aquatic life and deteriorate the quality of water. 

Considering a huge loading of PO4
3− into water bodies and the nature of PO4

3− as a 

rate limiting nutrient in the freshwater environment, action must be taken to equip the 

STP with PO4
3− removal technology. Thus, this study proposed the hybrid plug flow 

column reactor (HPFCR) system of combining sand filtration (SF) and plug flow 

column (PFC) as the laboratory-scale device to remove PO4
3− from STPE collected 

from the Taman Sri Pulai of Johor Bahru in Malaysia. An understanding of the removal 

efficiency and the adsorption behavior in the HPFCR system is important for the 
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control of full-scale operating systems, and for more widespread use in real wastewater 

treatment. However, factors that affect the behavior of mass transfer between 

adsorbate/solute and adsorbent need to be considered, taking into account that in order 

to understand the applicability of HPFCR system in the removal of PO4
3− from STPE. 

In spite of reducing the concentration of PO4
3− can be accomplished through an 

adsorption technique, the resistance of mass transfer of the adsorption in a 

hydrodynamic column needs to be verified. Therefore, the use of MMTF models is 

crucial for describing the removal of one or more solutes from waters to provide better 

understanding of the movement of solutes from the bulk water to active sites within 

the pores of a porous material. The use of the MMTF models could be useful to 

describe the real difference between the behaviors of film mass transfer (FMT) and 

porous diffusion (PD). 

1.3 Objectives 

This study embarks on the following objectives: 

1. To verify the applicability of the adsorption kinetic models of pseudo-

first-order (PFO) and pseudo-second-order (PSO) kinetic models and 

the adsorption isotherm models of Freundlich and Langmuir observed 

from the batch experiments, 

2. To analyze the reliability of the BDST and Thomas models for 

predicting the kinetic behaviors of PO4
3− adsorption onto the WMS and 

ICWMS adsorbents from STPE processed in a hydrodynamic column,  

3. To verify the applicability of the MMTF models to predict the 

mechanisms and kinetics of mass transfer for the adsorption of PO4
3− 

deposited onto the WMS and ICWMS adsorbents from STPE applied 

in a hydrodynamic column, and  

4. To determine if the resistance of mass transfer is located at either FMT 

or PD during the adsorption process of  PO4
3– deposited onto the WMS 

and ICWMS adsorbents from STPE. 
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1.4 Scope of The Study 

The scope of this study is as follows: 

1. Characterization of STPE 

The characteristics of STPE were determined by monitoring several 

parameters of such as chemical oxygen demand (COD), suspended solid 

(SS), ammonium (NH4
+), iron (Fe3+), PO4

3−, nitrate (NO3
−), sulfate 

(SO4
2−), chloride (Cl−), ph, and DO. This study used the STPE collected 

from the Taman Sri Pulai of Johor Bahru in Malaysia (latitude 

1°33’59.1”N and longitude 103°36’56.7”E). 

2. Characterization of adsorbents 

Two types of adsorbents were used in this study i.e., WMS and ICWMS. 

The physical and chemical properties of adsorbents, such as chemical 

composition, types of mineral phases, surface morphology, surface 

functional group, and specific surface area were determined.  

3. Batch experiment 

The batch experiments were conducted to determine the kinetics and 

isotherm of adsorption using a synthetic solution and STPE. The PFO and 

PSO kinetic models were used to evaluate adsorption kinetic. The 

Freundlich and Langmuir isotherm models were used to assess the 

adsorption isotherm.  

4. HPFCR performance 

The laboratory-scale HPFCR system was performed to determine the 

removal efficiency of PO4
3− from STPE. The concentration of PO4

3− solute 

is the independent parameters while the flow rate, height, and mass of 

adsorbent in the PFC are dependent parameters. The concentrations of 

PO4
3− were regularly monitored at inlet in the storage tank, after the SF 

and outlet of the HPFCR system using UV Spectrophotometer HACH DR 

5000. The parameters of such as COD, SS, NH4
+, SO4

2−, Cl−, pH, and DO 
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were measured at inlet and outlet of HPFCR. The BDST and Thomas 

models were used to determine the design parameter and to predict the 

breakthrough curve behavior in HPFCR.  

1.5 Significance of The Study 

The significances of this study are as follows: 

1. The removal of excessive amount of PO4
3− from STPE is crucial to prevent 

the eutrophication of surface water and to meet the stringent effluent 

standards. 

2. The analysis of experimental data obtained from a laboratory-scale device 

is important to gain better understanding of the further practical and 

operational information in designing the industrial scaling up purposes. 

3. The findings of this study revealed an understanding of the mechanisms 

and kinetics of adsorption that are important for further improvement of 

the adsorption capacity, adsorbate–adsorbent affinity, and adsorbent 

surface properties for wide applications. 

4. The determination of mass transfer resistance controlled by either FMT or 

PD for the adsorption of PO4
3− onto WMS and ICWMS adsorbents can 

make an important contribution to the development of advanced WMS and 

ICWMS adsorbents for enhancing the HPFCR performance in the future. 

1.6 Thesis Organization 

This thesis is organized into six chapters. After briefly introducing the 

background in Chapter 1, this study reviews the literatures in Chapter 2 for concern 

with PO4
3− in waters and its removal processes. The materials and methods in Chapter 

3 include the batch experiments, configuration of HPFCR, HPFCR operating 
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procedure and analytical methods. Discussion of the results can be found in Chapter 4 

and Chapter 5. Chapter 4 describes the physical and chemical properties of the 

adsorbents and discusses the experimental result obtained from batch studies that 

include analysis adsorption kinetics and isotherm in synthetic solution and STPE. 

Chapter 5 presents the application of the empirical model i.e., BDST, Thomas, and 

MMTF models and discusses the adsorption kinetics of PO4
3− deposited on the surface 

of WMS and ICWMS observed from a HPFCR. The last chapter presents the 

conclusions of this study and the recommendation for future works. 
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 APPENDIX 

Appendix A Characterization of STPE 

Because of the content of PO4
3− (see Table 1) is higher than the limit value 

regulated by the law (see Table 2), the tertiary treatment of STPE is required before 

discharging into a river. This study used the STPE collected from the Taman Sri Pulai 

of Johor Bahru in Malaysia (latitude 1°33’59.1”N and longitude 103°36’56.7”E) as 

the effluent samples to feed the HPFCR treatment system. The characteristics of STPE 

quality can be classified as a moderate concentration based on the average value of the 

parameters of PO4
3−, NH4

+, SO4
2−, Cl−, COD, SS, pH, DO, and conductivity monitored 

during six months (see Table 1). The adsorption of PO4
3− onto WMS and ICWMS 

adsorbents from STPE can be proposed to allow the design characterization of HPFCR 

system and to describe the kinetic behaviors of PO4
3− removal 

Table 1 Main characteristics of STPE 

 

Parameter Unit Concentrations 
  Minimum Maximum Average 

DO mg L−1 5.1 5.6 5.43 

COD mg L−1 170 195 180 

SS mg L−1 12 84 31 

pH - 6.6 7.4 7.1 

NH4
+ mg L−1 7.4 11.8 10.2 

PO4
3− mg L−1 5.6 8.4 7 

Cl− mg L−1 10 37.5 18 

SO4
2− mg L−1 8 15 13 

Conductivity µS cm−1 369 414 384 
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