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ABSTRACT

The wide applications of ultrahigh cooling devices in the current industries are 
necessary to improve the effectiveness of thermal devices. The development of an 
advanced heat transfer fluid known as nanofluid is very important to satisfy the high 
cooling rate standard. Conventional fluid such as water, ethylene glycol, or engine oil 
has limited heat transfer capability owing to the low thermal conductivity. Therefore, 
the dispersion of metallic nanoparticles in the fluid is implemented to boost the thermal 
conductivity of the conventional fluid. The utilization of nanofluid in cooling devices 
has shown good results in energy saving and emission reduction. Furthermore, the flow 
of non-Newtonian fluid, especially Casson and Jeffrey fluid, has been acknowledged 
due to its flow behaviour depending on the shear stress applied. The fluid acts as a 
solid if the applied stress exerted is lower than yield stress, whereas the fluid begins to 
flow if the applied stress exerted is more than yield stress. Motivated by the significant 
features of non-Newtonian fluid and nanofluid, the aim of this study is to investigate 
the unsteady magnetohydrodynamic flow of Casson and Jeffrey fluids with and without 
nanoparticles embedded in a porous medium with slip boundary condition. The motion 
of fluid flow is generated by squeezing between two parallel plates with external 
stress. The effects of viscous dissipation and chemical reaction on fluid flow are 
also investigated. The nonlinear governing equations are transformed into ordinary 
differential equations using a similarity transformation and solved numerically via 
Keller-box method. The numerical and graphical results are obtained through 
MATLAB software. Meanwhile, the present results are validated by comparing them 
with the published results. Hence, a good agreement is obtained. The graphical results 
of velocity, temperature, and concentration profiles are analysed with various physical 
parameters. The results show that the increment of the fluid velocity and the wall 
shear stress in Casson and Jeffrey fluids with and without nanoparticles is caused 
by squeezing of plates. Meanwhile, the velocity, temperature, and concentration 
profiles decrease with the presence of magnetic field and also Casson and Jeffrey 
fluid parameters. It is discovered that the rate of heat transfer and temperature profile 
increase with the impacts of viscous dissipation and thermophoresis. In nanofluid, 
the rate of mass transfer decelerates for increasing Brownian motion, while it elevates 
when chemical reaction and thermophoresis increase.
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ABSTRAK

Penggunaan yang meluas terhadap peranti penyejuk berkuasa tinggi dalam 
industri semasa adalah diperlukan bagi meningkatkan keberkesanan perisian terma. 
Pembangunan bendalir pemindahan haba termaju yang dikenali sebagai nanobendalir 
adalah sangat penting bagi memenuhi taraf kadar penyejukan yang tinggi. Bendalir 
konvensional seperti air, etilena glikol, atau minyak enjin mempunyai keupayaan 
pemindahan haba yang terhad kerana kekonduksian terma yang rendah. Oleh 
itu, penyerakan nanozarah logam dalam bendalir dilaksanakan bagi meningkatkan 
kekonduksian terma bendalir konvensional. Penggunaan nanobendalir dalam peranti- 
peranti penyejuk telah menunjukkan hasil yang baik dalam penjimatan tenaga 
dan mengurangkan pemancaran. Tambahan pula, aliran bendalir bukan Newtonan 
terutamanya bendalir Casson dan Jeffrey telah diiktiraf disebabkan pergerakan 
alirannya bergantung pada tegasan ricih yang dikenakan. Bendalir bertindak sebagai 
pepejal sekiranya tekanan yang dikenakan lebih rendah daripada tegasan alah, 
manakala bendalir mula mengalir sekiranya tekanan yang dikenakan lebih tinggi 
daripada tegasan alah. Didorong oleh ciri-ciri penting bendalir dan nanobendalir 
bukan Newtonan, tujuan kajian ini adalah untuk mengkaji aliran tak mantap 
magnetohidrodinamik bagi bendalir Casson dan Jeffrey dengan dan tanpa nanozarah di 
dalam medium berliang beserta syarat sempadan gelincir. Pergerakan aliran bendalir 
terjana oleh penghimpitan dua plat selari beserta tekanan luar. Kesan pelesapan likat 
dan tindak balas kimia ke atas aliran bendalir juga dikaji. Persamaan pembezaan separa 
tak linear diubah menjadi persamaan pembezaan biasa menggunakan transformasi 
keserupaan dan diselesaikan secara berangka melalui kaedah kotak-Keller. Keputusan 
berangka dan grafik diperoleh melalui perisian MATLAB. Sementara itu, pengesahan 
keputusan semasa dilakukan dengan membandingkan dengan keputusan yang telah 
diterbitkan. Oleh itu, persetujuan yang baik diperoleh. Keputusan secara grafik 
bagi profil halaju, suhu, dan kepekatan dianalisis dengan pelbagai parameter fizikal. 
Hasil kajian menunjukkan bahawa peningkatan halaju dan tegasan ricih dinding bagi 
bendalir Casson dan Jeffrey dengan dan tanpa nanozarah adalah disebabkan oleh 
penghimpitan plat. Manakala profil halaju, suhu, dan kepekatan menurun dengan 
kehadiran medan magnet dan juga parameter bendalir Casson dan Jeffrey. Didapati 
bahawa kadar pemindahan haba dan profil suhu meningkat dengan kesan lesapan 
likat dan termoforesis. Dalam nanobendalir, kadar pemindahan jisim adalah perlahan 
dengan peningkatan pergerakan Brownian, manakala ia meningkat dengan tindak balas 
kimia dan termoforesis.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter consists of seven sections. Section 1.2 addresses the research 
background of non-Newtonian fluids, nanofluid, squeezing flow and several important 
physical effects considered in this study. The statement of problem and objectives 
of study are stated in Sections 1.3 and 1.4, respectively. Section 1.5 presents the 
scope of study and followed by the significance of study in Section 1.6. Lastly, thesis 
organization is described in Section 1.7.

1.2 Research Background

There are two types of fluids known as Newtonian and non-Newtonian fluids. 
The fluids are classified according to Newton’s law of viscosity. The law states that the 
shear stress exerted on the fluid is directly proportional to the shear rate between the 
two layers. Mathematically, this law is written as

du nT «  , (1.1)

duwhere t  denotes the shear stress, a is the dynamic viscosity of the fluid and —  isdy
the shear rate or velocity gradient [1]. The illustration of the shear rate between two 
layers is shown in Figure 1.1. Newtonian fluids are the fluid that obey Newton’s 
law of viscosity. These fluids have constant viscosity which means the viscosity
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is independent of the shear stress. Meanwhile, non-Newtonian fluids do not obey 
Newton’s law of viscosity. The viscosity of these fluids depends on the shear stress. 
Examples of non-Newtonian fluids are starch suspensions, custard, ketchup, blood, 
toothpaste and paint [2].

Figure 1.1: The shear rate between two layers [3]

The study of boundary layer flow of non-Newtonian fluids has received great 
attention from researchers due to its widespread in engineering applications such as 
chemical catalytic reactors, nuclear wastewater disposal, production of geothermal 
energy and groundwater hydrology [4]. In general, there are no single constitutive 
equation available in literature which describe the rheology of these fluids. Due to 
the distinct nature of these fluids, several models have been suggested by researchers 
to describe their rheological properties. Most common non-Newtonian models used 
are power law and second grade or third grade. However, these models are unable to 
predict the effect of elasticity and stress relaxation, respectively [5].

Casson fluid is categorized as one of non-Newtonian fluid due to its rheological 
behavior that related to shear stress and velocity gradient. It is a shear thinning fluid 
which exhibits an infinite viscosity at zero velocity gradient, no flow occurs when force 
applied below the yield stress and zero viscosity at infinite velocity gradient. Casson 
model was originally invented by Casson for printing inks and silicon suspension [6]. 
The model is an ideal model for studying the flow characteristics of blood. Some 
substances like red blood cells, protein, fibrinogen and globulin in aqueous base plasma 
need to be included in human blood in order to consider the blood as Casson fluid. 
Common examples of Casson fluid are tomato sauce, honey, jelly, concentrated fruit 
juices and soup [7].
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There is another well-known fluid in the literature among non-Newtonian fluids 
known as Jeffrey fluid. It is a simple linear model which employed time derivatives 
instead of convective derivatives. The model able to describe the viscoelastic properties 
for the polymer industries due to the presence of the relaxation and retardation times 
parameter [8]. It constitutes a shear thinning fluid which possess high shear viscosity 
and yield stress. Figure 1.2 displays the effect of shear stress on viscosity of shear 
thinning fluid. Several authors have been used Jeffrey fluid model for the blood flow 
in narrow arteries [9], food bolus through esophagus [10] and movement of chyme in 
small intestine [11].

---------------------------------------- >Shear stress
Figure 1.2: The effect of shear stress on viscosity of shear thinning fluid [12]

Ultrahigh-performance cooling is an important requirements for various 
industrial technologies. Basically, low thermal conductivity has become main 
limitation in establishing heat transfer fluids with higher energy efficiency that are 
necessary for cooling purposes. Hence, several attempts have been made to boost 
the thermal conductivity of fluids. The utilization of nanofluids in industrial cooling 
has shown good results in energy savings and emissions reductions [13]. Nanofluids 
are engineered colloids made of base fluid and nanoparticles. Choi and Eastman [14] 
were the first discovered the new class of heat transfer fluids created by suspending 
nanometer-sized particles in conventional heat transfer fluids such as ethylene glycol, 
water or kerosene oil. The conventional fluids also known as base fluids are poor heat 
transfer fluids because of its low thermal conductivity. They pointed out that suspended 
nanoparticles provide an effective way to enhance the heat transfer performance of 
base fluids. The nanoparticles employed in nanofluids are made of metals (Al, Cu), 
metal oxides, carbides, nitrides or non-metals (Graphite, carbon nanotubes). The main 
procedures in the preparation of nanofluid are presented in Figure 1.3.

o

Newtonian

Shear thinning
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Figure 1.3: The main procedures in the preparation of nanofluid [15]

Nanofluids are predicted to possess high thermal conductivity compared to 
those base fluids because the suspended ultrafine particles significantly improve its 
capability in energy exchange [16]. Several researchers agreed that a small amount 
of nanoparticles volume fraction (5% or less) can increase the thermal conductivity of 
base fluid by more than 20%. These enhancements depend upon the shape, dimensions, 
thermal properties and volume fractions of suspended particles [17,18].

After the seminal work of Masuda [19] on alteration of thermal conductivity by 
dispersing nanoparticles, many researchers have started showing their interest in this 
field. The primary proposed models for nanofluids behavior are twofold; homogeneous 
flow and dispersion models. However, Buongiorno [20] stated that the nanofluid heat 
transfer coefficient and the dispersion effect in the homogeneous model is assumed 
to be insignificant because of the nanoparticle size. Therefore, he developed an 
alternative model to overcome the limitations of those models. He asserted that the 
heat transfer enhancement in nanofluids happen due to movement of particle in fluids. 
Seven slip mechanisms including the inertia, gravity, Magnus forces, diffusiophoresis, 
fluid drainage, Brownian diffusion and thermophoresis are considered to investigate 
the nanoparticle migration. Later, he deduced that out of seven slip mechanisms, only 
Brownian motion and thermophoresis are responsible for heat transfer performance in 
nanofluids. Based on this outcome, he proposed non-homogeneous equilibrium model
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for convective transport in nanofluids known as Buongiorno’s model. It is noteworthy 
that several researchers adopted the aforementioned model in their study [21-23].

The analysis on the effect of magnetic field in fluid flow is an active 
area of research caused by the geophysic and technology implementation. 
Magnetohydrodynamic (MHD) is the study that concerns the dynamic of magnetic 
fields in electrically conducting fluids. Examples of the fluids are plasma, liquid 
metals, saltwater and electrolytes [24]. Interest in MHD flow began when Hartmann 
invented the electromagnetic pump in 1918. However, the progress on MHD study 
become slower until it was initiated back by Hannes Alfven, a famous Swedish 
physicist. He received Nobel Prize in Physics in 1970 for his work in describing 
the class of MHD waves known as Alfven waves [25]. The research of magnetic 
field effects on the laminar flow of an incompressible electrically conducting fluid is a 
significant problem which correlated to several engineering applications, for example 
MHD power generator, MHD pump and boundary layer control in aerodynamics [26].

The study of MHD together with porous media has been a growing research 
interest because of its diverse engineering usages in groundwater flow, recovery of 
crude petroleum, irrigation problems, chemical catalytic reactors, chromatography, 
thermal and insulating engineering [27]. A porous medium is known as a material that 
consists of a solid matrix with an interconnected empty space. The porosity of a porous 
medium refers to the fraction of empty space in the total volume of material [28]. 
Figure 1.4 depicts the illustration of fluid flow through a porous medium. The first 
experimental study on the flow of mercury in porous media was conducted by Wallace, 
Pierce & Swayer in 1969. The experiments were performed either with the presence 
of magnetic field or combination of magnetic field and electric current. From the 
observations, it showed that the variation in the flow rate of mercury occurs when both 
magnetic field and electric current is applied. However, the presence of magnetic field 
alone did not affect the rate of the fluid flow [29].
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Figure 1.4: The fluid flow through a porous medium [30]

Another important mechanism that influences the behavior of fluid is heat 
transfer. Heat is a form of thermal energy and heat transfer takes place within a 
medium or among neighboring media due to temperature differences [31]. There are 
three basic modes of heat transfer namely conduction, convection and radiation. It is 
shown that convection has received great attention because of the practical usages in 
industries. Convection is the transfer of thermal energy between surface and moving 
fluid at different temperature. The convective heat transfer is divided into free, forced 
and mixed convection. Free or natural convection occurs when the fluid motion is 
induced by buoyancy forces that arises from density variation due to temperature 
and concentration differences. Meanwhile, the fluid motion generated by external 
resources such as pump, fan and fluid machinery is referred as force convection. The 
mechanism of mixed convection occurs when both free and force convection contribute 
to the heat transfer simultaneously. Mixed convection flow is used in many industrial 
problems such as cooling of nuclear reactors when emergency shutdown, cooling of 
electronic devices by fans, a heat exchanger at the low velocity environment and solar 
collectors [32].

The study of convection heat and mass transfer phenomenon in fluid flows has 
gained considerable attention from researchers as it occurs frequently in nature. It can 
occur due to the variation of temperature, concentration or combination of these two. 
The transport of substance or mass caused by concentration gradient is called mass 
transfer. Coupled heat and mass transfer plays a crucial role in absorption, evaporation, 
condensation, extraction and drying. In nature, the present of pure water or air is not 
achievable since the reaction between foreign substance and fluid cannot be refuted 
[33].

6



The effect of viscous dissipation is often neglected in low speed and viscosity 
fluid flow, yet its presence become significant when the fluid velocity and viscosity 
is high. Viscous dissipation is an irreversible process in which the conversion of 
mechanical energy to thermal energy occurs due to viscosity of fluid during the motion 
of fluid particles. The flow pattern is affected because of high velocity gradient 
closer to the surface. The main effect of dissipation is an increment in the fluid 
temperature [34]. The effect was initially considered by Brinkman in 1951. He 
examined the temperature profile of Newtonian fluid in straight circular tube. and 
noticed that the temperature rises caused by dissipation in the close region. The role of 
the viscous dissipation on heat transfer during fluid flow has become subject of interest 
in the industrial applications such as temperature rises in polymer processing, injection 
molding and high rates extrusion [35].

The fluid flow with chemical reaction has attracted the attention of engineers 
due to its importance in design of chemical processing equipment, food processing, 
generating electric power and damage of crops. There are two types of chemical 
reaction namely homogeneous and heterogeneous. The reaction is categorized as 
homogeneous or heterogeneous based on its occurrence in single phase (gaseous, 
liquid, or solid) or two phases (solid and gas, gas and liquid or solid and liquid), 
respectively [36]. Homogenous reaction occurs if the reactants and products are in the 
same phase while heterogeneous reactions have reactants in two or more phases. The 
formation of smog is a significant example representing the first order homogeneous 
chemical reaction. The first order reaction has a reaction rate proportional to the 
reactants concentration [37].

The fluid that exhibits slip effect at a fluid-solid interface have significant 
practical usages involving polish of artificial heart valves and internal cavities. Velocity 
slip is defined as the function of the Knudsen number and the velocity gradient at the 
wall. It is known as the non-adherence of the fluid to a solid boundary. Slip flow 
usually occurs when the size of flow system or the flow pressure is very small [38]. 
A numerous literature is devoted to the flow with no slip condition. However, the
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condition is only valid if the Knudsen number is small, while the velocity slip is 
valid for large Knudsen number. The difference of flow velocity with no-slip and slip 
boundary conditions are portrayed in Figure 1.5. The partial slip often involving the 
fluids like emulsions, suspensions, foams and polymer solutions. The idea of partial 
slip condition was proposed by Beavers and Joseph [39] for the flow past the permeable 
wall. The fluid flow with slip is implemented in the system of microelectromechanical. 
The behavior of flow exhibit slip condition due to the dimension of microscale [40].

Figure 1.5: The flow velocity with no-slip and slip boundary conditions [41]

Squeeze flows are the flow in which constant mass of a material is compressed 
between two parallel plates or nearly parallel boundaries approaching each other. The 
fundamental analysis of squeezing flow has its origins in 18th century and continues 
to receive considerable attention following the pioneer work on basic formulation 
of squeeze flows of Newtonian fluids under lubrication approximation by Stefan 
[42]. Thereafter, various aspects of squeeze flows have been studied by researchers 
focusing on rheometry, parameter identification, constitutive equations and numerical 
simulation. The squeeze flow between parallel plates has promising applications in 
engineering and industrial such as hydraulic lifts, flow inside syringes and nasogastric 
tubes, moving pistons, electric motors and power transmission squeezed film [43].

1.3 Problem Statement

Experts worldwide are actively engaged in conducting experimental studies 
on nanofluids for heat transfer applications such as electronic cooling and heat 
exchangers. The high efficiency of electronic devices has caused heat dissipation
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occurs at a faster rate. Since the amount of heat to be dissipated is large, another 
heat transfer fluid is required instead of the conventional fluids. Several attempts 
have been made by researchers to overcome the limited heat transfer capability of 
conventional fluids due to their low thermal conductivity. A new class of fluids 
was developed by dispersing nanosized particles in the conventional fluids. This 
class offers better cooling and heating performance in industrial process. Existence 
of nanoparticles enhance the thermophysical properties and heat transfer rate of the 
conventional fluids. Although extensive research works have been devoted to the heat 
transfer in Newtonian fluids, it is well recognized that research in non-Newtonian fluids 
has gained considerable attention due to their potential in industries. The theoretical 
study on these fluids is more challenging and interesting due to the complexity of their 
constitutive equations. Consequently, the study of squeezing flow between two parallel 
plates involving non-Newtonian fluid has not been given much consideration compared 
to Newtonian fluid.

Based on the aforementioned matters, this study focuses on unsteady squeezing 
flow of non-Newtonian fluid and nanofluid, which are Casson and Jeffrey fluids 
between two parallel plates. The present study explores the following research 
questions:

(i) How do the mathematical models for MHD non-Newtonian fluid and nanofluid in 
the problem of unsteady squeezing flow through a porous medium with velocity 
slip condition can be formulated?

(ii) How does the combined effects of viscous dissipation and chemical reaction 
will affect the heat and mass transfer characteristics of non-Newtonian fluid and 
nanofluid?

(iii) How to develop a programming code in MATLAB software to find the numerical 
solutions of the problems?

Specifically, the problems considered in this study are as follow:

(i) Unsteady MHD squeezing flow of Casson fluid saturated in a porous medium 
with velocity slip.
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(ii) Unsteady MHD squeezing flow of Casson fluid saturated in a porous medium 
with velocity slip in presence of viscous dissipation and chemical reaction.

(iii) Unsteady MHD squeezing flow of Casson nanofluid saturated in a porous 
medium with velocity slip in presence of viscous dissipation and chemical 
reaction.

(iv) Unsteady MHD squeezing flow of Jeffrey fluid saturated in a porous medium 
with velocity slip.

(v) Unsteady MHD squeezing flow of Jeffrey fluid saturated in a porous medium 
with velocity slip in presence of viscous dissipation and chemical reaction.

(vi) Unsteady MHD squeezing flow of Jeffrey nanofluid saturated in a porous medium 
with velocity slip in presence of viscous dissipation and chemical reaction.

1.4 Objectives of the Study

This study explores the unsteady squeezing flow of Casson fluid and Jeffrey 
fluid between two parallel plates. The presence of nanoparticles in the fluids are taken 
into account. Moreover, the effects of MHD, porous medium, viscous dissipation, 
chemical reaction and slip boundary condition are also analyzed. The governing 
nonlinear partial differential equations are converted into the system of nonlinear 
ordinary differential equations with the help of suitable transformation and then 
numerically solved using Keller-box method. The obtained results are displayed 
graphically and discussed in detail. In order to validate the present method, numerical 
results for skin friction, Nusselt and Sherwood numbers are compared with the existing 
literature results. The objectives of this study are:

(i) To derive the mathematical models of the problems which involve continuity, 
momentum, energy and concentration equations.

(ii) To solve the governing equations numerically using Keller-box method and 
develop numerical algorithm in MATLAB software to obtain the solutions of 
all problems.
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(iii) To examine the effects of pertinent parameters including Casson, Jeffrey, 
Hartmann, porosity, magnetic, viscous dissipation and chemical reaction 
parameters on velocity, temperature and concentration profiles as well as skin 
friction, Nusselt and Sherwood numbers.

1.5 Scope of the Study

This study focuses on the unsteady flow of Casson fluid and Jeffrey fluid. 
The presence of nanofluid is considered. The flow is generated due to squeeze 
between two infinite parallel plates. Further, the effects of MHD, porous medium, 
viscous dissipation, chemical reaction and slip boundary condition are also taken into 
account. Buongiorno’s nanofluid model is implemented in this study. Boundary layer 
approximation is employed to simplify the governing equations. The governing partial 
differential equations are transformed into a set of ordinary differential equations using 
suitable non dimensional variables. The dimensionless nonlinear ordinary differential 
equations are solved numerically via implicit finite difference scheme known as Keller- 
box method. The method is unconditionally stable with a second order convergence. 
It is also found to be very suitable in dealing with nonlinear parabolic problems. The 
detail of this method is described in Cebeci and Bradshaw [44]. The computation 
of numerical results is achieved and plotted graphically using algorithm developed in 
MATLAB software. In order to check the accuracy of present algorithm, the numerical 
results obtained is compared with previously published works as limiting cases. The 
framework for this study is displayed in Figure 1.6.
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Figure 1.6: Research framework
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1.6 Significance of the Study

Nanofluids have been a topic of great interest in the past decade due to their 
heat transfer attributes. The conventional heat transfer fluids like water, ethylene 
glycol and engine oil are unproductive and inadequate to fulfill the current industrial 
and technological demands because of their low heat transfer capability. It is well 
known that metals have thermal conductivities up to three times higher than those 
fluids [45]. Hence, the dispersion of metallic nanoparticles in the conventional 
fluid is implemented to improve the thermal conductivity and enhance the heat 
transfer characteristics of the fluid significantly. Nanofluids have novel properties that 
potentially useful in numerous applications involving heat transfer such as cooling of 
the microchips in computers, improve the performance of coolant in nuclear power 
system and vehicle engines, and biomedical in nano-drug delivery [46]. The classical 
Navier Stokes equations employed in viscous Newtonian fluids fail to simulate the 
critical characteristics of non-Newtonian fluids. The relationship between shear stress 
and rate of strain for non-Newtonian fluids are complicated compared to viscous 
fluid. Several constitutive equations of non-Newtonian fluids based on their empirical 
observations have been introduced. There are some famous non-Newtonian models 
in the literature such as Casson fluid, Jeffrey fluid, second grade fluid and viscoelastic 
fluid [47]. Among various of non-Newtonian fluids, the dynamic of Casson and Jeffrey 
fluids are gained attention due to its practical applications. The flow of blood in 
different geometries using Casson and Jeffrey fluids model is investigated by many 
researchers. The model describes the characteristics of blood flow more accurate 
when it flows through small blood vessels and low shear rate [48-50]. Generally, 
the significances of the study are as follows

(i) Enhance knowledge on the rheological behavior of non-Newtonian fluid, 
especially Casson fluid and Jeffrey fluid.

(ii) To give insight on the physical behavior of nanoparticles on the fluid velocity, 
temperature and concentration profiles.

(iii) Build a better understanding on squeezing flow of Casson and Jeffrey fluids 
between two parallel plates with and without nanoparticles.
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(iv) Increase knowledge of heat and mass transfer on squeezing flow of Casson and 
Jeffrey fluids over porous medium under the influences of viscous dissipation and 
chemical reaction.

(v) Development of MATLAB codes that capable in solving unsteady flow of Casson 
and Jeffrey fluids problems.

(vi) The analysis on squeezing flow of Casson and Jeffrey fluids between two parallel 
plates with the presence and absence of nanoparticles can be used as future 
reference for researchers.

1.7 Thesis Organization

There are ten chapters in this thesis. Chapter 1 discusses the background of 
the study, statement of the problem, objectives, scope and significance of the study. 
The aim of this study is to explores the unsteady squeezing flow of Casson fluid and 
Jeffrey fluid between two parallel plates. The impacts of nanoparticles, MHD, porous 
medium, viscous dissipation, chemical reaction and velocity slip are examined. The 
literature review about MHD squeezing flow between two parallel plates in porous 
medium, heat and mass transfer in MHD squeezing flow with viscous dissipation and 
chemical reaction, squeezing flow of nanofluid and heat and mass transfer in MHD 
flow of Jeffrey fluid are described in Chapter 2. Next, Chapter 3 presents the derivation 
of governing equation of continuity, momentum, energy and mass equations for each 
problem in detail. The governing equation is simplified based on boundary layer 
approximations. Chapter 4 investigates the first problem in the study on time dependent 
MHD squeezing flow of Casson fluid through porous medium with slip condition. 
The second problem is extended by considering the impacts of viscous dissipation 
and chemical reaction on MHD squeezing flow of Casson fluid in porous medium 
as shown in Chapter 5. Meanwhile, Chapter 6 discovers the third problem on MHD 
squeezing flow of Casson nanofluid with viscous dissipation and chemical reaction 
in porous medium. Chapters 7 to 9 present the problems 4 to 6 focusing on Jeffrey 
fluid. The similar effects is discovered as described in problems 1 to 3. Chapter 7
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studies the time dependent MHD squeezing flow of Jeffrey fluid across porous medium 
with slip condition. The MHD squeezing flow of Jeffrey fluid in porous medium with 
viscous dissipation and chemical reaction is analyzed in Chapter 8. Moreover, Chapter 
9 is extended by considering Jeffrey nanofluid in the MHD squeezing flow under the 
influences of viscous dissipation and chemical reaction. All the references cited in this 
thesis are listed. The algorithm developed in MATLAB software is given in Appendix 
A, and the published articles and conferences attended are presented in Appendix B.
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