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ABSTRACT

In present research, the role of Potassium (K) and Germanium (Ge) dopants
in Copper Zinc Tin Sulphoselenide (CZTSSe) absorber thin solar film prepared using
non-vacuum spray pyrolysis deposition technique has been investigated. K-doped
CZTS precursor solution was prepared using one-pot approach with different
concentrations of K (0.0, 0.5, 1.0, 1.5, 2.0 and 2.5) mol %, dissolved using dimethyl
sulfoxide solvent. The solution was then sprayed on soda lime glass (SLG) substrate
using ultrasonic spray coater at 300 °C. The deposited thin films were selenized in
tube furnace using three-step temperature approach (300 °C, 500 °C and 550 °C)
with 30 minutes ramping time in nitrogen environment. Deposited K-doped CZTSSe
thin films were characterized by ultraviolet-visible-near infrared (UV-Vis-NIR)
spectroscopy and 3D microscope to determine the optical properties and thickness of
K-doped CZTSSe structure. X-ray diffractometer was employed for the structural
and crystallinity analyses, whereas field emission scanning electron microscope was
used to study surface morphologies. Energy dispersive X-ray spectrometer was used
to study the elemental composition of the film while Hall effect measurement system
was used for measuring the charge carrier density. Based on results, 1.5 mol % of K-
doped was selected for fabrication process of (K,Ge)-doped CZTSSe solar absorber
layer. Same processes were performed to synthesize thin films except with different
molar concentrations of Ge (10, 15, 20, 25 and 30)% in dimethylformamide as
dissolving agent. The effects of different Ge concentrations were studied. UV-Vis-
NIR spectra have shown high absorption coefficient which was more than
10000 cm-1 for each sample. The bandgap increased as the concentration of Ge was
increased, which inferred the capability of Ge to tune the CZTSSe bandgap to
increase the open circuit voltage. X-ray spectra showed better crystallinity at 25%
and 30% of Ge dopant, while micrographs from field emission scanning electron
microscope revealed that 25% Ge has better crystal growth. The charge carrier
density in the absorber layer also increased with increase in dopant concentration.
Based on the findings, (K,Ge)-doped CZTSSe thin film with 1.5 mol % K and 25%
Ge has the best properties.
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ABSTRAK

Dalam kajian ini, peranan dopan Potassium (K) dan Germanium (Ge) dalam
penyerap filem tipis solar Kuprum Zink Tin Sulfoselenida (CZTSSe) yang
disediakan menggunakan teknik pemendapan semburan pirolisis telah dikaji. Larutan
pelopor K-dop CZTS disediakan dengan menggunakan pendekatan satu-periuk
dengan kepekatan K yang berbeza (0.0, 0.5, 1.0, 1.5, 2.0 dan 2.5) mol %, dilarutkan
menggunakan pelarut dimethil sulfoksida. Larutan tersebut kemudian disembur di
atas substrat kaca soda kapur (SLG) menggunakan penyalut semburan ultrasonik
pada 300 ºC. Filem tipis yang termendap diseleniumkan di dalam tiub relau
menggunakan pendekatan suhu tiga-langkah (300 ºC, 500 ºC dan 550 ºC) dengan
masa peningkatan 30 minit di dalam persekitaran nitrogen. Filem tipis termendap
K-dop CZTSSe telah dicirikan dengan spektroskopi ultra ungu-cahaya tampak-infra
merah dekat dan mikroskop 3D untuk menentukan ciri-ciri optik dan ketebalan
struktur K-dop CZTSSe. Difraktometer sinar-X telah digunakan untuk analisis
struktur dan hablur, manakala mikroskop elektron pengimbas pancaran medan
digunakan untuk mengkaji morfologi permukaan. Spektrometer sinar-X penyebaran
tenaga digunakan untuk mengkaji komposisi unsur filem tersebut manakala sistem
pengukuran kesan Hall digunakan untuk mengukur ketumpatan pembawa cas.
Daripada keputusan tersebut, 1.5 mol % K-dop telah dipilih untuk lapisan penyerap
solar (K,Ge)-dop CZTSSe. Proses-proses yang sama dijalankan untuk menghasilkan
filem tipis kecuali kepekatan molar Ge yang berbeza (10, 15, 20, 25 dan 30)% dalam
pelarut dimethilformamida sebagai bahan pelarut. Kesan kepekatan Ge yang berbeza
telah dikaji. Spektra ultra ungu-cahaya tampak-infra merah dekat menunjukkan
pekali penyerapan yang tinggi melebihi 10000 cm-1 untuk setiap sampel. Lebar jalur
juga bertambah apabila kepekatan Ge ditambah, yang menyimpulkan kebolehan Ge
menala lebar jalur CZTSSe untuk meningkatkan voltan litar terbuka. Spektra sinar-X
menunjukkan penghabluran yang lebih baik pada 25% dan 30% dopan Ge, manakala
mikrograf-mikrograf dari mikroskop elektron pengimbas pancaran medan pelepasan
mendedahkan bahawa 25% Ge mempunyai pertumbuhan hablur yang lebih baik.
Ketumpatan pembawa cas dalam lapisan penyerap juga telah bertambah dengan
pertambahan dopan. Berdasarkan dapatan, filem tipis (K,Ge)-dop CZTSSe dengan
1.5 mol % K dan 25% Ge mempunyai ciri-ciri yang terbaik.
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CHAPTER 1

INTRODUCTION

1.1 Background of Research

Solar energy, these two words have become a compulsory topic to most of

the scientists all over the world in the field of renewable energy sources. Sun is an

unlimited source of energy for earth, which can solve limited energy sources issues

and reduce unnecessary fabrication and transmission losses (Mahjoubi, Bitri et al,

2017; Wallace, Mitzi and Walsh, 2017; Zakutayev, 2017). Since last three decades,

different photovoltaic devices have been developed to convert solar energy into

electrical energy. Starting from silicon based technology to thin film solar cells,

scientists always struggled to find the best combination of materials including base

materials, dopants and solvents, along with fabricating procedures which includes

solution preparation and thin films deposition techniques to produce efficient final

product (Abermann, 2013; Wallace et al, 2017; Yang, Mazalan et al, 2017). Since the

silicon based solar panels are heavy, requires high material consumption and less

economical, researchers turned their focus to thin film solar cells technology and

known as the second generation solar cell (Suryawanshi, Agawane et al, 2013). The

thin film technology is relatively simple, easy and capable to eliminate the

unnecessary cost by reducing materials consumption with an advantage to deposit on

different types of substrates such as glass, stainless steel and plastic (Zhou, Hsu et al,

2013; Song, Ji et al, 2014; Hsieh, Han et al, 2016; López-Marino, Sánchez et al, 2016;

Diwate, Mohite et al, 2017; Liu, Huang et al, 2017; Rana, Kim et al, 2017).

Currently, the main stream thin film solar cells are the amorphous silicon thin film,

cadmium telluride (CdTe), copper indium selenide (CIS), copper indium gallium

selenide (CIGS), the gallium arsenide and copper zinc tin sulphide (CZTS).

Nevertheless, the cadmium and arsenic in cadmium telluride and gallium arsenide

are toxic, while copper indium gallium selenide system contains rare indium element
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which make them an expensive approach to fabricate solar cells (Song et al, 2014;

Pandiyan, Oulad Elhmaidi et al, 2017). Furthermore, CIGS technology was in

questioned as they needed too long period to commercialize and failed to reduce the

cost, while a supplier of CIGS PV module from United States faced bankruptcy

(Song et al, 2014). These events open the door for CZTS thin film solar cell. Apart

from insolvent of rare element, CdTe, CIS and CIGS are facing big challenges in the

future development of solar cells such as green environment issues and economical

fabrication processes, which give advantage to copper zinc tin sulphide (CZTS) thin

film over other thin film solar cells (Song et al, 2014; Mahajan, Stathatos et al, 2018).

The CZTS is recognised as quaternary compounds in kesterite structure with

direct band gap of 1.50 eV and high absorption coefficient (over 104 cm-1 in visible

region). Thus, the CZTS materials can be utilized as absorption layer for thin film

solar cells. Compared with the currently commercialized crystalline Si, CdTe and

CIGS solar cells, CZTS has advantage of abundance in the earth crust and nontoxic

characteristics. Hence, CZTS thin film is recognised as one of the potential candidate

materials for thin film solar absorbing layer as it has the advantages that needed for

an absorber layer (Riha, Parkinson and Prieto, 2009; Steinhagen, Panthani et al, 2009;

Song et al, 2014; Gupta, Gupta and Mohanty, 2017).

In recent years, CZTS thin film solar cells have been successfully fabricated

using vacuum-based approaches. However, the vacuum-based approaches are

expensive and require a special and sophisticated equipment. As the fabrication cost

is one of key challenge in solar industry, the non-vacuum deposition methods such as

spray coating, spin coating, dip coating and doctor blade have been developed and

are the current focus of scientist in solar cell field of research (Song et al, 2014). The

achieved power conversion efficiency for CZTS solar cell at small scale is above

10% for non-vacuum deposition technique which is a quite encouraging achievement

(Song et al, 2014). Here after, CZTS has attracted attention from industries for the

commercial purposes. IBM collaborates with the subsidiary of Showa Shell-Solar

Frontier (specialised in CIS thin film PV technology) to exploit non vacuum

deposition technology for CZTS technology (Song et al, 2014). In 2012, Korea

Daegu Gyeongbuk Institute of Science and Technology (DGIST) has refined a
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vacuum deposition coating suitable for the large-scale production. They had

successfully fabricated the CZTS device with power conversion efficiency of 8%

higher than the world’s highest efficiency at that time, which gave this quaternary

CZTS thin film solar cells a huge boost for the expansion of solar cell market (Song

et al, 2014).

1.2 Problem Statement

Currently, IBM holds the world record for CZTSSe with 12.6% power

conversion efficiency using hydrazine based solvent (Green et al, 2018).

Unfortunately, hydrazine is known as explosive, hepatotoxic and carcinogenic

chemical (Choudhary and Hansen, 1998; Gupta et al, 2017). To increase the power

conversion efficiency of the devices, CZTS thin films are treated with selenium by

changing CZTS structure to CZTSSe. Apart from the selenization, the efficiency of

CZTS thin layer is also improved by introducing different dopants in CZTS host

structure (Hsieh et al, 2016; Phuong, Katahara et al, 2016). Alkali-metals, such as

sodium, lithium and potassium, have shown encouraging results towards the high

performance (Hsieh et al, 2016; López-Marino et al, 2016).

It is highly preferred that the fabrication processes involve less toxic

materials yet give high efficiency, which is the key challenge and requires attention

in non-vacuum based solar cell thin layer deposition approaches (Ki and Hillhouse,

2011). The dimethyl sulfoxide (DMSO) is one of the effective solvent capable to

replace hydrazine, as it is safer and low toxic (Ki et al, 2011; Haass, Diethelm et al,

2015; Xin, Vorpahl et al, 2015). This approach only requires earth abundant metal

salts and has produced solar cells with over 10 % efficiency (Haass et al, 2015;

Schnabel, Abzieher et al, 2015; Xin et al, 2015). DMSO also has high-boiling

temperature (189 °C), which increases the drying time. This may improve the

structure quality of absorber layer and enhances electrical properties of the thin film

(Teichler, Perelaer and Schubert, 2013). Apart from DMSO, dymethylformamide

(DMF) also has been used as a replacement to DMSO for certain materials, which
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are not dissolved in DMSO. DMF has boiling point 153ºC, a bit lower than DMSO,

and still has similar characteristics with the later (Collord and Hillhouse, 2016).

There are few other solvents such as monoethanolamine, ethylene glycol, oleylamine,

trioctylphosphine oxide, oleic acid and octadecene have been used to prepare

precursor solution (Zhou et al, 2013; Gupta et al, 2017). Although some of these

solvents could dissolve much more materials, however, most of them are harmful,

highly toxic, and environmentally hazardous as reported by Laboratory Chemical

Safety Summary (LCSS) of National Institutes of Health (NIH), USA (Wang, Shen

et al, 2017).

The doping of alkali metals group I, significantly improved the efficiency of

copper-based solar cells (Ård, Granath and Stolt, 2000; Granath, Bodegård and Stolt,

2000; Igalson, Kubiaczyk et al, 2001; Rudmann, Bilger et al, 2003; Cho, Lee et al,

2012; Chirilă, Rienhard et al, 2013; Guo, Ford et al, 2013; Laemmle, Wuerz and

Powalla, 2013; Pianezzi, Reinhard et al, 2013; Reinhard, Bissig et al, 2015; Jackson,

Hariskos et al, 2015; Lepetit, Harel et al, 2016; Yang, Huang and Pan, 2017). The

higher carrier concentrations and large grain size are two key parameters to enhance

the efficiency of CZTSSe device (Hsieh et al, 2016). The alkali metals with small

atomic size have higher ability to replace constituents of CZTSSe, and can increase

the carrier concentrations. However, the alkali metals with large atomic size have

large grains and less non-radiative combination due to the relative low melting point

of binary selenides (Hsieh et al, 2016). Between the entire materials of +1 oxidation

group, potassium (K) doped CZTS thin films have shown both high carrier

concentration and large grain size (Hsieh et. al., 2016). However, to the best of the

author’s knowledge, no research has reported the synthesis of CZTSSe with power

conversion efficiency higher than 12.6 % world record thin film solar cells (Green et

al, 2018). This research gap highlights an opportunity to improve the efficiency of

the CZTS solar thin layer.

Hence, in this research, K-doped CZTSSe thin film is prepared and optimized.

The optimized K-doped CZTSSe is further doped with different concentrations of

germanium (Ge) to study the role of Ge in thin film solar cells. It has been reported

that Ge doping in CZTS thin films could improve the power conversion efficiency of
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solar cell devices, by replacing tin (Sn) atoms. Ge can prevent Sn from forming a +II

oxidation state that has high possibility to form deep recombination centers in CZTS

(Bag, Gunawan et al, 2012; Li, Shen et al, 2016). Ge doping also can tune the band

gap in the crystal lattice of the thin film solar cells, which might help to optimize the

band alignment of CZTS/CdS, without controlling the S/Se ratio for CZTSSe

absorber layer (Chen, Walsh et al, 2013; Polizzotti, Repins et al, 2013; Kim, Kim et

al, 2014; Kim, Hiroi et al, 2014; Hages, Levcenco et al, 2015; Khadka and Kim,

2015; Maeda, Kawabata and Wada, 2015; Xin et al, 2015; Khadka, Kim and Kim,

2016b). In some experiments, Ge has found to increase the grain sizes, at the same

time reduced the grain boundaries and enhanced the crystal growth of CZTS thin

films (Li et al, 2016; Sun, Shen et al, 2019). In addition, Ge also has the ability to

increases the carrier lifetime and improves the carrier concentration (Hages et al,

2015).

1.3 Objectives of the Research

The general objective of this research is to study the role of Ge in optimized

K-doped Cu2ZnSn(S,Se)4 thin absorber layer of solar cell device.

The specific objectives for this research are as follows:

1. To optimize the concentration of K in Cu2ZnSnS4 precursor solutions using

dimethyl sulfoxide (DMSO) as the solvent and deposit as thin film on glass

substrate using spray pyrolysis technique.

2. To investigate and optimize Ge as dopant in optimized K-doped

Cu2ZnSn(S,Se)4 precursor using dimethylformamide (DMF) as the solvent

and deposit the thin film using spray pyrolysis technique.

3. To measure the optical, structural, morphological and electrical properties of

deposited K-doped Cu2ZnSn(S,Se)4 and (K,Ge)-doped Cu2ZnSn(S,Se)4 thin

absorber layer.
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1.4 Scope of the Research

K-doped Cu2ZnSnS4 precursor solution with different molar concentration of

K = 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5 mol % are prepared with DMSO solvent using one

pot approach. K is chosen as doping material to the CZTSSe thin film solar cells as K

may improve the crystal growth and minimize defects. For dissolving agent, DMSO

is chosen because it is organic nature and low toxicity. These solutions then are

deposited on the soda lime glass substrates using spray pyrolysis deposition

technique to form thin films. Three-step temperature approach is performed during

selenization process in the tube furnace. After selenization process, these thin films

are characterized to optimize the concentration of K in Cu2ZnSn(S,Se)4 using UV-

Vis-NIR Spectrophotometer, 3D Microscope Surface Profiler, X-Ray Diffractometer

(XRD), Field Emission Scanning Electron Microscope (FESEM), Energy Disperse

X-ray Spectrometer (EDX) and Hall Effect Measurement System (HEMS).

The optimized K-doped Cu2ZnSnS4 is added together with different mol

concentration of [Ge/(Ge + Sn)] % = 0, 10, 15, 20, 25, and 30 %, in DMF solvent

using one pot approach. The solvent is changed from DMSO to DMF as there is

precipitation formed in Ge-doped CZTS solution with DMSO solvent (Collord et al,

2016). Same processes of deposition and selenization of thin film are repeated for

(K,Ge)-doped Cu2ZnSn(S,Se)4 thin films. The solar thin films with different

concentrations of Ge are characterized by UV-Vis-NIR Spectrophotometer, 3D

Microscope Surface Profiler, (XRD), (FESEM), (EDX) and (HEMS).

1.5 Significance of the Research

As the world now is critically looking for devices/systems for renewable

energy with low cost fabrication process, earth abundant materials and environmental

friendly, the present research findings will contribute towards the improvement of

thin film solar cell devices and understanding of the role of K and Ge doping

materials in CZTSSe solar cell absorber layer.
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1.6 Thesis Structure

Chapter 1 includes the research background of CZTS thin film solar cells and

its alloyed family, along with the advantages and problems related to CZTS solar

cells. This chapter also includes the research objectives, scope of study, and the

significance of the research.

Chapter 2 provides the literature review, which is directly and indirectly

related to CZTS thin film solar cell technology. The details of CZTS and CZTSSe

solar cell, its advantages and weaknesses, doping materials that may enhance the

quality of the absorber layer, solvents that are suitable for dissolving related elements

in precursor solution, also deposition methods are discussed briefly.

Chapter 3 includes the details of the research methodology that has been used

to execute this research. The raw materials preparation of the precursor solution, the

deposition technique to deposit CZTS thin film, selenization process and parameters

involved in this research, for both K-doped CZTSSe and (K,Ge)-doped CZTSSe thin

films are listed briefly. The chapter is ended with the flow chart as a summary for the

research methodology.

Chapter 4 explains about characterization techniques used in studying

(K,Ge)-doped CZTSSe absorber layer. Physical, chemical and optical properties of

the thin films were measured by these techniques, while the data were analysed and

discussed in this chapter.

Chapter 5 contains the conclusion drawn from results and future study and

the recommendations in enhancing the CZTSSe thin film solar cells.
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