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ABSTRACT 

Tumor microenvironment has been identified as a crucial player in influencing 

anti-tumor immune response in breast cancer. Alternative treatment using combination 

of carbon nanotubes (CNTs) with hyperthermia (HT) has been reported to reduce 

tumor burden. However, its immunological mechanisms in tumor microenvironment 

is not yet fully understood. Hence, this study was conducted to investigate the effect 

of combination of ox-MWCNT and hyperthermia treatment on immune responses in 

tumor microenvironment. In this study, EMT6 breast cancer cells were inoculated 

subcutaneously into right flank of female Balb/c mice. At day 7 post-inoculation, ox-

MWCNT were injected intratumorally in CNT and combined groups. Then, mice in 

combined and HT were subjected to local HT for three consecutive days. Mice for 

control group was left untreated. Mice were euthanized 10 days post-inoculation and 

their lymph nodes were harvested for flow cytometric (FACS) analysis while the 

tumors were subjected for immunohistochemistry (IHC) analysis. In another 

experiment, mice were euthanized 21 days post-inoculation and tumors were harvested 

for FACS analysis. Results from this study demonstrated that the infiltration and 

maturation of DCs in lymph nodes increased in combined treated groups. In addition, 

FACS analysis of tumor cells showed that combined treatment significantly increased 

the infiltration of CD8+ and CD4+ T cells, natural killer (NK) cells and macrophages. 

Furthermore, combined and HT alone has shown to drastically decrease Tregs 

population in tumor. On the other hand, data from the IHC studies indicated that 

angiogenesis activity increased in combination therapy but had less influence on 

inducing tumor progression. Data presented in this study highlights the potential 

therapeutic use of ox-MWCNT with HT treatment against breast cancer. Information 

gained from this research may contribute to understand on the effect of combined 

treatment on tumor microenvironment and may have implications in breast cancer 

management in clinical setting. 
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ABSTRAK 

Persekitaran mikro tumor telah dikenal pasti sebagai pemain utama dalam 

mempengaruhi tindak balas imun anti-tumor dalam kanser payudara. Rawatan 

alternatif menggunakan gabungan nanotiub karbon (CNTs) bersama hipertermia (HT) 

telah dilaporkan dapat mengurangkan beban tumor. Walaubagaimanapun, mekanisme 

imunologi dalam persekitaran mikro tumor masih belum difahami sepenuhnya. 

Justeru, kajian ini dijalankan untuk mengkaji kesan rawatan hipertermia dimediasi 

oleh ox-MWCNT terhadap tindak balas imun dalam persekitaran mikro tumor. Dalam 

kajian ini, sel kanser payudara EMT6 telah diinokulasi secara subkutaneus di sebelah 

kanan badan mencit Balb/c betina. Pada hari ketujuh inokulasi, ox-MWCNT disuntik 

dalam tumor mencit kumpulan CNT dan gabungan. HT setempat dijalankan pada 

mencit kumpulan gabungan dan HT untuk tiga hari berturut-turut. Mencit untuk 

kumpulan kawalan dibiarkan tanpa rawatan. Mencit dikorbankan 10 hari selepas 

inokulasi dan nod limfa diambil untuk analisis sitometri aliran (FACS) manakala 

tumor diambil untuk analisis imunohistokimia (IHC). Dalam kajian lain, mencit 

dikorbankan 21 hari selepas inokulasi dan tumor diambil untuk analisis FACS. 

Keputusan dari kajian ini menunjukkan bahawa penyusupan masuk dan kematangan 

DC di nod limfa meningkat dalam kumpulan rawatan gabungan. Tambahan pula, 

analisis FC untuk sel tumor menunjukkan rawatan gabungan meningkatkan signifikan 

penyusupan masuk sel CD8+ dan CD4+ T, sel pembunuh semula jadi (NK) dan 

makrofaj. Di samping itu, gabungan dan HT sahaja menunjukkan pengurangan ketara 

populasi Tregs dalam tumor. Selain itu, data daripada analisis IHC menunjukkan 

bahawa aktiviti angiogenesis meningkat dalam terapi gabungan tetapi kurang 

berpengaruh dalam mendorong perkembangan tumor. Data yang dikemukakan dalam 

kajian ini menengahkan potensi terapeutik penggunaan ox-MWCNT dalam rawatan 

HT sebagai pendekatan terapeutik terhadap kanser payudara. Informasi yang didapati 

daripada kajian ini mungkin menyumbang kepada pemahaman tentang kesan rawatan 

menggunakan ox-MWCNT dan HT dalam mikro persekitaran mikro tumor dan 

mungkin mempunyai implikasi dalam pengurusan kanser payudara dalam persekitaran 

klinikal. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Breast cancer is responsible for the leading cause of death among females. 

According to the International Agency for Research on Cancer (IARC), breast cancer 

is ranked fifth as the global cause of death which involved 627,000 death in 2018 

(World Health Organisation, 2018). Current therapeutic approaches include surgery, 

chemotherapy, and radiotherapy are however not necessarily effective in treating 

cancer. The incompetence of current breast cancer treatment has become the major 

factor for these unfavorable progressions. The difficulties in treating cancer are due to 

its distinctive immune evasion, metastases, and resistance to cancer therapies (Yagawa 

et al., 2017). The therapeutic effects of current cancer treatment are also affected by 

post-treatment infections, inefficient drug delivery to tumor site, therapeutic drug 

resistance and tumor relapse (Lee et al., 2018). Collectively, these negative drawbacks 

have increased the urgency to search for effective treatment with minimal risk. Hence, 

researchers are interested on finding cancer therapies that can promote therapeutic 

effect and reduce adverse side effects. These can be achieved by hyperthermia 

treatment which possessed promising potentials in enhancing therapeutic efficacy 

without causing detrimental side effects.  

Hyperthermia or thermotherapy is considered as minimally invasive procedure 

in treating cancer through heat induction. This treatment increases body temperature 

from normal temperature to fever range between 40oC to 44oC which could be applied 

either regionally or whole body (Behrouzkia et al., 2016; Evans et al., 2016). In 

addition, hyperthermia is also reported for wound healing application (Ibelli et al., 

2018) and osteoarthritis treatment (Jeziorski, 2018). Surprisingly, hyperthermia 

treatment also has the potential in reducing tumor burden by targeting the tumor tissue 

and activates the immune system simultaneously (Evans et al., 2016; Cheng et al., 
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2019). Furthermore, heat induction may upregulate anti-tumor response by inducing 

the expression of heat shock protein (Hsp), necrosis in the tissue, and reducing tumor 

vascularization (Xie et al., 2011; Kargozar et al., 2020).  

The integration of CNTs in hyperthermia treatment is known to be beneficial 

in cancer therapy due to its versatile physiochemical properties. Due to its intrinsic 

properties such as good thermal conductor, minimally invasive, harmless, and highly 

effective, CNT has been exploited to be integrated in thermal therapy application for 

example HT treatment. Despite its effect in reducing tumour burden, hyperthermia is 

reported to have an uneven heat distribution, which reduces treatment efficiency. 

There is evidence of nanoparticles-mediated hyperthermia which improves heat 

uniformity. CNTs emerged as a promising nanoparticle used in improving 

hyperthermia efficiency due to its versatile characteristics. This includes its thermal 

and electrical conductivities (Sanginario et al., 2017). Combination of carbon 

nanotubes in hyperthermia treatment facilitates and maintains uniform thermal 

distribution on the targeted tumor tissue. Studies also reported that HT treatment 

combined with CNTs prolonged the survival rate and inhibit the tumour progression 

in tumor-bearing mice (Sanginario et al., 2017; Radzi, 2019). 

It has been established in our laboratory that CNT-mediated hyperthermia 

treatment eliminates tumor burden in EMT6 breast tumor (Radzi, 2019). This 

promising outcome prompted us to further investigate the influence of immune cells 

and microvasculature within the tumor microenvironment thus contributing to the anti-

tumor effect. Therefore, the aim of this study is to investigate the effect of 

hyperthermia treatment combined with CNTs on the tumor microenvironment in 

promoting anti-tumor immune responses.  

1.2 Problem Statement 

Tumor microenvironment consists extracellular matrix and different types of 

cells such as endothelial cells composing tumor vasculature, immune and 

inflammatory cells (Belli et al., 2018). Tumor microenvironment is recognized as an 
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important contributor for tumor development. It is based on a complex series of 

biological events which result in uncontrolled growth and resistance to tumor cell 

eradication. As tumor cells continue to proliferate, the tumor size increases with an 

associated change of the tumor microenvironment (Roma-Rodrigues et al., 2013). The 

interaction between cancer and immune cells results in further alteration of cellular 

components, extracellular matrix restructuration and chaotic vascularization formation 

in the tumor microenvironment (Fang and DeClerck, 2013). Understanding the 

composition of tumor microenvironments which changes during tumor growth allows 

for the development of effective cancer treatments. 

Hyperthermia modifies the tumor microenvironment to control tumor growth 

and relapse. Studies indicated that physiological responses to heat affected the tumor 

microenvironment by upregulating the recruitment of immune cells such as T cells, 

NK cells and macrophages into the tumor microenvironment (Baronzio et al., 2014) 

while suppressing the expression of vascular endothelial growth factor (VEGF) 

(Sawaji et al., 2002). Despite these encouraging findings, consistent heat distribution 

inside tumors is difficult to accomplish because of inadequate heat localization in 

tumor and short heat retention time. The efficiency of heat delivery throughout the 

tumor cell can also be affected by the absorption of heat energy by the normal tissue 

that unintentionally caused a non-specific damage to the healthy neighboring tissue 

(Cheng et al., 2019). Hence, CNT is suggested as a potential candidate to address the 

limitations encountered in this treatment.  

Despite numerous studies which proved that CNT-mediated hyperthermia 

reduces tumor burden, understanding of tumor microenvironment following the 

treatment is inadequate. There is a need for further investigation to elucidate the 

immune response mechanisms. It is of interest to see how CNT-mediated hyperthermia 

treatment alters the tumor microenvironment which contributes to anti-tumor 

response. 
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1.3 Research Objectives 

The followings are the proposed objectives for this study: 

(a) To investigate the effect of HT and CNTs treatment on dendritic cells 

activation of immune cells in the lymph nodes by flow cytometric analysis.  

(b) To assess the infiltration of immune cells in the tumour microenvironment 

following treatment with hyperthermia and CNTs using flow cytometric 

analysis.  

(c) To determine the expression of angiogenesis markers in the tumour 

microenvironment following the treatment of hyperthermia and CNTs using 

immunohistochemical analysis. 

1.4 Scope of the Study 

This study focused on the therapeutic effect of hyperthermia treatment in 

combination with carbon nanotubes (CNTs) for the treatment of breast cancer. This 

research involved inoculating EMT6 breast cancer cells into the animal model 

(murine) followed by administration of carbon nanotubes into the tissue and treatment 

with a near-infrared radiation (NIR). The study includes the flow cytometric analysis 

of lymph nodes and tumor. In addition, immunohistochemical analysis of the tissue of 

the tumor were also conducted. The protocols involved are approved protocol by the 

Universiti Kebangsaan Malaysia Animal Ethics Committee (UKM AEC; code 

65/2019).   

1.5 Significance of the Study 

The goal of this study is to explore CNT-mediated hyperthermia treatment as 

alternative breast cancer treatment. This study highlights benefits of CNT-mediated 
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hyperthermia in improving anti-tumor response which lead to inhibition of tumor 

growth, enhances anti-tumor response, and subsequently reduces the mortality rate. 

Fundamental knowledge from this project may have a direct implication for breast 

cancer treatment in clinical settings. This research highlights the benefit of non-

invasive nanomaterials-mediated treatment, which will reduce economic burden in 

breast cancer cases. 
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