MANAGED PRESSURE DRILLING IN MALAYSIA

NUR SYAZANA BINTI ISHAK

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Science (M. Sc.) Petroleum Engineering

Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia

JANUARY 2016

All praise and glory to Almighty Allah s.w.t that make all this possible, to my wonderful parents and siblings for their encouragement and motivation, to my amazing husband for his continuous support through thick and thin, and not to forget my lecturers and colleague for their contribution and assistance throughout this journey.

ACKNOWLEDGEMENT

First and foremost praise is to Allah s.w.t, the Almighty, the greatest of all, on whom ultimately we depend for sustenance and guidance. I would like to express my gratitude to my Principal Supervisor, Assoc. Prof Abdul Razak Ismail for his constant guidance. His timely and efficient contribution helped me shape this report into its final form and sincerest appreciation for his assistances in any way that I may have asked.

To my Co-Supervisor, Mr Mohammad Syafiq Bin Mat Rodzi, I will never forget your willingness and support to my education programme. His constructive comments, experiences and inputs towards this research were valuable. I am also deeply indebted to my work superior; Mr Nur Ikmar Idris for his idea during the initial stages of this study, for his invaluable advice and voluntarily supervision that encouraged me in building my self-interest on this topic.

Not to forget, many thanks to the team in the Faculty of Chemical and Energy Engineering for providing me with an academic base, which has enabled me to take up this study. Special tribute and appreciation to all those names do not appear here who have contributed to the successful completion of this research.

Finally, I am forever indebted to my family who, understanding the importance of this work suffered my hectic working hours. To my husband, Muhammad Ikhwanudin Bin Baharudin, thank you for your love and continuous lecture in ensuring I will complete the project on time.

ABSTRACT

Operators in the oil and gas industry are constantly seeking cost effective methods of drilling and producing oil and gas wells to optimize production and maximize profits. Conventional drilling methods have been overwhelmed with huge operational and financial challenges, where a considerable amount of money is spent for drilling related problems; including stuck pipe, lost circulation, and excessive mud cost. Managed pressure drilling (MPD) is the new technology that enables a driller to control bottomhole pressure in the wellbore to prevent these drilling related problems. There are different variations of MPD method are designed for different problems. MPD is achieving remarkable successes in well construction applications that have been impossible using conventional methods. In less extreme applications, the technology greatly reduces risk and improves efficiency. In both cases, it helps extend the scope of deepwater prospects around the world. Most of the hydrocarbon reservoirs in Malaysia are located offshore with increasing interest in drilling deepwater well where MPD method can be benefits. As the industry remains relatively unaware of the full spectrum of MPD benefits, this dissertation will reveal in details the two MPD techniques; constant bottomhole pressure (CBHP) and pressurized mud cap drilling (PMCD) that frequently being used in Malaysia. Readers will walk through an overview and detailed applications of both methods cover determination of pore pressure and fracture gradient, wellbore breathing detection, bullheading scenario to overcome total losses and specific mud weight design for each case history.

ABSTRAK

Pengusaha-pengusaha industri minyak dan gas terus-menerus mencari kaedah penggerudian dan penghasilan minyak dan gas yang lebih kos efektif untuk mengoptimumkan pengeluaran dan memaksimumkan keuntungan. Teknik penggerudian lazim selama ini memberikan cabaran kewangan dimana jumlah yang besar perlu diperuntukan kepada masalah yang dihadapi sewaktu aktiviti penggerudian termasuklah paip tersekat, kehilangan edaran cecair dan kos perbelanjaan lumpur yang tinggi. Menguruskan tekanan penggerudian (MPD) merupakan teknologi baru yang membolehkan penggali mengawal tekanan telaga pada kedalaman lubang yang tertentu. Terdapat beberapa jenis teknik MPD yang direka untuk mengatasi pelbagai jenis masalah penggalian. Teknik ini telah mencapai kejayaan yang cemerlang dalam aplikasi pembinaan telaga di kawasan yang mustahil untuk digali menggunakan teknik lazim selain daripada mengurangkan risiko dan meningkatkan kecekapan. Ini membantu memperluaskan skop prospek laut dalam. Kebanyakan lapangan minyak di Malaysia terletak di kawasan laut dengan peningkatan minat yang ketara oleh pengusaha minyak untuk meneroka laut dalam di mana teknik MPD boleh diguna pakai. Disebabkan industri masih belum sepenuhnya mengenali teknik MPD, laporan ini akan mendedahkan secara terperinci dua teknik MPD; tekanan dasar lubang yang berterusan (CBHP) dan penggerudian lumpur bertekanan (PMCD) yang kerap digunakan di Malaysia. Pembaca akan mendapat gambaran keseluruhan dan aplikasi terperinci untuk kedua-dua teknik merangkumi penentuan tekananp pori dan kecerunan pecahan formasi, kenal pasti pernafasasn telaga, teknik mengatasi situasi lumpur hilang secara keseluruhan ke dalam takungan dan rekaan berat lumpur yang bersesuain untuk setiap kes sejarah.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	Х
	LIST OF FIGURES	xi
	LIST OF ABBREVIATIONS	xiii
	LIST OF SYMBOLS	XV
	LIST OF APPENDICES	xvi
1.0	INTRODUCTION	1
	1.1 Background of Study	1
	1.2 Problem Statement	4
	1.3 Objectives	6
	1.4 Scope of Study	7
2.0	LITERATURE REVIEW	8
	2.1 Evolution Of The Drilling Technology	8
	2.1.1 Conventional Drilling	9
	2.1.2 Underbalanced Drilling	11
	2.1.3 Directional Drilling	13
	2.1.4 Horizontal Drilling	15

		2.1.5	Casing While Drilling	16
	2.2	Manag	ged Pressure Drilling Overview	17
		2.2.1	Definition	18
		2.2.2	Comparison Between MPD and Other	20
			Technologies	
		2.2.3	Categories of MPD	23
		2.2.4	MPD: Why? Where? When?	23
		2.2.5	Basic Equipment for MPD	26
	2.3	Variati	ions And Methods Of MPD	28
		2.3.1	Constant Bottomhole Pressure	28
		2.3.2	Pressurized Mud Cap Drilling	32
		2.3.3	Dual Gradient Drilling	34
		2.3.4	Health, Safety and Environmental or Returns	36
			Flow Control	
	2.4	MPD (Candidate Selection	37
		2.4.1	SURE TM Selector Candidate Selection Process	39
		2.4.2	MPD Candidate Identification Mechanism/	39
			Candidate Selection Mechanism	
		2.4.3	MPD CSM Software	42
3.0	ME	THOD	OLOGY	44
	3.1	Resear	rch Methodology	44
	3.2	Topic	Specifying	45
	3.3	Literat	ture Searching	46
	3.4	Intervi	ewing and Meeting	48
	3.5	Data E	Evaluation and Management	49
	3.6	Write	Up Research	50
4.0	AN	ALYSI	S OF STUDY CASES IN MALAYSIA	51
	4.1	Introdu	uction of MPD in Malaysia	51
	4.2	CBHP	by @balance Service in Malaysia	55
		4.2.1	MPD – CBHP Planning	58
		4.2.2	Identify The Lower Limit by DFC/ SFC	60

		4.2.3	Identify and Controlling Wellbore Breathing	63
		4.2.4	Identify The Upper Limit by DFIT	66
		4.2.5	Results	68
	4.3	PMC	D by @balance Service in Malaysia	70
		4.3.1	PMCD Equipment	71
		4.3.2	Well Operations and Engineering	72
		4.3.3	Successful PMCD Implementations in KUN2	74
			well.	
	4.4	Discu	ussions	76
5.0	CO	NCLU	SIONS AND RECOMMENDATIONS	81
	5.1	Conc	elusions	81
	5.2	Reco	mmendations for Further Studies	82
	RE	FERE	NCES	83
	AP	PENDI	ICES	88

ix

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Basic Differences and Similarities Between MPD and	22
	UBD	
4.1	Summary of CBHP @balance Case Histories In Malaysia	57
4.2	Summary Differences Between MPD – CBHP and MPD –	76
	PMCD	
4.3	6" Hole Size Decision Matrix Table – TA Well	77

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	UBD, MPD and OBD Classification Chart	4
1.2	Conventional Drilling Window	5
1.3	Narrow Drilling Window	5
2.1	Underbalanced Drilling Fluid Flow	11
2.2	Applications of Directional Drilling	14
2.3	CWD Different Levels of Applications	17
2.4	CPD Technology, Definitions and Benefits	20
2.5	Drilling Pressure Window	22
2.6	Source of NPT & Issues That Can be Mitigated by MPD	24
2.7	Problems Drilling Through Narrow Pressure Windows	25
	with Conventional Drilling	
2.8	Coriolis Flowmeter – Sensor Flow Path	27
2.9	Wellbore Pressure Cyclic Conventional Drilling	28
2.10	Wellbore Pressure Cyclic MPD – CBHP	28
2.11	Rig Up for CBHP Application	31
2.12	Pressure – Gradient Profile for PMCD Method	31
2.13	Rig Up for PMCD Operations	32
2.14	Conventional Versus DGD in Deepwater	34
2.15	Casing Strings Reduction in DGD Variation	35
2.16	MPD rig up for HSE/ RFC	37
2.17	MPD CSM Flow Diagram That Explains MPD CSM	40
	Approach	

3.1	Research Methodology Flow Chart	50
4.1	Malaysia HPHT and Ultra HPHT Fields – Peninsular	52
	Malaysia	
4.2	Malaysia HPHT Fields – East Malaysia	52
4.3	Malaysia Deep Water Blocks	53
4.4	MPD – CBHP Flow Path and Equipment Diagram	56
4.5	Influx detected during Dynamic Flow Check TTD – 1	61
	Well	
4.6	Influx Identification During SFC, SDX Field	63
4.7	Wellbore Breathing Potential TTD – 1 Well	64
4.8	Ballooning Identification during SFC, SDX Field	65
4.9	Dynamic Formation Integrity Test #3 TTD – 1 Well	67
4.10	Perform DFIT to verify the loss limit in the formation	67
	SDX Field	
4.11	TTD – 1 Drilling Plan Versus Actual Plan	68
4.12	TTD – 1 Drilling Operating Window Summary	69
4.13	MPD – PMCD Process Flow Diagram	70
4.14	PMCD Operation – Encounter losses and Injecting Sea	73
	Water	
4.15	Running Sequence for Setting and Drilling Composite	75
	Bridge Plug	
4.16	Summary of Process Flow DFC/SFC and DFIT	77
4.17	SBD – 2 CBHP Hole Sections Actual Drilled Data and	80
	Event Signature	

LIST OF ABBREVIATIONS

AFP	-	Annular Frictional Pressure
BBL	-	US Barrels
BP	-	Back Pressure
BHA	-	Bottomhole Assembly
BHP	-	Bottomhole Pressure
BOP	-	Blowout Preventer
CBHP	-	Constant Bottomhole Pressure
CIM	-	Candidate Identification Mechanism
CPD	-	Controlled Pressure Drilling
CSM	-	Candidate Selection Mechanism
CTD	-	Coiled Tubing Drilling
CWD	-	Casing While Drilling
DAPC	-	Dynamic Annular Pressure Control
DD	-	Directional Drilling
DFC	-	Dynamic Flow Checks
DFIT	-	Dynamic Formation Integrity Test
DGD	-	Dual Gradient Drilling
ECD	-	Equivalent Circulating Density
EMW	-	Equivalent Mud Weight
FP	-	Fracture Pressure
FG	-	Fracture Gradient
GPM	-	Gallon per Minute
HD	-	Horizontal Drilling
HPHT	-	High Pressure High Temperature
HSE	-	Health, Safety and Environment
IADC	-	International Association of Drilling Contractors
IUBO	-	International Underbalanced Operations

LAM	-	Light Annular Mud
LWD	-	Logging While Drilling
MDDF	-	Measured Depth Drilling Floor
MPD	-	Manage Pressure Drilling
MWD	-	Measurement While Drilling
MW	-	Mud Weight
NPT	-	Non-Productive Time
OBD	-	Overbalanced Drilling
PMCD	-	Pressurized Mud Cap Drilling
РР	-	Pore Pressure
PRV	-	Pressure Relief Valves
RCD	-	Rotating Control Device
RFC	-	Return Flow Control
ROP	-	Rate of Penetration
RSS	-	Rotary Steerable System
SBP	-	Surface Back Pressure
SFC	-	Static Flow Checks
SIDPP	-	Shut In Drill Pipe Pressure
TD	-	Total Depth
UBD	-	Underbalance Drilling
WBP	-	Wellbore Pressure

LIST OF SYMBOLS

P _{hyd}	-	Hydrostatic Pressure
P _{BH}	-	Bottomhole Pressure
P _{supplemental}	-	Supplemental Pressure
P _f	-	Formation Pressure
P _{friction}	-	Friction Pressure
P _{choke}	-	Choke Pressure

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Summary of MPD Operations Across South East Asia by	88
	Year 2006	
В	RCD and Automatic Choke Components Cut Out -	89
	@balance Schlumberger	
С	Actual RCD and RCD Components on Rig	90
D	RCD and DAPC Package Offshore Layout	91
Е	Journals/ Reading Materials Compile Sheet	92
F	Schlumberger @balance Services, MPD Experience in	96
	Malaysia	
G	Examples of Gas Migration and Bull Heading Cycles –	99
	РМСD	

CHAPTER 1

INTRODUCTION

1.1 Background of Study

World energy demand is increasing continuously to meet the need of energy of the developing countries. Increase in the energy consumption rates forces the scientists and engineers to discover another ways of gathering energy or better ways to recover the sources that we have been already using for years. Most of the world's remaining prospects for hydrocarbon resources will be more challenging to drill than those enjoyed in the past. Some industry professionals would say that 70% of the current hydrocarbon offshore resources are economically undrillable using conventional drilling methods (Dave et. al, 2011).

Traditional drilling practices rely on maintaining hydrostatic pressure in the annulus to prevent formation fluids from entering the borehole. Ideally, when drilling fluid, or mud is circulated down the drill string and up the annulus, an equivalent circulating density (ECD) is created that is greater than pore pressure, but is below the pressure necessary to fracture the formation being drilled. This pressure is often referred to as the fracture gradient (FG). The pressure range above pore pressure and below fracture initiation pressure is the drilling margin, or pore-pressure-fracture-

gradient window. If at any point the ECD goes outside these bounds, operators must set casing and begin drilling the next smaller hole size.

The practice of maintaining a borehole pressure that exceeds the pore pressure gradient is called overbalanced drilling (OBD). According to Dave et. al (2011), It has been the method of choice for the majority of wells drilled since the early 20th century. But OBD has its drawbacks. Foremost among them is its dependence on the use of multiple casing strings to prevent fluid losses, as the fluid density required to contain formation pressure is increased and ECD approaches fracture initiation pressure.

In some instances, particularly in wells in ultradeep water, pore pressure maybe high relative to formation strength even in the shallower sections of the well, which forces the operator to set numerous casing strings before reaching the target formation. The result can be a well whose diameter at total depth (TD) may be too small to accommodate production tubing large enough to produce economic volumes of hydrocarbons. Additional string of casing usually raise the final cost of the well significantly above initial estimates.

Besides the considerations when drilling overbalanced, mud filtrate and mud solids can cause damage to the formation. When solids invade and are deposited in pore spaces, they may impair productivity and lower ultimate recovery. In addition high overbalance during drilling can cause differential sticking and other problems related to hole cleaning, Efforts to free stuck pipe routinely results in hours or even days of non-productive time (NPT). In the worst case, the drill string may become permanently stuck and may be lost or require side-track in the presence of other aggravating conditions (Syafiq, 2015).

Dave et. al (2011) added, as operators drilled horizontal sections to expose enough formation to make their wells profitable, they found it impossible to maintain ECD below the fracture gradient. That is because while the fracture gradient increases with total vertical depth, it remains virtually unchanged from the heel to the toe of horizontal wells. However, as the wellbore lengthens, friction pressure losses increase. Pump pressure must then be increased to maintain sufficient circulation rates to lift cuttings to the surface via the annulus. Given sufficient length along a horizontal section, the ECD will result in a bottomhole pressure (BHP) that equals and then exceeds the fracture initiation pressure, with inevitable unacceptable levels of fluid loss.

In wells or section of wells with very narrow drilling margins, operators have addressed the issue of fluid loss through underbalanced drilling (UBD), during which ECD is kept below the pore pressure of the formation being drilled. As a consequence, fluids from exposed formations are allowed to flow into the wellbore during drilling operations. This prevents drilling fluids from entering even under pressured zones.

But as the industry enhanced its ability to drill very long extended-reach wells, it was met with challenges other than fluid loss. Operators encountered various pressure-associated challenges while drilling these wells, including wellbore instability and well control problems. Efforts to overcome these challenges gave rise to the development of manage pressure drilling (MPD). MPD is used primarily to drill wells that do not lend themselves to either conventional OBD or UBD methods, such as in areas where flaring is forbidden, or while drilling through high permeability formations (Dave et. al, 2011).

Consistent with Kenneth et. al (2010), UBD, OBD and MPD designate a range of techniques that can be applied and have been developed that fall within these broad ranges illustrated in figure 1.1. Addressing NPT is a major focus for both MPD and UBD. NPT associated with kicks, wellbore breathing, and lost circulation not only will have an immediate impact on rig time and its associated cost, but can also lead to additional costs associated with lost mud, lost circulation materials, additional casing strings, stuck pipe, unplanned sidetracks and in some cases not reaching TD. Any of these can directly affect a project's financial viability.

UNDERBALANCED	BALANCED	OVERBALANCED	
P _{Hyd} <p<sub>BH</p<sub>	P_{Hyd} +($P_{supplemental}$)= P_{BH}	P _{Hyd} >P _{BH}	
Control	of Drilling Pressur	e Technology Map	
Underbalanced Drilling	Managed Pressure Drilling	Conventional Drilling	
ospheric	Closed Loop Systems	Atmospheric	
	MUD SYSTEMS AND TECH	NIQUES	
	Continuou <mark>s Circ</mark>	culation System	
	Dual Gradient Fluids	Weighted Fluids	
	Pressurized Mud Cap (Closed)	Health-Safety-Environment	
	Floating Mud Cap (Open)		
	Non-weighted, L	ow-density fluids	
Gasified Fl	uids		
Mist	Constant Bottom Hole Pressure		
Air Drilling	Jet or Lift Pu	mps	
	Other Technique of		
	Other Techniques?		

Figure 1.1: UBD, MPD and OBD Classification Chart (Kenneth et. al, 2010)

Drilling wells in complex environments with century-old technology is difficult at best and unsafe at worst. From drilling through narrow pore-pressurefracture-pressure gradient windows to mitigating kicks and differential sticking, MPD succeeds when conventional techniques are likely to fail.

1.2 Problem Statement

Malaysia oil and gas industry are now focusing towards development of the offshore fields that are being classified as high-pressure high-temperature (HPHT), Ultra-HPHT and deepwater region. This kind of hydrocarbon field is not easy to be drilled with conventional method. There is significant number of drilling incidents involved severe gain and losses scenarios, primarily due to weak coal formations and unsustainable losses across carbonate reservoirs occurred. Problems usually caused by insufficient information to drill deeper because it is an untapped reservoir, no reference well and sometimes the reference are too far, highly doubt this new area will have the same characteristics.

Drilling window is a term that one needs to understand when discussing about drilling operation. Conventionally, pore pressure line and fracture gradient are reasonably distanced to allow for conventional drilling method to be done as shown below in figure 1.2. A single mud weight design will give a different equivalent mud weight (EMW) value during dynamic and static.

Figure 1.2: Conventional Drilling Window (Syafiq, 2015)

Thus, wellbore need to be sure not to exceed fracture pressure when drilling resume, and not to allow any influx during static (i.e. making up drill pipe connection). However, most of the well now especially those declared 'undrillable' doesn't have this ideal condition anymore. They look more like figure 1.3.

Figure 1.3: Narrow Drilling Window (Syafiq, 2015)

In addition, drillers keep mistaken wellbore breathing/ ballooning phenomena with kick and losses scenario. This could result to questionable mitigation steps and when drilling through soft formation, this phenomenon if not be handled correctly can cause formation breakdown or worst.

Vugular carbonate reservoir on the other hand, will have an unsustainable losses issue. No matter how much lost circulation material being pumped, it will never fully blocked. Drilling in this kind of situation, with continuous losses happen seems to be impossible.

1.3 Objectives

The objectives of this project are as follows:

- I. To identify and understand the application of different MPD variations successfully implemented in Malaysia's reservoir.
- II. To recognize the differences between these MPD variations and how it can overcome drilling related problems.
- III. To study how MPD being used to map pore pressure and fracture gradient in untapped reservoir area accurately and safely.
- IV. To analyse technique implemented to drill through vugular carbonate reservoirs, facing continuous losses during drilling operation.

1.4 Scope of Study

The scope of the study is concentrated towards the mechanism involved in MPD system by Schlumberger @balance in order to drill high challenging wells in Malaysia. This includes two MPD variations – PMCD and CBHP.

The scopes of the study:

- I. To understand MPD-CBHP operation and MPD-PMCD implementation, how it being selected and used at different wells in Malaysia to overcome drilling related problems.
- II. To distinguish techniques used to determine the lower limit (pore pressure) and the upper limit (fracture gradient) while drilling in progress.
- III. To detect and differentiate wellbore breathing phenomena as oppose to kick and losses event using MPD system.
- IV. To discuss how to mitigate kick and losses event in both MPD variations conditions.
- V. To investigate differences between statically overbalanced and hydrostatically underbalanced for MPD-CBHP method.
- VI. To assess any other challenges involved or potential risk and weakness that open up new opportunities for improvements ahead.

REFERENCES

- Abdullah R. (2012). Oil & Gas Industry Opportunities and Challenges Ahead. Power Points slide. Halliburton.
- Aguilera, R. Artindale, J. S. Cordell, G. M. Ng, M. C. Nicholl, G. W. and Runions,G. A. (1991). *Horizontal Wells*. Houston: Gulf Publishing Company.
- Anantha Sarat Sagar Nauduri (2009). Managed Pressure Drilling Candidate Selection, Doctor of Philosophy. Texas Agricultural & Mechanical University (TAMU).
- Andi Eka Prasetia (2014). How Managed Pressure Drilling Application Can Bring Values To The Drilling Operation? Power point slides. Schlumberger Drilling Services Sdn Bhd.
- Azian I., Mahzan M., Firdaus S., Syafeeq M., Ebining A., Le V. H., Rojas F., Jose T., Richards D., Irwan R., Edwin B. (2014). SPE/IADC-168951-MS MPD Application On ERD Well In Offshore Peninsular Malaysia Reducing Cyclical Fatigue Forces Across The Weak Formations By Managing The ECD. SPE/IADC Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition. 8 9 April 2014. Madrid, Spain.
- Azree N., Umar L., Azian I., Steve N., Wing K. W. (2012). IADC/SPE 155580
 Dynamic Modelling Of Wellbore Pressures Allows Successful Drilling Of A
 Narrow Margin HPHT Exploration Well In Malaysia. *IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition*. 9 11 July 2012. Tianjin,
 China.
- Brantly J. E., (1971). History Of Oil Well Drilling, Gulf Publishing Company, Houston, Texas, U.S.A.
- Das B., Figoni M., Ballesio J., Bond J. (2012). Dual-Gradient System Evaluation Highlights Key High- Risk Issues. Drilling Contractor – Innovating While Drilling. July 2012.

- Dave E., Julio M., Paul F., Don Retsma J. S., Vincent R. (2011). Managed Pressure Drilling Erases The Lines. *Oilfield Review*, 23, No.1
- Fernando G., Irwan R., Rojas F., Subroto B., Andi E. P., Jose T., Bordessoulles W. (2015). SPE/IADC-173812-MS MPD And MPC Successfully Applied To Deliver A Defying Exploratory Ultra-HPTH Well In Offshore Malaysia. SPE/IADC Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition. 13 – 14 April 2015. Dubai, UAE.
- Frink P. (2006). Managed Pressure Drilling What's in a name? Drilling Contractor. March/April 2006 Issues. Page 36 – 39.
- Hannegan D., Weatherford Intl. Inc. (2006). SPE 101855 Case Studies Offshore
 Managed Pressure Drilling. SPE Annual Technical Conference and Exhibition.
 24 27 September 2006. San Antonio, Texas, U.S.A.
- Irny, S.I. and Rose, A.A. (2005). Designing a Strategic Information Systems Planning Methodology for Malaysian Institutes of Higher Learning (IPTS -IPTA), Issues in Information System, Volume VI, No. 1, 2005.
- John R. (2007). Changing The Look And Feel of UBD Requires Industry to Break Out Of Conventional Thinking. *Drilling Contractor – Innovative Drilling*, pages 62 – 67.
- Jose T., Andi E. P., Fernando G., Rojas F., Irwan R. (2015). SPE-174830-MS
 Making The Impossible Possible With MPD Application on 0.4ppg Mud
 Weight Window A Case History Successful Automated Managed Pressure
 Drilling, Managed Pressure Run 11-3/4" Liner & 9-5/8" Liner (Tieback Liner),
 and Managed Pressure Cementing In A Semi-Submersible Offshore Sarawak,
 Malaysia. SPE Annual Technical Conference and Exhibition. 28 30
 September 2015. Houston, Texas, U.S.A.
- Kenneth P. Malloy (2007). Managed Pressure Drilling What Is It Anyway? *World Oil*. March 2007 Issue. Pages 27 – 34.
- Kenneth P. M. and Sara S. (2010). SPE/IADC 130563 UBD Or MPD: An Engineering Choice Based On Intent. SPE/IADC Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition. 24 – 25 February 2010. Kuala Lumpur, Malaysia.

- Lee J. M., Mousa M., Trigunadi B. S., Warjanto S., Sagi V. R., Zahir A., Afiqah W.N., Abshar M., Mizuar M., Rojas F., Andi E. P., Richards D., Fernando G. (2014). SPE/IADC-168945-MS Overcoming A 0.35ppg Mud Weight Window A Case History Of Successful Automated Managed Pressure Drilling and Managed pressure Cementing Offshore Malaysia. SPE/IADC Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition. 8 9 April 2014. Madrid, Spain.
- Montilva J., Mota J., Billa R. (2012). SPE/IADC 156909 Onshore US MPD Use By An Operator. *SPE/IADC Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition*. 20 – 21 March 2012. Milan, Italy.
- Mostafa Rashed Rohani, (2012). ISSN 1337-7027 Managed Pressure Drilling; Techniques And Options For Improving Operational Safety and Efficiency. *Petroleum & Coal Journal*, 54 (1). Pages 24-33.
- Nediljka Gaurina Medimurec (2005), *Casing Drilling Technology*. Mining, Geology and Petroleum Proceedings. Vol 17 str. 19 26, University of Zagreb, Croatia.
- Noreffendy J. M., Azian I., Travis M., Allan V., Rojas F. (2013). SPE/IADC 163479
 Implementation Of PMCD To Explore Carbonate Reservoirs From Semi-Submersible Rigs In Malaysia Results In Safe And Economical Drilling
 Operations. SPE/IADC Drilling Conference and Exhibition. 5 7 March 2013.
 Amsterdam, The Netherlands.
- Noreffendy J. M., Azian I., Zulhilmi D., Thanavathy P. N., Wong H. S., Aziz A.,
 Pungut L. (2013). IADC/SPE 164576 Integrated Technology Approach To
 Explore Carbonate Reservoirs In Malaysia Enhances PMCD Potentials And
 Enables Successful Prospect Evaluations. *IADC/SPE Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition*. 17 18
 April 2013. San Antonio, Texas, U.S.A.
- Patel Bhavin M. (2011). OTC 22506 Application Of Proposed Method For Planning Best Initial Response To Kicks Taken During Managed Pressure Drilling. *Offshore Technology Conference Brazil.* 4 – 6 October 2011. Rio De Janeiro, Brazil.
- Patel B., Cooper T. D., Hughes S. N., Billings W. C. (2012). SPE/IADC 156908 The Application Of Advanced Gas Extraction And Analysis System Complements

Early Kick Detection And Control Capabilities Of Managed Pressure Drilling System With Added HSE Value. *SPE/IADC Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition*. 20 – 21 March 2012. Milan, Italy.

- Rojas F., Andi E. P., Adel M., Umar L., Yap Y. T., Syazwan M. (2014). IADC/SPE 167930 HP/HT Exploration Well In Offshore Malaysia Pushed Automated MPD System To Maximum Utilization, Identifying Safest Drilling Operating Window. IADC/SPE Drilling Conference and Exhibition. 4 6 March 2014. Fort Worth, Texas, U.S.A.
- Sagar N., George H. M., Jerome J. S. (2009). IADC/SPE 122276 MPD: Beyond Narrow Pressure Windows. *IADC/SPE Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition*. 12 – 13 February 2009. San Antonio, Texas, U.S.A.
- Sagar N., George H. M., Jerome J.S. (2010). SPE/IADC 130330 MPD Candidate Identification: To MPD Or Not To MPD. SPE/IADC Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition. 24 – 25 February 2010. Kuala Lumpur, Malaysia.
- Schumacher J. P., Dowell J. D., Ribbeck L. R., Eggemeyer J. C. (2002). SPE-80615-PA Planning and Preparing For The First Subsea Field Test Of A Full-Scale Dual-Gradient Drilling System. *December 2002 SPE Drilling & Completion*. Pages 194 - 199.
- Short J. A. (1993), *Introduction To Directional And Horizontal Drilling*. Tulsa, Oklahoma, PennWell Publishing Company.
- Syafiq M. (2015). Managed Pressure Drilling Training. Power point slides. Schlumberger Drilling Services Sdn Bhd.
- Syafiq M. (2015). Mud Cap Drilling, Continuous Annular Injection Anjung Kecil. Power point slides. Schlumberger Drilling Services Sdn Bhd.
- Trigunadi B. S., Mizuar M., Zarkashi M., Zarir M., Fadzli M., Thanavathy P. N., Chad H. W., Julmar S., Toralde S., Prem A. S. (2013). IADC/SPE 164573
 Managed Pressure Drilling With Solids-Free Drilling Fluids Provides Cost-Efficient Drilling Solution For Subsea Carbonate Gas Development Wells.

IADC/SPE Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition. 17 – 18 April 2013. San Antonio, Texas, U.S.A.

- Umar L., Azian I., Azree N., Ali A. R. M., Waguih A., Rojas F., Fey S., Subroto B., Dow B., Garcia G. (2012). SPE/IADC 156888 Demonstrating The Value Of Integrating FPWD Measurements With Managed Pressure Drilling To Safely Drill Narrow Mud Weight Windows In HP/HT Environment. SPE/IADC Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition. 20 – 21 March 2012. Milan, Italy.
- Vallourec (2015), Vallourec Advanced Drilling With Casing Solutions. *Vallourec Oil & Gas Magazines*, pages 1 – 8.
- Villatoro J., Said B., Schmigel K., Hani Q., Martijn V. G., Sunil L. (2009). SPE
 120035 Controlled Pressure Drilling (CPD) Candidate Screening Methodology.
 SPE Middle East Oil & Gas Show and Conference. 15 18 March 2009.
 Bahrain International Exhibition Centre, Kingdom of Bahrain.
- Zhi F., Adrian W., Agus T., Fuad A., Lee C. F., Vince T. (2013). SPE 165835
 Geomechanical Optimisation With Managed Pressure Drilling For
 Successfully Penetrating Challengeable Depleted Reservoirs In Offshore
 Sarawak, Malaysia. SPE Asia Pacific Oil & Gas Conference and Exhibition. 22
 24 October 2013. Jakarta, Indonesia.
- Zulkarnain I., Azian I., Umar L., Azree N., Thanavathy P. N., Rojas F., Fernando G., Garcia G., Waguih A., Subroto B., Dow B. (2012). IADC/SPE 151518
 Automated Managed Pressure Drilling Allows Identification Of New Reserves In A HPHT Exploration Well In SB Field, Offshore Malaysia. *IADC/SPE Drilling Conference and Exhibition*. 6 8 March 2012. San Diego, California, U.S.A.