
 

MAPPING OF 2D SPORADIC E STRUCTURE 

USING HIGH DENSITY GPS RECEIVERS 

IN SOUTH EAST ASIA  
 

 

 

 

 

 

 

 

 

 

 

 

NURHAYATI NADHIRAH MUHAMAD 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA



 

MAPPING OF 2D SPORADIC E STRUCTURE 

USING HIGH DENSITY GPS RECEIVERS 

IN SOUTH EAST ASIA  

 

 

 

 

 

 

 

 

NURHAYATI NADHIRAH MUHAMAD 

 

 

 

 

 

 

 

A dissertation submitted in fulfilment of the  

requirements for the award of the degree of 

Master of Science 

 

 

 

Faculty of Science 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

FEBRUARY 2020 



iv 

DEDICATION 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to Muhamad bin Abdullah and Elizabeth Normah 
binti Shamsudin, whose virtue and aspiration cultivates me into the person I am 

today.  

As well as Mohammad Nur Shaziq bin Zulkpli, who help me to anchor and 
organise my thoughts that always wander around and landed on a random and 

unpredictable matter. 

  



v 

ACKNOWLEDGEMENT 

Throughout the quest upon completing this thesis, many had extended their 
assistance which I am tremendously in debt. 

First, I wish to express my deepest gratitude toward my supervisor, Dr 
Suhaila M Buhari for her endless guidance, intelligence, optimism and friendship. 
Her enthusiasm in atmospheric analysis shifted my perspective that the sky is not the 
limit. 

Next, I would like to thank The Department of Survey and Mapping Malaysia 
(JUPEM), Nagoya Universiti dan Kyoto University for providing ample amount of 
data used for this study. 

Besides, I would forever be indebt with Universiti Teknologi Malaysia for the 
opportunity to pursue my Master’s degree. The management and intelligence 
supplied ecpecially from the Faculty of Science enable me to complete the whole 
course.  

I am also very grateful for my fellow Master of Science (Physics) candidates, 
whom undergo the course together and willingly shared information and opinions 
with me. Their view and tips are indeed helpful. 

Also, both my parents, brothers, sisters and family members that always pray 
for my success and wellbeing, cheer me up when in distraught and believe in me 
when I doubt my capability – nothing can ever repay the contribution and motivation 
all of you provided for me.  

  



vi 

ABSTRACT 

Sporadic E (Es) is a cloud of intensified electron concentration that developed 

at the ionospheric E layer that might interrupt the pathway of radio communication.  

Despite the abundance of studies on Es have been carried out, equatorial Es was 

hardly highlighted. This investigation was executed with the intent of observing the 

Es events near equatorial South East Asia (SEA) region. Using well-established 

methods such as ionosonde and Equatorial Atmosphere Radar that set up at 

Kototabang, Indonesia, the E layer was simultaneously analysed to identify Es. Then, 

data from dense SEA Global Positioning System (GPS) network for 23rd June 2011 

with measured critical frequency of Es (foEs) and virtual height of Es (hEs) provided 

by ionosonde dataset and Range-Time-Intensity plot were used to plot a detrended 

GPS Total Electron Contecnt (TEC) maps thus producing a 2-D equatorial Es map. 

From the TEC maps, the presence of Es frontal structure was identified with 50-500 

km length and 10-30 km width and that is composed of smaller scale irregularities. 

Also, Es structure moves in the North-South direction, perpendicular with elongation 

azimuth. The findings disclose the morphology and dynamics of equatorial Es and 

initiate a geographically broad-scale Es observation using GPS TEC. 
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ABSTRAK 

Sporadik E (Es) ialah satu kumpulan awan yang mempunyai ketumpatan 

elektron yang sangat tinggi yang terhasil di lapisan E ionosfera dan mampu 

mengganggu laluan komunikasi radio. Walaupun terdapat banyak kajian mengenai 

Es yang telah dilakukan, Es khatulistiwa adalah sangat kurang difokuskan dengan 

lebih mendalam. Kajian ini telah dilaksanakan untuk mengkaji peristiwa Es yang 

berlaku di sekitar garisan khatulistiwa Asia Tenggara. Teknik pemerhatian ionosonde 

dan Equatorial Atmosphere Radar (EAR) telah digunakan pada masa yang sama 

untuk mengenalpasti kehadiran Es di lapisan E. Maklumat foEs dan hEs yang 

didapati daripada ionosonde dan plot range time intensity (RTI) bertarikh 23 Jun 

2011 kemudiannya digunakan untuk memplot peta GPS jumlah kandungan elektron 

(TEC) detrended 2-D Es khatulistiwa mengikut peristiwa berlakunya Es 

menggunakan data daripada rangkaian GPS yang padat. Berdasarkan peta-peta TEC, 

kehadiran stuktur hadapan dapat dikenalpasti, berkepanjangan 50-500 km dan 

berkelebaran 10-30 km. Struktur tersebut juga terdiri daripada gangguan yang lebih 

kecil dan bergerak pada arah Utara-Selatan, berserenjang dengan azimut 

pemanjangan. Hasil kajian membolehkan morfologi dan dinamika Es khatulistiwa 

dapat dikenalpasti dan memberikan pendedahan untuk melaksanakan pemerhatian Es 

berskala lebar dengan menggunakan GPS TEC.  
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background of Study 

Ever wonder how any wireless electronics operate? How does the 

information interchange between two distant devices occur within the thin air and not 

perceive with naked eyes? For instance, firing up the television by just pressing a 

button from its remote control, watching the news from the television or even some 

other Internet-connected devices while the filming is taking place in the studio. 

Owing to the advancement and modernisation of radio waves, sending command 

between gadgets without material contact is achievable.  

Kellermann (2014) in an article suggested that the availability of radio-

frequency spectrum for purposes such as communication, position and location also 

entertainment broadcasting might be most impactful technical development to the 

society. A simple at-home device such as television has evolved significantly from 

transmitting analogue to now digitally encoded signal besides travelling across the 

atmosphere to now reflected off of satellites to the users (Fisher, Fink, Fisher & Noll, 

2020) 

On top of leisure and pleasure, the operation of radio waves also contributes 

tremendously in military tasks. In Military Balance 2020 written by The International 

Institute for Strategic Studies (IISS), it is stated various application of this particular 

range of electromagnetic spectrum waves for instance hunting and identifying a 

target wherever it might be, interchange of situational information and instruction as 

well as navigation and timing via satellite signal. 
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Transmission of radio waves may be via one or more modes namely free 

space propagation, ground wave propagation, ionospheric propagation, tropospheric 

propagation and scatter propagation (Holker, 1993). For more than 50 years, the 

ionosphere has been studied extensively due to its significant influence in aiding 

long-distance radio communication (Dabas, 2000) that Goodman (2005) has 

categories radio systems depending on the effect of the ionosphere on them. 

Category 1 associates with systems that include the ionosphere as a part of its 

structure and category 2 associates with systems that found the ionosphere is a bit of 

an inconvenience.  

From the name itself, the ionosphere is made up of ions and free electrons 

induced by solar radiation, which varied along with the altitude (Poole, 1999). This 

layer acts like a mirror in the sky that reflects radio signals off, taking the 

responsibility for over-the-horizon travelling of the wave.  The ions and free 

electrons in the ionosphere are highly affected by any changes in near-Earth 

magnetic and/or electric field. The disruption created within ionospheric layers or at 

outer space will lead to unpredicted scattering of radio signal thus not entirely 

delivered to the receiver end.  

For example, Australian radio listeners reported in 2016 that the usual radio 

station they tuned in was interfered by signals from the other side of the country. A 

website for radio industry broadcast professionals, radioinfo, recorded this event and 

turn to several experts in hope to find an explanation. It is said that the very distant 

radio reception due to an ionospheric irregularity known as Sporadic E (Es), which 

commonly occurred during summertime. Arras (2000) stated that Es is an intensified 

electron density comprises within a thin layer observed at the lower of ionospheric E 

region. 
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Based on the report mentioned, the issue might not be as severe as it seems if 

there is any irregularity presents in the ionosphere since the radio broadcast is to 

fulfill hobby reason. However, if any aircraft or military radio communication were 

to be intercepted by an ionospheric disturbance, the mishap might cost the security of 

a nation and even innocent lives. For example, the National Oceanic and 

Atmospheric Association (NOAA) reported in 2003 the occurrence of one of the 

most intense outbreaks of solar activity that disturb communications between aircraft 

and air traffic control centre also lead to Federal Aviation Administration suggesting 

airlines to fly at lower altitudes when travelling beyond 35-degree latitude north and 

south. 

Recently, Pinholster (2019) reported that a group of space and atmospheric 

researchers, led by Dr Barjatya, plan to launch two rockets from a northeast island of 

Papua New Guinea, utilizing the fund granted by NASA. It is believed that the 

rockets together with other observation instruments will benefit fellow enthusiast to 

understand space weather and the Earth’s atmosphere particularly the ionospheric E 

and F-layers. The activities within these layers are believed might influence systems 

operating by radio waves. 

On top of that, Friedlander (2019) stated that two NASA rockets are already 

launched from Marshall Island to gather data in the ionosphere. The project’s lead 

investigator said that the aim is to measure, understand and eventually anticipate a 

kind of space weather that is common at low magnetic latitudes. Scientists suggested 

that the layer close to the equator impair radio and radar signals more than the rest. 
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1.2 Problem Statement 

Many characteristics of Es has been brought to light as a result of immense 

amount of interest and effort has been put in investigating this daytime ionospheric 

irregularity. Though, there is a huge disproportion between the number of studies 

taken place in the midlatitude region and the equatorial region. Had there been 

investigations near equatorial area, the common countries would be India and Brazil. 

Only recently, observations in South East Asia (SEA) started to be taken place. 

Therefore, this study will contribute to the growth of Es investigation over SEA 

region in the future. On top of that, researchers had proposed a different mechanism 

of development of Es near equatorial region than that in midlatitude region, and 

therefore called for extended studies on equatorial Es. 

Moreover, investigation on Es generally conducted by operating only one 

method at a time. Side by side comparison as done by Resende et al. (2018) or Lee et 

al. (2000) is not yet a common practice. Each of the observation method is limited by 

spectral and spatial coverage. Ionosonde is operating at widest frequency range, 

between 2 - 30 MHz, (high spectral coverage) but the observation is limited to one 

point (small spatial coverage). Global Positioning System (GPS) observations at L-

band frequencies between 1200 and 1500 MHz (small spectral) covers 3000 km 

(largest spatial coverage) in zonal (East-West) direction, however no altitude 

information is provided. Equatorial Atmosphere Radar (EAR) working at 47 MHz 

(small spectral) with 300 km in zonal direction (medium spatial coverage). 

Simultaneous observation between ionosonde, EAR and GPS would enhance the 

spectral and spatial resolution of Es. It is expected that these observations will aid in 

visualizing the evolution of Es layer with time from various observation that might 

lead to understanding the mechanism of the development of Es layer. 

 



 

5 

1.3 Research Objectives  

The objectives of the research are: 

(a) To observe equatorial Es using ionosonde, EAR and GPS. 

(b) To construct two dimensional (2D) structure  of Es with high spatial and 

temporal resolution. 

 

1.4 Research Scope  

The data analysed for this study is restricted to a selection of date and time 

with the presence of Es. From a dataset containing parameters obtained from the 

ionogram, any Es event was first identified. Then, the critical frequency of the Es 

(foEs) is extracted and arranged with the day with the highest foEs to be prioritised. 

The EAR data for the selected date with relatively high foEs is retrieved from 

its source. However, due to unavoidable reason, there are some days that the EAR is 

not operating and no observation was made. Thus, dates without EAR plot is 

eliminated from the list due to data unavailability. The chosen event used in this 

study will be from the remaining dates that have both ionogram and EAR data, as 

data from GPS is attainable throughout any year. 

Also, since the ionosonde and EAR are stationed near the equatorial, the Es 

observation produced is naturally an occurrence of equatorial Es. GPS data plotted is 

focused around 10ºN and 10ºS to ensure any Es event is indeed within the equatorial 

region. 
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