EFFECT OF NATURAL FERRITE OXIDE NANOPARTICLES ON STRUCTURAL AND MAGNETO OPTIC PROPERTIES OF ERBIUM DOPED TELLURITE GLASS

PUZI ANIGRAHAWATI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

> Faculty of Science Universiti Teknologi Malaysia

> > SEPTEMBER 2022

DEDICATION

To my beloved father (Alm. H. Abu Bukhori) and my mother (Almh. Icah Napisah) To my beloved husband Mohd Fitri Bin Bachok To my brothers and sisters (Alm. Denny, Alm. Robby, Fitri, Alm. Faiz and Tita) for their enduring love, motivation and support

ACKNOWLEDGEMENT

Alhamdulillah, thanks to Allah for giving me this opportunity, the strength and the patience to complete my thesis, after all the challenges and difficulties.

First and foremost, I would like to express my greatest gratitude to my supervisor Prof. Dr. Md. Rahim Sahar, who have guide and helped me a lot throughout this thesis process. I have been extremely lucky to have a supervisor who cared so much about my work, and who responded to my questions and queries so promptly. His advices on the morality and affability are certainly expensive lessons for me.

I am grateful to Mr. Mohd Jaafar bin Mohamed Raji, Mr. Abdul Rahman, Mrs. Nurhayah, Mrs. Radiyah, Mr. Yus, Mr. Zainal, Mrs. Anisah, they were help and cooperation in this project from the start and were a great help iun running the experiments at the laboratory.

Thanks to my supportive and friendship, Nurulhuda, Ezza Syuhada, Siti Amlah, Khamisah, Asmahani, and AOMRG collage for were always a great support in all my struggles and frustrations in my new life and studies in this country. Thanks also for questioning me about my ideas, helping me think rationally and even for hearing my problems.

My thanks also to Ministry of Education Malaysia for the MIS (Malaysia International Scholarship) award and financial support throughout this research study, which is really rewarding.

ABSTRACT

Two series of erbium doped magnesium tellurite glasses embedded with Fe₃O₄ nanoparticles (NPs) with composition (89-x) TeO₂ - 10MgO - 1Er₂O₃ - (x) Fe₃O₄, where (x = 0, 0.2, 0.4, 0.6 and 0.8 mol%) and (89.6-y) TeO₂-10MgO-(y) Er₂O₃-0.4Fe₃O₄, where (y = 0.2, 0.4, 0.6, 0.8 and 1.0 mol%) were prepared using melt quenching technique. Thorough characterizations of these glasses were made using Xray diffraction (XRD), differential thermal analyzer (DTA), ultraviolet-visible-nearinfrared (UV-Vis-NIR), Fourier transform infrared (FTIR), Raman spectroscopy, photoluminescence (PL) spectroscopy, energy dispersive X-ray (EDX), high resolution transmission electron microscopy (HRTEM), vibrating sample magnetometer (VSM) and electron spin resonance (ESR) spectroscopy. The presence of a broad hump in the X-ray diffraction (XRD) pattern confirms the amorphous nature of glass. HRTEM images verified the existence of Fe NPs with average diameter of 4.8 nm (TMEF3 sample) and 4.5 nm (TMFE3 sample) corresponding to d₃₁₁ spacing. The glass density and molar volume were found to be in the range of 4.03-5.27 gcm⁻³ and $37.20-28.54 \text{ cm}^3 \text{ mol}^{-1}$, respectively. It was also found that as the amount of Fe₃O₄ NPs was increased, the glass stability increased. DTA analysis demonstrated an increase in the glass transition temperature from 321 °C to 363 °C with the increase of Fe₃O₄ NPs. The UV-Vis-NIR absorption spectra revealed seven absorption bands centered at 452 nm, 522 nm, 571 nm, 656 nm, 795 nm, 978 nm and 1528 nm which are assigned to the transition from ground state ${}^{4}I_{15/2}$ to the various excited levels ${}^{4}F_{7/2}$, ${}^{2}\text{H}_{11/2}$, ${}^{4}\text{S}_{3/2}$, ${}^{4}\text{F}_{9/2}$, ${}^{4}\text{I}_{9/2}$, ${}^{4}\text{I}_{11/2}$, ${}^{4}\text{I}_{13/2}$, respectively. Surface plasmon resonance (SPR) peaks of Fe₃O₄ NPs were observed at 408 nm. The FTIR and Raman spectra revealed modification in network structures which is evident from wavenumber of [TeO₄] and [TeO₃] structural units located around 600 cm⁻¹ and 700 cm⁻¹, respectively. The luminescence of Er³⁺ ion under 375 nm excitation revealed four peaks centered at 420 nm, 460 nm, 490 nm and 516 nm which correspond to light green (${}^{4}F_{3/2} \rightarrow {}^{4}I_{15/2}$), light green (${}^{4}F_{7/2} \rightarrow {}^{4}I_{15/2}$), green (${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$) and red (${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$) emissions, respectively. The Judd-Ofelt intensity parameter, spontaneous emission probabilities, radiative lifetime and branching ratios of all transitions were calculated based on Judd-Ofelt theory. The glass magnetization in magnetic field up to 10 kOe at room temperature was found to be in the range of 0.012 - 0.052 emu g⁻¹. The g-factor values of 1.99 to 3.06 indicate that the glass samples are paramagnetic. The result of the present work revealed that the investigated glass can be a potential material for magneto-optic devices and solid-state lasers.

ABSTRAK

Dua siri kaca magnesium tellurite dengan Fe₃O₄ nanopartikel (NPs) dengan komposisi (89-x)TeO₂-10MgO-1Er₂O₃-(x)Fe₃O₄, dengan (x = 0, 0.2, 0.4, 0.6 dan 0.8 mol%) dan (89.6-y)TeO₂-10MgO-(y)Er₂O₃-0.4Fe₃O₄, dengan (y = 0.2, 0.4, 0.6, 0.8) dan 1.0 mol%) disediakan menggunakan teknik lindap-kejut leburan. Pencirian kaca dilakukan melalui pembelauan sinar-X (XRD), analisis pembezaan terma (DTA), spektroskopi ultra lembayung-boleh nampak inframerah hampir (UV-Vis-NIR), spektroskopi transformasi Fourier inframerah (FTIR), spektroskopi Raman, spektroskopi fotoluminesen (PL), spektroskopi sebaran tenaga sinar-X (EDX), mikroskopi elektron penghantaran resolusi tinggi (HRTEM), magnetometer getaran sampel (VSM) dan spektroskopi resonans spin elektron (ESR). Kewujudan puncak yang lebar pada corak pembelauan sinar-X (XRD) membuktikan sifat amorfus kaca. Imej HRTEM pula membuktikan kewujudan zarah nano Fe dengan purata diameter 4.8 nm (sampel TMEF3) dan 4.5 nm (sample TMFE3) yang sepadan dengan jarak d₃₁₁. Ketumpatan kaca dan isipadu molar didapati masing-masing berada di dalam julat 4.03 - 5.27 g cm⁻³ dan 37.20 - 28.54 cm³ mol⁻¹. Turut ditemui bahawa apabila jumlah NPs Fe₃O₄ meningkat, kestabilan kaca turut meningkat. Analisis DTA menunjukkan peningkatan suhu peralihan kaca daripada 321 °C hingga 363 °C dengan bertambahnya kandungan NPs Fe₃O₄. Spektrum UV-Vis-NIR menunjukkan tujuh jalur serapan yang berpusat di 452 nm, 522 nm, 571 nm, 656 nm, 795 nm, 978 nm dan 1528 nm yang mewakili transisi daripada keadaan asas ${}^{4}I_{15/2}$ kepada pelbagai keadaan teruja ${}^{4}F_{7/2}$, ${}^{2}\text{H}_{11/2}$, ${}^{4}\text{S}_{3/2}$, ${}^{4}\text{F}_{9/2}$, ${}^{4}\text{I}_{9/2}$, ${}^{4}\text{I}_{11/2}$, ${}^{4}\text{I}_{13/2}$. Puncak resonans plasmon permukaan (SPR) bagi NPs Fe₃O₄ dicerap pada 408 nm. Spektrum transformasi Fourier inframerah (FTIR) dan spektrum Raman menunjukkan pengubahsuaian dalam struktur rangkaian dan dibuktikan melalui nombor gelombang bagi struktur unit [TeO₄] dan [TeO₃] yang masing-masing terletak di sekitar 600 cm⁻¹ dan 700 cm⁻¹. Luminesens bagi ion Er³⁺ di bawah pengujaan 375 nm menunjukkan empat puncak berpusat di 420 nm, 460 nm, 490 nm dan 546 nm yang masing-masing berpadanan dengan pancaran warna hijau muda (${}^{4}F_{3/2} \rightarrow {}^{4}I_{15/2}$), hijau muda (${}^{4}F_{7/2} \rightarrow {}^{4}I_{15/2}$), hijau (${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$) dan merah (${}^{4}S_{3/2}$ \rightarrow ⁴I_{15/2}). Pembolehubah keamatan Judd-Ofelt, kebarangkalian pancaran spontan, jangka hayat radiatif dan nisbah cabangan bagi semua transisi telah dikira berdasarkan teori Judd-Ofelt. Kemagnetan kaca dalam medan magnet sehingga 10 kOe di bawah suhu bilik didapati dalam julat 0.012 - 0.052 emu g⁻¹. Nilai faktor-g antara 1.99 hingga 3.06 menandakan bahawa sampel kaca adalah bersifat paramagnetik. Hasil dari kajian ini membuktikan bahawa kaca yang diselidiki merupakan bahan berpotensi untuk peranti optik termagnet dan laser keadaan pepejal.

TABLE OF CONTENTS

TITLE

DECLARATION	iii
DEDICATION	iv
ACKNOWLEDGEMENT	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	XX
LIST OF SYMBOLS	xxii
LIST OF APPENDICES	xxiv

CHAPTER 1	INTRODUCTION	1
1.1	Introduction	1
1.2	Problem Statement	4
1.3	Objective of the research	6
1.4	Scope of Study	6
1.5	Significance of the study	7
CHAPTER 2	LITERATURE REVIEW	9
2.1	Introduction	9
2.2	Definition of Glass	9
2.3	The Glass Formation	10
2.4	Tellurite Glass System	12
2.5	Rare Earth Ions	14
2.6	Fe ₃ O ₄	16
2.7	Nanoparticle	19
2.8	X-Ray Diffraction (XRD)	20

	2.9	Physical Properties	22
		2.9.1 Density and Molar Volume	22
	2.10	Differential Thermal Analyzer (DTA)	23
	2.11	Optical Properties	26
	2.12	Absorption	26
		2.12.1 Emission 26	
		2.12.2 Interband Absorption	27
		2.12.3 UV-Vis-NIR Spectroscopy	29
	2.13	Fourier Transform Infrared Spectroscopy (FTIR)	33
	2.14	Raman Spectroscopy	38
	2.15	Photoluminescence Spectroscopy (PL)	40
	2.16	Light emission in solids	42
		2.16.1 Interband Luminescence	44
	2.17	Energy Dispersive X-Ray (EDX) Spectroscopy	46
	2.18	Transmission Electron Microscopy (TEM)	48
	2.19	Vibrating Sample Magnetometer (VSM)	51
		2.19.1 Diamagnetism	52
		2.19.2 Paramagnetism	53
		2.19.3 Ferromagnetism	54
		2.19.4 Ferromagnetic Hysteresis	55
	2.20	Electron Spin Resonance (ESR)	58
	2.21	Judd-Ofelt Theory	64
СНАРТЕ	ER 3	RESEARCH METHODOLOGY	69
	3.1	Introduction	69
	3.2	Raw Material	69
	3.3	Powder Mixing	69
	3.4	Nominal Composition and Batch Calculation	70
	3.5	Nanoparticles Preparation	71
	3.6	Glass Preparation	72
	3.7	X-Ray Diffraction (XRD)	74
	3.8	Density and Molar Volume Measurement	75

	3.9	Differential Thermal Analysis (DTA)	75
	3.10	Energy Dispersive X-Ray (EDX) Spectroscopy	76
	3.11	UV-Vis-NIR Spectroscopy	77
	3.12	Fourier Transform Infrared Spectroscopy (FTIR)	79
	3.13	Raman Spectroscopy	80
	3.14	Photoluminescence Spectroscopy (PL)	80
	3.15	Transmission Electron Microscopy (TEM) and High- Resolution Transmission Electron Microscopy (HRTEM)	82
	3.16	Electron Spin Resonance (ESR)	83
	3.17	Vibrating Sample Magnetometer (VSM)	85
CHAPTE	R 4	RESULT AND DISCUSSION	87
	4.1	Introduction	87
	4.2	Glass Composition and Formation	87
	4.3	X-Ray Diffraction (XRD)	90
	4.4	Transmission Electron Mocroscopy (TEM)	91
	4.5	Energy Dispersive Analysis of X-ray	96
	4.6	Physical Properties	98
	4.7	Differential Thermal Analysis (DTA)	104
	4.8	UV-Vis-NIR Spectroscopy	107
	4.9	Fourier Transform Infrared (FTIR) Spectroscopy	115
	4.10	Raman Spectroscopy	120
	4.11	Luminescence Spectroscopy	128
	4.12	Vibrating Sample Magnetometer (VSM)	132
	4.13	Electron Spin Resonance (ESR)	140
	4.14	Judd Ofelt Analysis	143
CHAPTE	R 5	CONCLUSION AND SUGGESTION	159
	5.1	Conclusion	159
	5.2	Suggestion	161
REFERE	NCES		163
LIST OF	PUBL	ICATIONS	217

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Indirect optical band gap energy of various tellurite glass system.	31
Table 2.2	Urbach energy of various tellurite glass system.	32
Table 2.3	FTIR peak positions and band assignments of glass system from other reports	37
Table 2.4	The Magnetic parameters of various magnetic material doped glass system	57
Table 2.5	Summary of some of the typical frequency bands in ESR spectroscopy for $g = g_e$ designations.	60
Table 2.6	JO intensity parameter ($\Omega_{\lambda} 10^{-20} \text{ cm}^{-2}$) of various Er^{3+} doped glass system	67
Table 3.1	A nominal compositions of (89-x) TeO_2 -10MgO-1Er ₂ O ₃ -(x) Fe ₃ O ₄ glass.	70
Table 3.2	A nominal compositions of (88.6-y) TeO_2 -10MgO-(y) Er_2O_3 -0.4Fe ₃ O ₄ glass.	70
Table 4.1	Nominal compositions of the glass.	88
Table 4.2	The EDX spectra of detected elements in weight% and atomic% for the TMEF2 sample.	97
Table 4.3	The EDX spectra of detected elements in weight% and atomic% for the TMFE3 sample.	98
Table 4.4	Density, molar volume and refractive index of (89-x) TeO ₂ - 10MgO-1Er ₂ O ₃ -(x) Fe ₃ O ₄ the glasses system (Series I)	99
Table 4.5	Density, molar volume and refractive index of (88.6-y) TeO ₂ - $10MgO$ -(y) Er ₂ O ₃ - 0.4 Fe ₃ O ₄ the glasses system (Series II)	101
Table 4.6	The value for Tg , Tx , Tx - Tg and Tm for magnesium tellurite glass system	105
Table 4.7	The value of indirect E_{opt} for the glass for Series I and Series II. The Urbach energy ΔE is also inserted.	108
Table 4.8	The peaks position (in cm^{-1}) in the IR spectra of glass samples with different concentration of Fe ₃ O ₄ NPs ions for series I.	118

Table 4.9	The peaks position (in cm^{-1}) in the IR spectra of glass samples with different concentration of Er^{3+} ions for series II.	119
Table 4.10	Raman peak shift (in cm^{-1}) and band assignment of the glass.	124
Table 4.11	Raman peak shift (in cm^{-1}) and band assignment of the glass.	127
Table 4.12	The emission peaks of Er ³⁺ in glass system	131
Table 4.13	Experimental and calculated magnetic properties of the glasses for Series I.	134
Table 4.14	Experimental and calculated magnetic properties of the glasses.	135
Table 4.15	ESR parameters of the glasses at various concentration of $Fe_3O_4 NPs$	141
Table 4.16	Experimental and calculated oscillator strengths (×10 ⁻⁶) and root mean square error ($\delta_{rms} \times 10^{-6}$) of Er ³⁺ doped tellurite glass with different concentrations of Fe ₃ O ₄ NPs.	145
Table 4.17	Experimental and calculated oscillator strengths (×10 ⁻⁶) and root mean square error (δ_{rms} ×10 ⁻⁶) of Er ³⁺ doped tellurite glass with different concentrations of Er ₂ O ₃ .	146
Table 4.18	The Judd-Ofelt parameters ($\Omega_t \times 10^{-20} \text{ cm}^2$) and quality factor (Ω_4/Ω_6) of of (89-x) TeO ₂ -10MgO-1Er ₂ O ₃ -(x) Fe ₃ O ₄ (mol%) glass.	148
Table 4.19	The Judd-Ofelt parameters $(\Omega_t \times 10^{-20} \text{ cm}^2)$ and quality factor (Ω_4/Ω_6) of (89.6-y) TeO ₂ -10MgO-(y) Er ₂ O ₃ -0.4Fe ₃ O ₄ glass.	150
Table 4.20	Total spontaneous transition probabilities (A, s ⁻¹), Branching ratio (β , %) and radiative lifetime (τ_r , μ s) of Er ³⁺ doped tellurite glass with different concentration of Fe ₃ O ₄ NPs.	152
Table 4.21	Total spontaneous transition probabilities (A, s ⁻¹), Branching ratio (β , %) and radiative lifetime (τ_r , μ s) of Er ³⁺ doped tellurite glass with different concentration of Er ₂ O ₃ .	153

LIST OF FIGURES

FIGURE NO	D. TITLE	PAGE
Figure 2.1	The structural difference between (a) crystalline and (b) amorphous (Hussin, 2011)	10
Figure 2.2	Relation between glassy, liquid and crystalline solids (Hussain et al., 2008)	11
Figure 2.3	Structural units in tellurite glass: Left: TeO ₄ trigonal bipyramid (tbp), Middle: TeO ₃₊₁ polyhedron and Right: TeO ₃ trigonal pyramid (tp) (Sekiya et al., 1989)	13
Figure 2.4	(a) α - and β -forms of TeO ₂ crystal and (b) their three and two dimensional networks, respectively (Mirgorodsky, 2000).	14
Figure 2.5	Energy level diagram for Er^{3+} ions (Vemula et al., 2012)	16
Figure 2.6	A section of the network of Fe_3O_4 (Khodabakhshi et al., 2014)	16
Figure 2.7	(a) Face-centered cubic spinel structure of Fe_3O_4 . (b) Magnification of one tetrahedron and one adjacent octrahedron sharing an oxygen atom (Martin, 2007)	17
Figure 2.8	Inverse spinel structure of magnetite. The large spheres represent the oxygen atoms, the small dark spheres the site A and the small bright spheres denotes the B site. (Elena, 2004)	18
Figure 2.9	The mechanism of localized surface plasmon resonance showing the electron cloud that take part in the collective oscillation (Willets et al., 2007).	19
Figure 2.10	Bragg's Law for the periodic arrangement atoms	20
Figure 2.11	Schematic XRD spectra in (a) crystal, (b) glass	21
Figure 2.12	X-ray diffraction pattern for tellurite glass (Widanarto et al., 2013)	22
Figure 2.13	DTA thermogram of a lithium tellurite glass with the composition 70TeO_2 - $10\text{Bi}_2\text{O}_3$ - 20ZnO (Senthil et al., 2004)	24
Figure 2.14	DTA curve of TeO_2 -Fe ₃ O ₄ -ZnO-Li ₂ O-Er ₂ O ₃ (Widanarto et al., 2013).	25
Figure 2.15	Schematic layout of differential thermal analyser	25
Figure 2.16	The process of Absorption	26

Figure 2.17	The process of atomic emission	27
Figure 2.18	Interband optical absorption (Fox, 2010)	28
Figure 2.19	Interband transition in solids: (a) direct band gap, (b) indirect band gap (Fox, 2010)	29
Figure 2.20	Absorption spectrum of multicomponent tellurite glass doped with Er^{3+} (Sajna et al., 2015)	30
Figure 2.21 A	typical Tauc plot of $(\alpha \hbar \omega)^{1/n}$ versus photon energy $(\hbar \omega)$ for direct and indirect transition of tellurite glass (Widanarto et al., 2013).	31
Figure 2.22	The curve of Urbach energy versus photon energy $(\hbar\omega)$ for of tellurite glass (Widanarto et al., 2013).	32
Figure 2.23	Simple layout for UV-VIS-NIR spectroscopy (Skoog, 2006).	33
Figure 2.24	Definition of transmittance	34
Figure 2.25	Typical stretching and bending vibrational modes (Coleman, 1993)	35
Figure 2.26	FTIR spectra of prepared glass samples (Aziz et al., 2017)	36
Figure 2.27	Fourier Transform Infrared instrument setup (Coleman, 1993)	37
Figure 2.28	Molecular energy levels diagram illustrating Stokes and anti-Stokes Raman scattering and resonance Raman scattering (https://www.technospex.com/resources/introduction-to- raman-spectroscopy/)	38
Figure 2.29	The schematic diagram of Raman spectrometer	40
Figure 2.30	Down-conversion luminescence spectra of the glasses under 500 nm excitation at room temperature (Widanarto et al., 2013)	41
Figure 2.31	Schematic diagram of Photoluminescence experimental setup (Lakowicz, 2006)	42
Figure 2.32	A schematic diagram showing the light emitting in a solid (Fox, 2010)	43
Figure 2.33	A schematic diagram of the interband luminescence prosess in a direct band gap material (Fox, 2010)	45
Figure 2.34	A schematic diagram of the interband luminescence process in an indirect gap material (Fox, 2010)	46

Figure 2.35	Electron transitions in an atom producing characteristic X- rays	47
Figure 2.36	EDX schematic diagram	47
Figure 2.37	EDX spectra of 30B ₂ O ₃ -57TeO ₂ -10MgO-1Eu ₂ O ₃ -2Mn ₃ O ₄ glass (Aziz <i>et al.</i> , 2017)	48
Figure 2.38	TEM image and Gaussian distribution of a glass containing nanoparticles (Anigrahawati et al., 2015)	49
Figure 2.39	HRTEM image of lattice spacing of Fe ₃ O ₄ NPs (Watt et al., 2017)	49
Figure 2.40	Schematic diagram of Transmission Electron Microscope (TEM) (Prithviraj, 2011).	50
Figure 2.41	Diamagnetic material; (a) without magnetic field, (b) magnetic field applied and (c) magnetic field removed (O'Driscoll et al., 2015).	52
Figure 2.42	Paramagnetic material. (a) without magnetic field, (b) magnetic field applied and (c) magnetic field removed (O'Driscoll et al., 2015).	53
Figure 2.43	Ferromagnetic material. (a) without magnetic field, (b) magnetic field applied and (c) magnetic field removed (O'Driscoll et al., 2015).	54
Figure 2.44	Hysteresis curve of a ferromagnetic material (Encyclopedia, 1996)	55
Figure 2.45	The magnetization against external magnetic field of the glass samples (Aziz et al., 2017)	57
Figure 2.46	The schematic diagram of Vibrating Sample Magnetometer (VSM) (Kumar, 2004)	58
Figure 2.47	Energy level splitting of the free electron spin levels in an external static magnetic field H_0 (Dyson, 1955)	59
Figure 2.48	The first derivative of the absorbed microwave power dP_{abs}/dH (left) as measured by ESR spectrometer and through the integration the absorbed microwave power P_{abs} (right) is obtained as a function of the static magnetic field H (Dyson, 1955).	61
Figure 2.49	Room temperature EPR absorption spectra of x (ZnO, Fe ₂ O ₃) (65-x) SiO ₂ 20(CaO, P ₂ O ₅)15Na ₂ O glasses (Singh et al., 2010)	63
Figure 2.50	Schematic diagram of Electron Spin Resonance spectrometer (Kwon et al., 2014)	64
Figure 3.1	Glass Preparation	73

Figure 3.2	Schematic diagram of X-Ray Diffraction	74
Figure 3.3	Schematic diagram of differential thermal analyser	76
Figure 3.4	Schematic of the Swift ED3000 EDX machine (Williams, et.al., 2009).	77
Figure 3.5	The schematic diagram of the UV-Vis-NIR Spectrophotometer (Model: UV-3101 PC).	78
Figure 3.6	Schematic of the Perkin Elmer FTIR 1660 spectrometer	79
Figure 3.7	The schematic diagram of Raman spectrometer (Model Yvon HR 800 UV)	80
Figure 3.8	Schematic diagram of Photoluminescence Spectrometer (Model: Perkin Elmer LS-55)	81
Figure 3.9	Schematic diagram of Transmission Electron Microscope (TEM) (Prithviraj, 2011)	83
Figure 3.10	Schematic diagram of Electron Spin Resonance spectrometer (Model JOEL FA100 Chiba)	84
Figure 3.11	The schematic diagram of Vibrating Sample Magnetometer (Lake Shore 7400)	86
Figure 4.1	The various colour appearance of the glass samples	89
Figure 4.2	A typical x-ray diffraction pattern of (89-x) TeO ₂ -10MgO- 1Er ₂ O ₃ -(x) Fe ₃ O ₄ glass samples	90
Figure 4.3	A typical x-ray diffraction pattern for (88.6-y) TeO_2 - 10MgO-(y) Er_2O_3 -0.4 Fe_3O_4 glass samples	91
Figure 4.4	(a) TEM image for TMEF3 glass (b) Histogram of the distribution of nanoparticles for TMEF3 glass	92
Figure 4.5	(a) TEM image for TMFE3 glass (b) Histogram of the distribution of nanoparticles for TMFE3 glass	93
Figure 4.6	(a) TEM image for TMFEC glass (b) Histogram of the distribution of nanoparticles for TMFEC glass	94
Figure 4.7	Selected area electron diffraction pattern (SAED) of the TMFE3 glass	95
Figure 4.8	High-resolution TEM image of one single NPs	96
Figure 4.9	EDX spectrum of TMEF2 glass sample.	97
Figure 4.10	EDX spectrum of TMFE3 glass sample	98
Figure 4.11	Density and molar volume against the Fe ₃ O ₄ NPs concentration	99

Figure 4.12	Density and molar volume against the Er ₂ O ₃ concentration.	101
Figure 4.13	Ilustration of lattice strain between ferrite and tellurium atom	102
Figure 4.14	Fe ₃ O ₄ NPs concentration dependent variation in refractive index of glass samples.	103
Figure 4.15	Er ₂ O ₃ concentration dependent variation in refractive index of glass samples.	104
Figure 4.16	DTA curves of prepared magnesium-tellurite glasses containing for TMEF3 of Series I glass system	105
Figure 4.17	Thermal parameters T_x , T_g , T_m and T_x - T_g versus Fe ₃ O ₄ NPs concentration	106
Figure 4.18	Thermal parameters T_x , T_g , T_m and T_x - T_g versus Er ₂ O ₃ concentration	107
Figure 4.19	The plot of $(\alpha h \upsilon)^{1/2}$ against energy, $h\upsilon$ for TMEF3 glass.	109
Figure 4.20	The plot of $(\alpha h v)^{1/2}$ against energy, hv for TMFE2, TMFE4, TMFE5 and TMEFC glass.	109
Figure 4.21	E^{I}_{opt} vs Fe ₃ O ₄ concentration (mol%).	110
Figure 4.22	E^{I}_{opt} vs Er ₂ O ₃ concentration (mol%)	110
Figure 4.23	$ln(\alpha)$ against photon energy $(h\nu)$ for TMEF3 glasses	112
Figure 4.24	<i>ln</i> (α) against photon energy (<i>hv</i>) for TMFE2, TMFE4, TMFE5 and TMEFC glasses	112
Figure 4.25	ΔE vs Fe ₃ O ₄ NPs concentration (mol%).	113
Figure 4.26	ΔE vs Er ₂ O ₃ concentration (mol%).	113
Figure 4.27	UV-Vis-NIR absorption spectra of the tellurite glass system	114
Figure 4.28	The absorption spectrum of glass without Er ³⁺ ion for TMF (sample SPR). There are SPR bands, a SPR located at 408 nm	115
Figure 4.29	Fe ₃ O ₄ NPs concentration (mol%) dependent IR transmission bands of (89-x) TeO ₂ -10MgO-1Er ₂ O ₃ -(x) Fe ₃ O ₄ glass samples.	116
Figure 4.30	The TeO ₄ tbp and TeO ₃ tp group versus Fe_3O_4 NPs concentration	117
Figure 4.31	Er ₂ O ₃ concentration (mol%) dependent IR transmission bands of (89.6-y) TeO ₂ -10MgO-(y) Er ₂ O ₃ -0.4Fe ₃ O ₄	119

Figure 4.32	The TeO_4 tbp and TeO_3 tp group versus Er_2O_3 concentration	120
Figure 4.33	Raman spectra of (a) (89-x) TeO ₂ -10MgO-1Er ₂ O ₃ -xFe ₃ O ₄ , (b) TMEFC glass system	122
Figure 4.34	The wavenumber of TeO ₄ tbp and TeO ₃ tp vibrations versus Fe_3O_4 NPs concentration	123
Figure 4.35	The de-convoluted Raman spectra of the TMEF3 glass sample	124
Figure 4.36	Raman spectra of (89.6-y) TeO ₂ -10MgO-y Er ₂ O ₃ -0.4Fe ₃ O ₄ glass system	126
Figure 4.37	The de-convoluted Raman spectra of the TMFE2 sample	126
Figure 4.38	The wavenumber of TeO ₄ tbp and TeO ₃ tp vibrations versus Er_2O_3 concentration	127
Figure 4.39	Luminescence spectra of Er^{3+} doped magnesium tellurite glasses with different Fe_3O_4 concentration together with TMEFC glass sample.	129
Figure 4.40	Schematic energy level diagram on Er^{3+} ($\lambda_{ex} = 375$ nm) for Series I	129
Figure 4.41	Luminescence spectra of Er^{3+} doped magnesium tellurite glasses with different Er_2O_3 concentration	130
Figure 4.42	Schematic energy level diagram on Er^{3+} ($\lambda_{ex} = 375nm$)	132
Figure 4.43	Magnetization saturation curves at room temperature for TMEFC (the material Ferrite from lab grade-based product)	133
Figure 4.44	Magnetization saturation curves at room temperature for Series I	134
Figure 4.45	Magnetization curves at room temperature for Series II	135
Figure 4.46	Remanent magnetization and magnetic susceptibility of the glass for Series I	137
Figure 4.47	Remanent magnetization and magnetic susceptibility of the glass for Series II	137
Figure 4.48	Coercivity (H _c) and Squarness (M_r/M_s) of glass for Series I.	139
Figure 4.49	(H_c) and Squarness (M_r/M_s) of glass for Series II.	139
Figure 4.50	ESR spectra of glass sample	141

Figure 4.51	Fe ₃ O ₄ NPs concentration dependent variation in g-factor and resonance magnetic field of the glasses.	142
Figure 4.52	Fe ₃ O ₄ NPs concentration dependent variation in linewidth of the glasses.	142
Figure 4.53	Judd-Ofelt parameters as a function of Fe_3O_4 NPs concentration	148
Figure 4.54	Quality factors parameter as a function of Fe_3O_4 NPs concentration	149
Figure 4.55	Judd-Ofelt parameters as a function of Er_2O_3 concentration.	150
Figure 4.56	Quality factors parameter as a function of Er_2O_3 concentration	151
Figure 4.57	The spontaneous transition probability of glass Series I of Er^{3+} : ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$ transition against difference concentration of Fe ₃ O ₄ NPs	154
Figure 4.58	The spontaneous transition probability of glass Series II of Er^{3+} : ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$ transition against difference concentration of Er_2O_3 .	155
Figure 4.59	The branching ratio of glass Series I of Er^{3+} : ${}^{4}I_{15/2} \rightarrow {}^{4}F_{9/2}$ transition against difference concentration of Fe ₃ O ₄ .	156
Figure 4.60	The branching ratio of glass Series II of Er^{3+} : ${}^{4}I_{15/2 \rightarrow} {}^{4}F_{9/2}$ transition against difference concentration of Er_2O_3 .	156
Figure 4.61	The radiation lifetime of glass is Series I of Er^{3+} : ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$ transition against difference concentration of Fe ₃ O ₄ NPs.	157
Figure 4.62	The radiation lifetime of glass is Series I of Er^{3+} : ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$ transition against difference concentration of Er_2O_3 .	158

LIST OF ABBREVIATIONS

Al_2O_3	-	Alumunium Oxide
BO	-	Bridging Oxygen
DC	-	Down-Conversion
Er^{3+}	-	Erbium
ET	-	Energy Transfer
fcc	-	Face Centered Cubic
FeO	-	Wustite
Fe ₃ O ₄	-	Ferrite Oxide or Magnetite
α-Fe ₂ O ₃	-	Hematite
γ-Fe ₂ O ₃	-	Maghemite
FWHM	-	Full Length at Half Maximum
HR-	-	High-Resolution
HRTEM	-	High Resolution Transmission Electron Microscope
JCPDS	-	Joint Committee for Powder Diffraction Standards
JO	-	Judd-Ofelt
MgO	-	Magnesium Oxide
NBO		Non-Bridging Oxygen
NPs	-	Nanoparticle
NR	-	Non-Radiative
Oe	-	Oersted
TeO ₂	-	Tellurite Oxide
Р	-	Phosphorous atom
PL	-	Photo-Luminescence
RE	-	Rare Earth
TEM	-	Transmission Electron Microscope
UTM	-	Universiti Teknologi Malaysia
UV	-	Ultraviolet
VBM	-	Valence Band Maxima
VIS	-	Visible
VSM	-	Vibrating Sample Magnetometer

XRD -	X-Ray Diffraction
-------	-------------------

LIST OF SYMBOLS

A	-	Absorption Coefficient
20	-	Angle of Diffraction
В	-	Magnetic Induction
d	-	Size of Nanoparticle, Thickness of the Sample
е	-	Charge of Electron
Ε	-	Electric Field
E_{dir}	-	Direct Optical Band Gap
Eind	-	Indirect Optical Band Gap
$\Delta E, E_U$	-	Urbach Energy
f	-	Oscillator Strength
Н	-	Magnetic Field
Ι	-	Intensity
l	-	Length
J	-	Orbit Angular Momentum
m	-	Mass of Electron
<i>n</i> ₂	-	Non-linear Refractive Index
М	-	Average Molecular Weight
Ν	-	Concentration
N _A	-	Avogadro's number
R	-	Glass Constant
S	-	Stability Factor
T'	-	Transmission
Т	-	Temperature
T_c	-	Crystallization Temperature
T_g	-	Glass Transition Temperature
T_m	-	Melting Temperature
Т	-	Time
V	-	Molar Volume
W	-	Weight
α_m	-	Polarizability

β	-	Branching Ratio
Ε	-	Dielectric Function
Х	-	Susceptibility
Р	-	Density
λ	-	Wavelength
Т	-	Lifetime
S	-	Spin
L	-	Orbit
ρ	-	Density
Wa	-	Weight of the glass sample in air
Wb	-	Weight of the glass sample in liquid
$ ho_b$	-	Density of Tolluene
E_{f}	-	Energy of the final state
E_i	-	Energy of electron in lower band
В	-	Band tailing
hυ	-	Photon energy
τ	-	Radiative lifetime
η_R	-	Luminecent efficiency
$ au_{nr}$	-	Non-radiative lifetime
М	-	Magnetic moment
H_c	-	Coercivity
Mr	-	Remanent magnetization
Ms	-	Saturation magnetization
Mr/Ms	-	Squarness

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	The Nominal Composition of The Glasses System	179
Appendix B	Calculation of Weight And Atomic Percentages Of Atoms In Edx Spectra	181
Appendix C	Calculation Of Physical Parameters	183
Appendix D	Refractive Index Calculation	185
Appendix E	Differential Thermal Analysis	187
Appendix F	Optical Band Gap Energy	188
Appendix G	Urbach Energy	191
Appendix H	Esr Spectrum	194
Appendix I	Esr Analysis	196
Appendix J	Judd Ofelt Calculation	197
Appendix K	Matrix Element of Er203 Ion	207
Appendix L	JCPDS Fe ₃ O ₄ Nanoparticle	208
Appendix M	Electronic Balance Precisa 205 A SCS	209
Appendix N	Electrical Furnace Model Thermolyne 47900	210
Appendix O	X-Ray Diffractometer model PANanalytical X'Pert Pro	211
Appendix P	Precisa Model XT 220	212
Appendix Q	Schimadzu UV-3101 PC Scanning Spectrophotometer	213
Appendix R	A Perkin Elmer LS-5S Photoluminescence (Pl) Spectrophotometer	214
Appendix S	TEM Philips Cm120	215
Appendix T	VSM Lake Shore 7400 Series	216

CHAPTER 1

INTRODUCTION

1.1 Introduction

Glass is a non-crystalline solid material that exhibits a glass transition and possess several incredible properties including thermal stability, luminescence intensity (Linda et al., 2013, Nedelcheva et al., 2014, Savikin et al., 2013), electrical properties (Jalajerdi et al., 2012) and magnetic properties (Kim et al., 2007, Song et al., 2013). Typical glasses based on different hosts such as tellurite (TeO₂), borate (B_2O_3) , silicate (SiO_2) and phosphate (P_2O_5) are usually made transparent in visible spectrum to be used as optical materials (Hussin, 2011). Amongst the present interest materials, the TeO₂ based glasses have gained much attention because of different applications at optical data transmission, laser technologies and sensing. The characteristics of tellurite glass includes lower maximum vibration energy (equal to 750 cm⁻¹) that lower the possibility of multiphonon decay, better thermal and chemical stability, low melting temperature, higher thermal expansion, higher refractive index and better infrared transmission (Barney et al., 2015, Fares et al., 2014). The rare earth (RE) doped glass, has been broadly explored in orders to characterize noble source of optical fiber, amplifier, solids state laser, color display, energy convertor, solar cell, army tool and sensor (Figueiredo et al., 2015, Zhang et al., 2015).

Rare-earth (RE)-doped glass has been widely studied because of their photonic applications, and nonradiative energy transfer (ET) processes, along with their applications of extending from light energy conversion (up and down conversions). In main ET process can favour specific application (for example an operation of anti-Stoke emitter) but it can be dangerous as in place of RE based laser because interaction amongst active ions participate for the augmentation of laser threshold. Particularly the research of ET process in glass having frequency gaps in visible region deserve huge attention since when mixed with RE ion few glasses can be exist as effective visible luminescence (Stambouli et al., 2013, Rivera et al., 2014).

Magnesium tellurite doped with rare earth (RE) ions has attracted research interests in the field of photoluminescence since they are suitable hosts with high chemical stability, offers better homogeneity and lowers sintering temperature and also can produce plenty of crystal field environments imposed on emission centers (Hussin et al., 2011). Basically, the rare-earth ions doped glasses have extensive applications in the field of developing up-conversion (UC) lasers (Taherunnisa et al., 2019). The introduction of erbium oxide (Er_2O_3) can help to improve the optical properties of tellurite glasses. Er^{3+} can show up-conversion (UC) luminescence which has possibility obtaining efficient solid-state laser (Singh B. P et al., 2013).

A glass of Er^{3+} has been shown to possess larger magnetic contributions to low temperature heats well-known at oxide glass. Natural iron oxide, which is majorly in a form of hematite (α -Fe₂O₃), maghemite (γ -Fe₂O₃) and magnetite (Fe₃O₄) may be normally detected in iron sands. A α -Fe₂O₃ shows the similar spinel structures like magnetite but have no divalent ion. Magnetic Fe³⁺ ion is located in two sublattice with dissimilar oxygen coordination. Ferrimagnetism originates from unequal dispersion of such ions in B and A sites. Presently, a lower temperature spin glasses transition was observed at T = 42 K. This γ -Fe₂O₃ possess one corundum crystal structure, possess an antiferromagnetic feature below 950 Kelvin, whereas above Morin point (260 Kelvin) it displays weak ferromagnetism behaviour. Below melting temperature these two magnetized sublattices are produced along rhombohedral axis [111]. The spin canting shows weak ferromagnetism in this plane. Hematite is one of the most stable forms of iron (iron oxide) (Liang et al., 2011).

The magnetic properties of oxide glasess with transition metal ions were mainly determined by morphology that is size and shapes. Iron ions have strong bearing electrical, optical and magnetic properties of glasses. Electron Spin Resonance (EPR) of Fe³⁺ ions in vitreous matrices may provide useful information about the shortrange ordering of the paramagnetic ions. This is because the EPR absorption spectra show distinct resonance lines for the ions involved in structural units of well-defined symmetry and those connected in clusters. In a resonance experiment, the particles are exposed to local magnetic field, which besides the DC magnetic field of the spectrometer includes a magnetic anisotropy field, depending on the physical nature of the particles, as well as a demagnetizing field depending on the particle shape. In very fine particles, the two latter contributions are averaged because of the thermal fluctuations of the magnetic moments. This results in either narrowing of the resonance spectra or a characteristic "two-line pattern (a broader line super posed with a narrower one)". The resonance in such system is often called superparamagnetic resonance.

Two main reasons are typically considered to describe photoluminescence (PL) improvement of rare earth ions presented in glasses having metal NPs. One cause is the detention of electromagnetic fields that originate increased local field at the area of NPs where rare earth ion may be situated. Another cause is a strong light absorption by NPs and energy transfer at the rare earth ions. This field amplitude is affected by the superficial plasmons in NPs and can reach big values which are reliant on the distance amongst the rare earth ions and NPs. When incident light and the PL wavelength is close to NP surface plasmons resonance (SPR) wavelength λ sp, the absorption rate and amplitude of the radiative transition of RE ions can be amplified. The magnitude of λ sp depend on dielectric function of NPs and host, besides on the shape and size of the NPs. It is well known that there found optimum gap between the NP and RE ion so as to happen related PL improvement. When the gaps between the NP and the RE are very minor, PL quenching happens as established in experiment that detect emission from one single molecule or atom situated nearby one metallic NPs or at proximity of any metallic films. In the last few years, characterization and synthesis of heavy-metals oxide (HMO) glasses incorporated with RE ion and comprising metallic NP was stated for large varieties of glasses (Singh, 2013).

HMO glass doped with trivalent RE ion is interesting materials and with important technical applications. They display powerful luminescence because of their minor cut-off phonon frequency. However, for the purpose to make device with increased optical characteristic, the concentrations of rare earth ions have to be lowered adequately so that luminescence quench is lessened. This is also possible to avoid such quenching effects by adjusting the environment perceived by luminescent ions. Consequently, glasses comprising metallic NPs incorporated with lower concentration of rare earth ions are of specific interest since the larger local field working on the ion located near NPs can increase luminescence efficiencies when optical frequencies of excitation beam or/and the luminescence frequencies are near the resonance with surface plasmon incidence of the nanoparticle (Singh, 2013, Rai et al., 2008).

1.2 Problem Statement

Magnetic properties of glasses containing iron oxide depend on the concentration of the 3d element and the ratio (Fe^{3+}/Fe^{2+}) of valence states as well as the structure of the vitreous matrix. It is well known that the multiple valence states of transition metal ions and their distribution in glasses influence the magnetic properties of the materials (Singh et al., 2008). Among all iron oxides, magnetite Fe₃O₄ possess the most interesting properties because of the presence of iron cations in two valences states, Fe²⁺ and Fe³⁺, in the inverse spinel structure. Fe₃O₄ nanoparticles are common ferrite oxides with an inverse spinel structure (Vijaya et al., 2005). These classes of compound exhibit exceptional magnetic and electrical properties because the electrons transfer between Fe²⁺ and Fe³⁺ in octahedral and tetrahedral sites. Moreover, these transition metal ions shall contribute to a multivalence state in the glass which influence the properties (Ensanya et al., 2009).

The well organised research involving ferrite glass as modifier has been started earlier (Raghaviah et al, 2004) followed then by Battisha et al (Battisha et al, 2006). Both group has since been successfully focused on the study of magnetic part of glass containing ferrite. By using multicomponents of glass composition, they have found better ways to get the better magnetic properties of the glass. The effect of ferrite on magnetic properties has been then continually done by other group of researchers including by Singh (Singh et al, 2010) and Ghandoor (Ghandoor et al, 2013). They have claim to get a better magnetic properties such as magnetic moment up to 46.7 emu/g compared to 5 x 10^{-3} emu/g, which is much better than the previous research. Later, this research on magnetic properties has successfully been organised by Pelluri (Pelluri et al, 2016) but the result on magnetic moment is not as good as the previous research. And again, it must be noted that all of them are using ferrite that is obtained from the chemical lab scale of production. The idea of using ferrite nanoparticles perhaps has been well proposed by a group of researchers including the one lead by Widanarto (Widanarto, 2013). These wonderful works have been further done by using a natural ferrite Fe₃O₄ nanoparticles (NPs) as the main components of the glass (Widanarto et al, 2013). However, these works have once again been focussed on the optical properties especially in the enhancement of emission intensity and the electronic properties such as optical energy band gap and electronic structure. As can be seen, there are still very limited study on the optical properties especially regarding the JO parameters and the interconnections between physical properties, optical properties in the presence of metallic NPs and magnetic properties of glass containing natural Fe₃O₄ NPs. The problem in the interconnection between properties are still far behind. The question on how the physical properties may affected on the magnetic parts and vice versa are still in the grey area. Further, the question on the relation between magnetic properties and the optical parts and vice versa are still remain unanswered. Thus, this study will provide a comprehensive works, aims to focus specifically on the structural, optical and magnetic properties and to stimulate the relationship between these behaviours. This study will also hopefully, get to connect a bridge between those properties, which seems to have some gap in between. Additionally, since there are only few studies on these glasses, there is lack of information on the influence of Fe_3O_4 NPs and Er^{3+} ion on the tellurite glass. Therefore, this research aims to provide more information on the structural, optical and magnetic analysis of erbium doped tellurite glass embedded with natural Fe₃O₄ NPs. It is expected that this study can provide more information on the basic knowledge of the glass system.

1.3 Objective of the research

The following are the objectives of this research:

- i. To prepare Fe₃O₄ NPs embedded into erbium doped magnesium tellurite glass at varying concentrations by melt quenching technique.
- ii. To determine the effect of Fe₃O₄ NPs on structural, optical and magnetic properties of erbium doped tellurite glass.
- iii. To determine the J-O intensity parameters and analyse the relation between absorption and emission spectra to complement the experimental data.

1.4 Scope of Study

For the achievement of the above-mentioned objectives, the study has been emphasized on given scopes:

- i. Preparations of two glass series by melt-quenching technique. The composition of glass is chosen due to the high stability and high performing ability of glass.
 - (a) Glass based with different NPs concentration of composition (89-x) TeO₂-10MgO-1Er₂O₃-(x) Fe₃O₄, system (x = 0, 0.2, 0.4, 0.6 and 0.8 mol%).
 - (b) Glass with different rare earth concentration of composition (89.6-y) TeO₂-10MgO-(y) Er₂O₃-0.4Fe₃O₄, system (y = 0.2, 0.4, 0.6, 0.8 and 1 mol%).
 - (c)
- Determination of the effect of Fe₃O₄ NPs on the structural, optical and magnetic properties in terms of XRD, UV-Vis, FTIR, RAMAN, PL, EDAX, HRTEM, EPR and VSM.
- Calculating the JO intensity parameters by using the JO theory and analysing the correlation between absorption and emission cross section area data.

1.5 Significance of the study

Glass doped with rare earth ions are being investigated effectively. Their fabricating application e.g., laser in visible regions of 400-700 nm is of attention at the current time at optical material science. A rare earth ion like erbium (Er) has successfully been used in the optical fiber as dopant to increase signal in the optical communication system because of their high refractive indexes, big resistance against corrosions, more solubility of rare earth and better transparency in region from the visible to the infrared (0.35 to 6 μ m). Erbium doped fibre amplifier (EDFA) amplifies signal in C-band (from 1535 nm to 1565 nm) in optical domain. Various different glass has been explored for the erbium doping with an aim to achieve large bandwidth and efficient fluorescence. This study can provide great knowledge on the structural, optical and magnetic behavior of Er^{3+} ions embedded in tellurite glass. Furthermore, the next step will be to adding the magnetic NPs in proposed glass to examine its influences on the structural, optical and magnetic properties of the glass. The ideal system can be used largely in wide range of application from color displays, optical fiber, magneto optic device and amplifiers to medical and army device.

REFERENCES

- Aarts, L., Jaeqx, S., Vander Eade, B.M., Meijerink, A. (2011). "Downconversion for the Er^{3+,} Yb³⁺ couple in KPb₂Cl₅-a low-phonon frequency host". *Journal of Luminescence*. 131 : 608-613
- Abdel-Baki, M., and El-Diasty, F. (2011). "Role of Oxygen on the Optical Properties of Borate Glass doped with ZnO". *Journal of Solid State Chemistry*. 184: 2762-2769
- Agarwal, A., Seth, V.P., Sanghi, S., Gahlot, P., Khasa, S. (2004). "Mixed alkali effect in optical properties of lithium-potassium bismuth borate glass system". *Journal of Material Letters*, 58: 694-698
- Amjad, R., J., M.R. Dousti, M.R. Sahar. (2015). "Spectroscopic investigation and Judd-Ofelt analysis of silver nanoparticles embedded Er³⁺-doped tellurite glass". *Journal of Current Applied Physics*, 15 :1-7
- Amjad, R., J., M.R. Sahar, S.K. Ghoshal, M.R. Dousti, S. Riaz, B.A. Tahir. (2012).
 "Optical investigation of Sm³⁺ doped zinc-lead-phosphate glass". *Journal of China Physics Letters*, 29 : 087304
- Anigrahawati, P., Sahar, M. R., Ghoshal, S. K. (2015). "Influence of Fe3O4 nanoparticles on structural, optical and magnetic properties of erbium doped zinc phosphate glass". *Journal of Materials Chemistry and Physics*. 155: 155-161
- Arunkumar, S., Marimuthu, K., (2015). "Spectroscopic properties of Er³⁺ doped bismuth lead telluroborate glasses for 1.5μm optical amplifiers". *Journal of Alloys and Compounds*. 627:54-68
- Awang, A., Ghoshal, S.K., Sahar, M.R., Dousti, M.R., Amjad, R.J., Nawaz, F. (2013).
 "Enhanced Spectroscopy Properties and Judd-Ofelt Parameters of Er-doped Tellurite Glass: Effect of Gold Nanoparticles". *Journal of Current Applied Physics.* 13: 1813-1818
- Aziz, S. M., Sahar, M. R., Ghoshal, S. K. (2017). "Modified magnetic and optical properties of manganese nanoparticles incorporated europium doped magnesium borotellurite glass". *Journal of Magnetism and Magnetic Materials*. 423: 98-105

- Azmi, S. A. M., Sahar, M. R. (2015). "Optical response and magnetic characteristic of samarium doped zinc phosphate glasses containing nickel nanoparticles". *Journal of Magnetism and Magnetic Materials*. 393: 341-346
- Ball, D., W. (2001) "The basics of spectroscopy," SPIE PRESS. Washington USA
- Barney, E., R., Hannon, A., C., Holland, D., Umesaki, N., Tatsumisago, M., (2015).
 "Alkali environmets in tellurite glasses". *Journal of Non-Crystalline Solids*.
 414:33-41
- Battisha, I. K, Afify, H. H, Ibrahim, M. (2006). "Synthesis of Fe2O3 concentration and sintering temperature of FTIR and magnetic susceptibility measure from 4 to 300K of monolith silica gel prepared by sol-gel technique". *Journal of Magnetism and Magnetic Materials*. 306: 211-217
- Bhardwaj, S., Shukla, R., Sanghi, S., Agarwal, A., and Pal, I. (2012). "Optical Absorption and Fluorescence Spectral Analysis of Nd³⁺ Doped Bismuth BoroSilicate Glasses". *International Journal of Modern Eng.* Res. 2: 3829-3834
- Bhowmik, R., N, V. Vasanthi, A. Poddar. (2013). "Alloying of Fe_3O_4 and Co_3O_4 to develop $Co_{3x}Fe_{3(1-x)}O_4$ ferrite with high magnetic squareness, tunable ferromagnetic parameters, and exchange bias", *Journal of Alloys and Compounds*. 578 :585-594
- Bilir, G., G. Ozen, D. Tatar, M.L. Ovecoglu. (2011). "Judd-Ofelt analysis and near infrared emission properties of the Er³⁺ ions in tellurite glasses containing WO₃ and CdO". *Journal of Optics Communications*, 284 : 863-868
- Bingham, P.A., Hand, R.J., Hannant, O.M., Forder, S.S., Kilcoyne, S.H. (2009). "Effect of modifier additions on the thermal properties, chemical durability, oxidation state and structure of iron phosphate glasses". *Journal of Non-Crystalline Solids*, 355 : 1526-1538
- Burger, H., Kneipp, K., Hobert, H., Vogel, W., Kozhukarov, V. & Neov, S. (1992).
 "Glass formation, properties and structure of glasses in the TeO₂-ZnO system". *Journal of Non-Crystalline Solids* 151: 134-142.
- Carnall W. T., Fields P.R., Ranjak K. (1968). "Electronic energy levels in trivalent lanthanide aquo ions. I: Pr³⁺, Nd³⁺, Pm³⁺, Sm³⁺, Dy³⁺, Ho³⁺, Er³⁺ and Tm³⁺". *The Journal of Chemical Physics*. 49(10): 4424-4442.

- Chanshetti, U.B., Shelke, V.A., Jadhav, S.M., Shankarwr, S.G. (2011). "Density and volume studies of phosphate glasses". *Journal of Physics, Chemistry and Technology*. 9: 29-36
- Che-Zoue Weng., Jia-Hong Chen., Ping-Yu Shih. (2009). "Effect of dehydroxylation on the structure and properties of ZnCl₂-ZnO-P₂O₅ glasses". *Journal of Materials Chemistry and Physics*. 115 : 628-631
- Chowdari, B. V. R., and Kumari, P. P. (1999). "Raman spectroscopic study of ternary silver tellurite glasses". *Journal of Materials Research Bulletin*. 34(2) : 327-342
- Cases, R., and Chamarro, M. A. (1991). "Judd-Ofelt Analysis and Multiphonon Relaxations of Rare Earth Ions in Fluorohafnate Glasses". *Journal of Solid State Chemistry*. 90: 313-319
- Coleman, P., B. (1993). "Practical Sampling Techniques for: Infrared Analysis", CRC Press. Florida
- Damas, P., Coelho, J., Hungerford, G., and Hussain, N. S. (2012). "Structural studies of lithium boro tellurite glasses doped with praseodymium and samarium oxides. *Journal of Material Research Bulletin*. 47(11): 3489-3494
- Dantas, N., O., Serqueira, E., O., Silva, A., C., A., Andrade, A., A., Lourenco, S., A.,
 (2013). "High quantum efficiency of Nd³⁺ ions in a phosphate glass system using the Judd-Ofelt theory". *Brazillian Journal Physics*. 43: 230-238
- David B., Willams and Barry Carter, C. (1996). "Transmission Electron Microscopy", Plenium Press New York, USA, p.5
- Derkachheva, O. (2005). "Studying the structure of native, residual and dissolved lignins by FTIR spectroscopy method". *Proceedings of first international workshop on physicochemical properties of lignins*. p255-257
- Dousti, M.R., Ghassemi, P., Sahar, M.R., Mahraz, Z.A.(2014). "Chemical Durability and Thermal Stability of Er³⁺ doped Zinc Tellurite Glass containing Silver Nanoparticles". *Journal of Chalcogenide Letters*. 11 (3): 111-119
- Dousti, M.R., Sahar, M.R., Ghoshal, S.K., Amjad, R.J., Samavati, A.R. (2013). "Effect of AgCl on Spectroscopic Properties of Erbium doped Zinc Tellurite Glass". *Journal of Molecular Structure*. 1035: 6 -12
- Dyson, J. F., (1955). "Electron Spin Resonance Absorption in Metals. II. Theory of Electron Diffusion and the Skin Effect". *Journal of Physical Review*. 98, 349

- Eivari, H., A., Rahdar, A., Arabi, H., (2012)." Preparation of super paramagnetic iron oxide nanoparticles and investigation their magnetic properties". *International Journal of Science and Engineering Investigations*. 1 (3):2251-8843
- Elena-Lorena Salabas, (2004). "Structural and Magnetic Investigations of Magnetic Nanoparticles and Core Shell Colloids". Tag Der Mundlichen Prufung. Horezu-Rumanien.
- El-Mallawany, R.A.H. (2002). "Tellurite Glasses Handbook: Physical Properties and Data". New York: CRC Press
- Ensanya, A., Abou Neel., Chrzanowski., Wojciech., Pickup., David M., O'Dell, L.A., Mordan., Nicola, J., Newport., Robert, J., Smith., Mark, E., Knowles., Jonathan C. (2009). "Structure and properties of stronsium-doped phosphate-based glasses". *Journal of The Royal Society Interface*. 6: 435 – 446.
- Fares, H., Jlassi, I., Hraiech, S., Elhouichet, H., Ferid, M., (2014). "Radiative parameters of Nd³⁺⁻doped titanium and tungsten modified tellurite glasses for 1.06 μm laser materials". *Journal of Quantitative Spectroscopic & Radiative Transfer*. 147:224-232
- Fang, R., M.Y. Zhao, G. Chao, Z.L. Gang, L.A. Xian. (2012). "Thermal stability and Judd-Ofelt analysis of optical properties of Er³⁺-doped tellurite glasses". *Journal of Transactions of Nonferrous Metals Society of China*. 22 : 2021-2026
- Feher, G., and Kip, F., (1955). "Electron Spin Resonance Absorption in Metals. I. Experimental". Journal of Physics Review. 98, 337.
- Feifei, H., Yu, Z., Lili, H., Danping, C., (2014). "Judd-Ofelt analysis and energy transfer process of Er³⁺ and Nd³⁺ doped fluoroaluminate glasses with low phosphate content". *Journal of Optical Materials*. 38: 167-173.
- Figueiredo, M., S., Santos, F., A., Yukimitu, K., Moraes, J., C., S., Nunes, L., A., O., Andrade, L., H., C., Lima, S., M., (2015). "On observation of the downconversion mechanism in Er^{3+/}Yb³⁺ co-doped tellurite glass using thermal and optical parameters". *Journal of Luminescence*. 157:365-370
- Florez, A., Messaddeq, Y., Malta, O.L., Aegerter, M.A., (1995). "Optical transition probabilities and compositional dependence of Judd-Ofelt parameters of Er³⁺ ions in fluoroindate glass". *Journal of Alloy and Compounds*. 227: 135-140
- Foner, S. (1959). "Versatile and sensitive vibrating-sample magnetometer", Review of Scientific Instruments, 30 : 548. Massachusetts Intitute of Technology, Lexington. Massachusetts

Fox, M. (2010). " Optical Propeties of Solids". New York : Oxford University Press

- Ghandoor, H. El, Zidan, H. M., Khalil, M. M. H., Ismail, M. I. M. (2012). "Synthesis and some physical properties of Magnetite (Fe₃O₄) Nanoperticles". *International Journal of Electrochemical Science*. 7: 5734-5745.
- Ghoshal, S. K., Awang, A., Sahar, M. R., Arifin, R. (2015). "Gold nanoparticles assisted surface enhanced Raman scattering and luminescence of Er³⁺ doped zinc-sodium tellurite glass". *Journal of Luminescence*. 159: 265-273
- Gowda, V. C. V., Reddy, C. N., Radha, K. C., Anavekar, R. V., Etourneou, J., Rao, K. J. (2007)." Structural Investigations of Sodium Diborate Glasses Containing PbO, Bi₂O₃ and TeO₂: Elastic Property Measurements and Spectroscopic Studies". *Journal of Non-Crystalline Solids*. 353: 1150-1163
- Gwizdala, B. B., Reben, M., Cisowski, J., Lisiecki, R., Romanowski, W., R., Jarzabek,
 B., Mazurak, Z., Nosidlak, N., Grelowska, I., (2015). "The influence of Pr³⁺ content on luminescence and optical behavior of TeO₂-WO₃-PbO-Lu₂O₃ glass". *Journal of Optical Materials*. 47: 231-236.
- Harris, I.R., Williams, A.J. (2009). "Magnetic Materials". Material Science and Engineering Vol II, Birmingham, UK
- Hehlen, M.P. M.G. Brik, K.W. Kramer. (2013). "50th anniversary of the Judd-Ofelt theory: An experimentalist's view of the formalism and its application", *Journal of Luminescence*. 136: 221-239.
- Hu, P., Yang, H.B., Pan, D.A., Tian, J.J., Zhang, S.G., Volinsky, A.A. (2010).
 "Carbothermal reduction method for Fe₃O₄ powder synthesis". *Journal of Alloys and Compounds*. 502 : 338-340
- Hussain, N. S., and de Silva, S. J. D. (2008). "Physics and Chemistry of rare earth ions doped glasses. *Trans Tech Pub*. Ltd, Switzerland
- Hussin Rosli. (2011). "Structural Studies of Glass by Nuclear Magnetic Resonance": UTM Press, UTM
- Jacobs, R. R., and Weber, M. J. (1976). "Dependence of the ⁴ $F_{3/2} \rightarrow$ ⁴ I1_{1/2} Induced Emission Cross Section for Nd³⁺ on Glass Composition". *IEEE J. Quant. Electron.* 12: 102-111
- Jalajerdi, R., Gholamaian, F., Shafie, H., Moraveji, A., Ghanbari, D., (2012). "Thermal and magnetic characteristics of cellulose acetate-Fe₃O₄". *Journal of Nanostructures*. 2: 105-109

- Jamalaiah, B., C., (2018). "GeO₂ activated tellurite tungstate glass: A new candidate for solid state lasers and fiber devices". *Journal of Non-Crystalline Solids*. 502:54-61
- Jan, N. A. M., Sahar, M. R., Sulhadi, S., El-Mallawany, R. (2019). "Thermal, structural and magnetic properties of TeO₂-MgO-Na₂O-Nd₂O₃ glass system with NiO nanoparticles. *Journal of Non-Crystalline Solids*. 522: 119566
- Jha, A., Shen, S., and Naftaly, M. (2000). "Structural origin of spectral broadening of 1.5μm emission in Er³⁺ doped tellurite glasses." Journal of Physical Review. 62(10): 6215-6227
- Jlassi, I., H. Elhouichet, M. Ferid, C. Barthou. (2010). "Judd-Ofelt analysis and improvement of thermal and optical properties of tellurite glasses by adding P₂O₅", *Journal of Luminescence*. 130 : 2394-2401
- Kaky, K. M., Laksminarayana, G., Baki, S., O., Kityk, I., V., Taufiq-Yap, Y., H., Mahdi, M., A., (2012). "Structural, thermal and optical absorption features of heavy metal oxides doped tellurite rich glasses". *Journal of Results in Physics*. 7:166-174
- Kaliski, Y., Reisfeld, R., Haas. Y., (1979). "Spectral behaviour of Nd³⁺ doped glasses under narrow-line excitation". *Journal of Chemical Physics Letters*. 61:19-22.
- Khatir, S., F. Romain, J. Portier, S. Rossignol, B. Tanguy, J. J. Videau, S. Turell. (1993). "Raman studies of recrystallized glasses in the binary TeO₂-PbO system". *Journal of Molecule Structural*. 298 : 13-16
- Khodabakhshi, S., Karami, B., Baghernejad, M. (2014). "Iron (II, III) oxide nanoparticle-catalyzed selective synthesis of unknown dihypryrano [c] chromenes under green conditions. *Journal of Springer Link*. 145: 1839-1843
- Kim, K., D., S.S. Kim, Y.H. Choa, H.T. Kim. (2007). "Formation and surface modification of Fe₃O₄ nanoparticles by co-precipitation and sol-gel method". *J. Ind. Eng. Chem.* 7 : 1137-1141.
- Krogh, M. J. (1962). "Structural Interpretation of Melting Point Depression in the Sodium Borate System". *Journal of Physics and Chemistry Glass.* 3: 101-110.
- Kosuge, T., Benino, Y., Dimitrov, V., Sato, R., and Komatsu, T. (1998). "Thermal Stability and Heat Capacity Changes at the Glass Transition in K₂O–WO₃–TeO₂ Glasses". *Journal of Non-Crystalline Solids*. 242 : 154-164

- Kumar, G., Shah, J., Kotnala, R., K., Singh, V.P., Garg., Shirsath, S. E. (2015).
 "Superparamagnetic behaviour and evidence of weakening in super-exchange interactions with the substitution of Gd³⁺ ions in the Mg-Mn nanoferrite matrix". *Journal of Materials Research bulletin*. 63 : 216-225
- Lakshman S.V.J., Buddhudu S. (1989). "Racah and Judd-Ofelt parameters for Pr³⁺, Nd³⁺ and Er³⁺ ions in a laser liquid". *Journal of Quantitative Spectroscopic Radiative Transfer*. 24:251-257
- Lee, J. S., E. J. Lee, H. J. Hwang. (2012). "Synthesis of Fe₃O₄-coated silica aerogel nanocomposites". *Journal of Transactions of Nonferrous Metals Society of China*. 22 : s702-s706
- Leng, Y. Materials Characterization. "Introduction to Microscopic and Spectroscopic Methods". New Jersey: John Wiley & Sons. 2008
- Liang, X., Shi, H., Jia, X., Yang, Y., Liu, X., (2011). "Dispersibility, Shape and Magnetic properties of nano-Fe₃O₄ particles". *Journal of Materials Sciences* and Applications. 2: 1644-1653
- Licina, V., Mogus, A., Milankovic., Reis, S.T., Dax, D.E. (2007). "Electronic conductivity in zinc iron phosphate glasses". *Journal of Non-Crystalline Solids*. 353 : 4395-4399
- Lin, H., Liu, K., Pun, Y.B., Ma, T.C., Peng, X., An, Q.D., Yu, J.Y., Jiang, S.B. (2004).
 "Infrared and visible flourescence in Er³⁺-doped gallium tellurite glasses".
 Journal of Chemistry and Physics Letter. 398 : 146-150
- Linda, D., Duclere, J., R., Hayakawa, T., Colas, M., D., Cardinal, T., Mirgorodsky, A., Kabadou, A., Thomas, P. (2013). "Optical properties of tellurite glasses elaborate within the TeO₂-ZnO-Ag₂O ternary systems". *Journal of Alloys and Compounds*. 5611:151-160
- Lindqvist, O. (1968). Refinement of the Structure of Alpha-TeO₂. J. Acta Chem. Scand. 22: 977-982.
- Liying Zhang, Yafei Zhang, (2009). "Fabrication and magnetic properties of Fe₃O₄ nanowire arrays in different diameters". *Journal of Magnetic Magnetism Matterial*. 321 : L15-L20
- Lu Sun, L. L. and.Cheng, P. (2016). Enhanced Molecular Spectroscopy via Localized Surface Plasmon Resonance. Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences. Cc By 3.0 license : InTech.

- Ma, Y., Wang, X., Zhang, I., Huang, F., Hu, I., (2015). "Increased radiative lifetime of Tm³⁺:³F₄-³H₆ transition in oxyfluoride tellurite glasses". *Journal of Materials Research Bulletin.* 64:262-266
- Maheshvaran, K., Arunkumar, S., Marimuthu, K. (2011). " Composition dependent structural and optical properties of Sm³⁺ doped Boro-Tellurite glasses. *Journal* of Luminescence. 131(12): 2746-2753.
- Mahraz, Z.A. S., Sahar, M. R., Ghoshal S.K., Dousti, M. R. (2013). "Concentration dependent luminescence quenching of Er³⁺-doped zinc boro-tellurite glass". *Journal of Luminescence*. 144: 139-145
- Makino, A. Inoue, T. Masumoto. (1995). "Soft magnetic properties of nanocrystalline Fe₂M₂B(M₂Zr, Hf, Nb) alloys with high magnetization". J. Nanostruct. Mater. 6: 985-988.
- Manning, A., (2011). "A study of tellurite glasses for electro-optic optical fibre devices". The University of Adelaide: Thesis of PhD
- Martin, D.M., Villegas, M.A., Gonzalo, J., Navarro, J.M.F. (2009). "Characterisation of Glasses in the TeO₂-WO₃-PbO system". *Journal of European Ceramic Society*. 29: 2903-2913
- Massera, J. PhD thesis. (2009). "Nucleation and growth behavior of telluritebased glasses suitable for mid-infrared applications" Clemson University, USA.
- Maximina Romero., Jesus Ma., Rincon., Carlos J. R. Gonzalez Oliver., Carlos D'Ovidio., Daniel Esparza., (2001). "Magnetic properties of glasses with high iron oxide content". *Journal of Materials Research Bulletin.* 36 : 1513-1520
- Mazlini Mazlan., Sahar, M.R., Ariffin, R., Rohani, M.S. (2011). "Optical absorption of Er^{3+}/Nd^{3+} co-doped magnesium phosphate glass". UMTAS
- McCreery RL. (2000). "Raman spectroscopy for chemical analysis". Wiley-Interscience.
- Mirgorodsky, A. P., Merle-Mejean, T., Champarnaud, J. C., Thomas, P., and Frit, B. (2000). *Dynamics and Structure of TeO*₂ *Polymorphs*: Model
- Mohapatra, M., V. Natarajan, S.V. Godbole. (2014). "Speciation of 'Eu' in sol-gel derived alkali barium borosilicate glass: Time resolved photoluminescence (TRPL) and Judd-Ofelt analysis". *Journal of Non-Crystalline Solids* 386 :115-120

- Naito, K. Y. Benino, T. Fujiwara, T. Komatsu. (2004). "Judd-Ofelt parameters of Er³⁺ in transparent TeO₂-based nanocrystallized glasses". *Journal of Solid State Communications*, 131: 289-294.
- Nandyala S.H., Jose D.D.S.S. (2008). "Physics and Chemistry of Rare Earth Ions doped Glasses". Trans Tech Publications.
- Naseri, M. G., Saion, E. B., Hashim, M., Shaari, A. H., and Ahangar, H. A. (2011). "Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method". *Journal of Solid State Communications*. 151 : 1031-1035
- Nedelcheva, A., B., Iordanova, R., Kostov, K., L., Ganev, V., Yordanov, St., (2014). "Synthesis, characterization and optical properties of non-traditional telluriteselenite glasses". *Journal of Optical Materials*. 36:1319-1328
- Niyaifar, M., Ahmadi, A., Hasanpour, A. (2012). "Synthesis of zinc ferrite nanoparticles". *Journal of World Applied Science*. 17: 739-741
- Noorsyam. (2008). "Optical and thermal properties of samarium oxide doped tellurite glass". Universiti Teknologi Malaysia: Thesis of Master of Science
- Nurulhuda. (2011). "Optical properties of magnesium phosphate glass doped samarium". University Teknologi Malaysia: Thesis of Master of Science
- O'Driscoll, B., Eric, C. F., Carl, T. E., Stevenson, Magee, C. (2015). "The significance of magnetic fabric in layered mafic-ultramafic intrusions". Layered Intrusion. Pp 295-329
- Otto, M., (2003). "Modern methods of analytical chemistry". Moscow. Technosphere
- Pelluri, S.R., Singh, R. (2016). "ESR and magnetization studies of Fe₂O₃-Bi₂O₃-ZnO-PbO glass system". *Journal of Magnetism and Magnetic Materials*. 418: 206-212
- Peng, S., Wu, L., Wang, B., Yang, F., Qi, Y., Zhou, Y., (2015). "Intense visible upconversion and energy transfer in Ho³⁺/Yb³⁺ codoped tellurite glasses for potential fiber laser". *Journal of Optical Fiber Technology*. 22: 95-101
- Ping Hu., Shengen Zhang., Hua Wang., De'an Pan., Jianjun Tian., Zhi tang., Alex A.
 Volinsky. (2011). "Heat treatment effects on Fe₃O₄ nanoparticles structure and magnetic properties prepared by carbothermal reduction". *Journal of Alloys Compound*. 509 : 2316-2319
- Porthun, S., Abelmann, L., Lodder, C. (1998). "Magnetic force microscopy of thin film media for high density magnetic recording". *Journal of Magnetic Magnetism Material*. 182:238

- Prithviraj Swamy, P.M., Basavaraja, S., Arunkumar Lagashetty., Srinivas Rao, N.V., Nijagunappa, R., Venkataraman, A. (2011). "Synthesis and characterization of zinc ferrite nanoparticles obtained by self-propagating low-temperature combustion method". *Journal of Material Science*. 34 : 1325–1330
- Rada, S., Culea, M., Culea, E. (2008). "Structure of TeO₂ -B₂O₃ Glasses Inferred from Infrared Spectroscopy and DFT Calculations". *Journal of Non-Crystalline Solids*. 354: 5491-5495
- Raghavaiah, B. V., Rao, D. K., Veeraiah, N. (2004). "Magnetic properties of PbO-Sb2O3-As2O3 glasses containing iron ions". *Journal of Magnetism and Magnetic Materials*. 284: 363-368
- Rai, V. K., Menezes, L. D. S., Araújo, C. B. D., Kassab, L. R. P., and Davinson, M. (2008). "Surface-Plasmon-Enhanced Frequency Up-conversion in Pr³⁺ Doped Tellurium-Oxide Glasses Containing Silver Nanoparticles". *Journal of Applied Physics*. 103: 093526-093530.
- Rajesh, D., Ratnakaram, Y. C., and Balakrishna, A. (2013). "Er³⁺ -Doped Strontium Lithium Bismuth Borate Glasses for Broadband 1.5 μm Emission Structural and Optical Properties". *Journal of Alloys and Compounds*. 563: 22-27
- Rani, S., Sanghi, S., Agarwal, A., Ahlawat, N. (2009). "Influence of Bi₂O₃ on optical properties and structure of bismuth lithium phosphate glasses". *Journal of Alloys and Compounds*. 477 : 504-509
- Reddy, C., M., Reddy, B. S., Dillip, G., R., Mallikarjuna, K., Raju, B., D., P., (2012)."FT-IR, FT-Raman and fluorescence studies of Tb³⁺ ions activated lead containing sodium fluoroborate glasses". Journal of Molecular Structure. 1019: 166-173
- Rivera, V., A., G., Ledemi, Y., El-Amraoui, M., Messaddeq, Y., Marega Jr, E., (2014).
 "Green-to-red light tuning by up-conversion emission via energy transfer in Er³⁺-Tm³⁺-codoped germanium-tellurite glasses". *Journal of Non-Crystalline Solids*. 392-393: 45-50
- Saddeek, Y. B. (2004). Structural Analysis of Alkali Borate Glasses". Journal of Physica B. 344: 163-175
- Sahar, M. R., Jehbu, A. K., Karim, M. M. (1997). "TeO₂-ZnO-ZnCl₂ Glasses for IR Transmission". *Journal of Non-Crystalline Solids*. 213 & 214: 164-167

- Sahar, M. R. Sulhadi, K. Rohani, M. S. (2008). "The preparation and structural studies in the (80-x)TeO₂-20ZnO-(x)Er₂O₃ glass system". *Journal of Non-Crystalline Solids*. 354 : 1179-1181
- Sahar, M. R. Sulhadi, K. Rohani, M. S. (2007). "Spectroscopic studies of TeO₂-ZnO-Er₂O₃ glass system". Journal of Materals Science. 42: 824-827
- Said, M., S., A., M., Ghoshal, S., K., Arifin, R., Roslan, M., K., Muhammad, R., Shamsuri, W., N., W., Abdullah, M., Shaharin, M., S., (2018). "Spectroscopic properties of Dy³⁺ doped tellurite glass with Ag/TiO₂ nanoparticles inclusion: Judd-Ofelt analysis". *Journal of Alloys and Compounds*. 754: 171-183
- Said Mahraz, Z. A., Sahar, M. R., Ghoshal, S. K. (2015). Enhanced luminescence from silver nanoparticles integrated Er³⁺-doped boro-tellurite glasses: Impact of annealing temperature. *Journal of Alloys and Compounds*, 649, 1102–1109
- Sajna, M., S., Thomas, S., Mary, K., A., A., Joseph, C., Biju, P., R., Unnikrishnan, N., V., (2015). "Spectroscopic properties of Er³⁺ ions in multicomponent tellurite glasses". *Journal of Luminescence*. 159:55-65
- Savikin, A., P., Grishin, I., A., Sharkov, V., V., Budruev, A., V., (2013). "Luminescence of erbium ions in tellurite glasses". *Journal of Solids State Chemistry*. 207:80-86
- Sazali, E. S., Sahar, M. R., Ghoshal, S. K., Arifin, R., Rohani, M. S., Awang, A. (2014). "Optical properties of gold nanoparticle embedded Er³⁺ doped leadtellurite glasses". *Journal of Alloys and Compounds*. 607: 85-90
- Sekiya, T., Mochida, N., Ohtsuka, A., and Tonokawa, M. (1989). "Normal Vibrations of Two Polymorphic Forms of TeO₂ Crystals and Assignment of Raman Peaks of Pure TeO₂ Glass". Nipp Sera Kyok Gaku Ronb. 97: 1345- 1440
- Senthil-Murugan, G., Fargin, E., Rodriguez, V., Adamietz, F., Couzi, M., Buffeteau, T., Le Coustumer, P. (2004). "Temperature-assisted electrical poling of TeO₂– Bi₂O₃– ZnO glasses for non-linear optical applications". *Journal of Non-Crystalline Solids*. 344: 158.
- Shadi, S. Y., (2008). "Electron spin resonance in low-dimensional spin chains and metals". Physikalisches Institut der Universität Stuttgart. Thesis PhD
- Sharaf El-Deen, L.F., Al Salhi, M.S., Meawad, M., Elkholy. (2008). "IR and UV spectral studies for rare earth-doped tellurite glasses". *Journal of Alloys and Compounds*. 465 : 333–339

- Sharma, P. and Katyal, S.C. (2008). "Effect of Ge Addition on the Optical Band Gap and Refractive Index of Thermally Evaporated As₂Se₃ Thin Films". *Research Letters in Materials Science*
- Shih, P.Y. (2004). "Thermal, chemical and structural characteristics of erbium-doped sodium phosphate glasses". *Journal of Chemistry and Physics*. 84: 151-156
- Shimoda, S., Uchida, M., Hayakawa, T., Thomas, P., (2017). "Synthesis and structure of transparent zinc-niobate-tellurite glasses with low hydroxyl content". *Journal of Ceramics International*. 43:2962-2968.
- Shiue, Y. S. and Matthewson, M. J. (2002). "Apparent activation energy of fused silica optical fibers in static fatigue in aqueous environments". *Journal of the European Ceramics Society*. 22: 2325-2332.
- Skoog, D. A. Holler, F. J. Crouch, S. R. (2006). "Principle of Instrumental Analysis. 6th. ed. Thomson Brooks/Cole.
- Slichter, C. P.,. (1998). "Principles of Magnetic resonance", 2nd edition. SpringerVerlag
- Simon, I. Modern Aspects of the Vitreous state. London: Butterworth. 1964
- Singh, A. K., G. P. Kothiyal, A. Srinivasan. (2008). "Magnetic and structural properties of ZnO-Fe₂O₃-SiO₂-CaO-P₂O₅-Na₂O glass ceramics". *Journal of Magnetism and Magnetic Materials*. 320: 1352-1356
- Singh, A. K., Kothiyal, A Srinivasan. (2008). "Electron spin resonance and magnetic studies on CaO-SiO₂-P₂O₅-Na₂O-Fe₂O₃ glasses". *Journalof Non-Crystalline Solids*. 354: 3166-3170
- Singh, A. K, A. Srinivasan, (2010). "EPR and magnetic susceptibility studies of iron ions in ZnO-Fe₂O₃-SiO₂-CaO-P₂O₅-Na₂O glasses". *Journal of Magnetism and Magnetic Materials*. 322: 2018-2022
- Singh, A. K. (2013). "A Comparative Study on Optical Properties of Se-Zn-In and Se-Zn-Te-In Chalcogenide Glasses". Optik. Int. J. Light. Elect. Opt. 124: 2187-2190
- Singh, B. P., Parchur, A. K., Singh, R. K., Ansari, A. A., Singh, P. and Rai, S. B. (2013). Structural and Up-Conversion Properties of Er³⁺ and Yb³⁺ co-doped Y₂Ti₂O₇ Phosphors. *Journal of Physical chemistry chemical physics*. 15: 3480-9.

- Smith, W. Dent, G. (2005). "Introduction, Basic Theory, Principles and Resonance Raman Scattering. Modern Raman Spectroscopy". England: John Wiley & Sons
- Song, K., W. Kim, C. Yul Suh, D. Shin, K. Seok Ko, K. Ha., (2013). "Magnetic iron oxide nanoparticles prepared by electrical wire explosion for arsenic removal". *Journal of Powder Technology*. 246 : 572-574
- Sreenivasulu, V., Upender, G., Swapna, Priya, V. V., Mouli, V. C., Prasad, M. (2014).
 "Raman, DSC, ESR and Optical Properties of Lithium Cadmium Zinc Tellurite Glasses". *Journal of Physica B*. 454: 60–66
- Stambouli, W., Elhouichet, H., Barthou, C., Ferid, M., (2013). "Energy transfer induced photoluminescence improvement in Er^{3+/}Ce^{3+/}Yb³⁺ tri-doped tellurite glass". *Journal of Alloys and Compounds*. 580:310-315
- Sulhadi. (2007). "Structural and optical properties studies of erbium doped tellurite glasses". Universiti Teknologi Malaysia : Ph. D. Thesis
- Taherunnisa, S. K., Reddy, D. V. K., Sambasivarao, T., Rudramamba, K. S.,
 Zhydachevskyy, Y. A., Suchocki, A., Piasecki, M., Reddy, M. R. (2019).
 "Effect of up-conversion luminescence in Er³⁺ doped phosphate glasses for developing Erbium-Doped Fibre Amplifiers (EDFA) and G-LED's. *Journal of Optical Materials:* X. X3: 100034
- Upender, G., Ramesh, S., Prasad, M. Sathe, V. G. And Mouli, V. C. (2010). "Optical band gap, glass transition temperature and structural studies of (100-2x)TeO₂xAg₂O-xWO₃ glass system". *Journal of Alloys and Compounds*. 504(2):468-474
- Vemula Venkatramu., Sergio F. Leon-Luis., Ulises R. Rodriguez-Mendoza., Virginia Monteseguro., Francisco J. Manjon., Antonio D. Lozano-Gorrin., Rafael Valiente., Daniel Navarro-Urrios., (2012). "Synthesis, structure and luminescence of Er³⁺ doped Y₃Ga₅O₁₂ nano-garnets". *Journal of Materials Chemistry*. 22: 13788
- Vijaya, M.S., Rangarajan, G.J. (2005). "Materials Science" Delhi: Tata McGraw-Hill
- Wang, F., Tian, Y., Jing, X., Cai, M., & Zhang, J. (2015). emission properties of fluoroaluminate – tellurite glass. *Journal of Quantitative Spectroscopy and Radiative Transfer. 165*, 93–101.
- Wang, J.S., Vogel, E.M., Snitzer, E. (1994). "Tellurite Glass: A new Candidate for Fiber Devices". Optical Materials: 187-203

- Watt, J., Kotula, P. G., Huber, D. L. (2017). "Magnetically recoverable Pd/Fe3O4 core-shell nanowire clusters with increased hydrogenation activity". *Journal of ChemPlusChem.* 82: 1-6
- Widanarto, W., Sahar, M.R., Ghoshal, S.K., Arifin, R., Rohani, M.S., Effendi, M. (2013). "Natural Fe₃O₄ nanoparticles embedded zinc-tellurite glasses: polarizability and optical properties". *Journal of Materials Chemistry and Physics.* 138: 174-178
- Widanarto, W., Sahar, M.R., Ghoshal, S.K., Arifin, R., Rohani, M.S., Hamzah, K. (2013). "Effect of natural Fe₃O₄ nanoparticles on structural and optical properties of Er³⁺ doped tellurite glass". *Journal of Magnetism and Magnetic Materials*. 326: 123-128
- Willey-Vch Verlag GmbH., Co kGaA. (2007). "Magnetic Nanoparticles". Russian Academy of Science : Moscow
- Willets, K. A., Van Duyne, R. P. (2007). Localized Surface Plasmon Resonance Spectroscopy and Sensing. *Annual Review of Physical Chemistry*. 58(1): 267– 297.
- Williams, D. B and Carter, C. B. (2009). Transition Electron Microscopy. Part 1: Basic. Springer
- Xiao Juan Liang., Haowei Shi., Xiang Chen Jia., Yuxiang Yang., Xiangnong Liu.
 (2011). "Dispersibility, shape and magnetic properties of nano-Fe₃O₄
 particles". *Journal of Materials Sciences and Application*. 2: 1644-1653
- Xu, T. Chen, F. Dai, S. Shen, X. Wang, X. Nie, Q. Liu, C. Xu, K. Heo, J. (2011).
 "Glass formation and third-order optical nonlinear properties within TeO₂-Bi₂O₃-BaO pseudo-ternary system". *Journal of Non-Crystalline Solids*. 357 : 2219-2222
- Yang, Y., Chen, B., Wang, C., Ren, G., and Wang, X. (2007). "Investigation of Modification Effect of B₂O₃ Component on Optical Spectroscopy of Er³⁺ Doped Tellurite Glasses". *Journal of Rare Earths*. 25: 31-35
- Yin, d., Yang, F., Wu, L., Zhou, Y., Zhou, H., Wang, X., (2015). "Enhanced 2.7μm mid-infrared emission and energy transfer mechanism in Er³⁺/Nd³⁺ codoped tellurite glass". *Journal of Alloys and Compounds*. 618:666-672
- Yusoff, N. M., Sahar, M. R., Ghoshal, S. K. (2015). "Sm³⁺: Ag NPs assisted modification in absorption features of magnesium tellurite glass". *Journal of Molecular Structure*. 1079: 167-172

- Yusoff, N., M., Sahar, M. R. Ghoshal, S. K. (2015). "Effect of silver nanoparticles incorporated with samarium-doped magnesium tellurite glasses". *Journal of Physica B: Physics of Condensed Matter*. 456: 191-196
- Yu, C., Yang, Z., Huang, A., Chai, Z., Qiu, J., Song, Z., Zhou, D., (2017).
 "Photoluminescence properties of tellurite glasses doped Dy³⁺ and Eu³⁺ for the UV and blue converted WLEDs". *Journal of Non-Crystalline Solids*. 457: 1-8
- Yu. S. Dedkov, M.Fonin, D. V. Vyalikh, J. O. Hauch, S. L. Molodtsov, U. Rudiger,
 G. Guntherodt. (2004). "Electronic structure at the Fe₃O₄ (111) surface". *Journal of Physical Review B*. 70 : 073405
- Zarifah, N.A., Halimah, M.K., Hashim, M., Azmi, B.Z., Daud, W.M. (2010).
 "Magnetic behaviour of (Fe₂O₃)_x(TeO₂)_{1-x} glass system due to iron oxide".
 Journal of Chalcogenide Letters. 7: 565-571
- Zhang, W., Lin, J., Cheng, M., Zhang, S., Jia, Y., Zhao, J., (2015). "Radiative transition, local field enhancement and energy transfer microcosmic mechanism of tellurite glasses containing Er³⁺, Yb³⁺ ions and Ag Nanoparticles". *Journal of Quantitative Spectroscopic & Radiative Transfer*. 159:39-52
- Zheng tao, Qin Jie-Ming, Jiang Da-Yong, Lu Jing wen, Xiao Sheng-Chum. (2012). " Spectroscopic properties in Er³⁺/Yb³⁺ co doped fluorophosphate glass". J. Chin. Phys. B. 20 : 043302
- Ziman, J. M., "*Principles of the theory of solids*". 2nd edition (1972). Cambridge University Press

LIST OF PUBLICATIONS

- P.Anigrahawati, M.R.Sahar. (2015). Structural and magnetic properties of zinc phosphate doped erbium glass embedded with Fe₂O₄ nanopartilces, *Materials Today: Proceedings* 2: 5220-5224 (Indexed Scopus).
- P.Anigrahawati, M.R.Sahar. (2016). Effect of metallic nanoparticles on the emission of zinc tellurite glass, *Solids State Science and Technology*. 24 (2) 206-211 (Indexed Scopus).
- 3. P.Anigrahawati, M.R.Sahar. (2016). Optical absorption and emission in magnesium tellurite doped erbium glass embedded with natural ferrite nanoparticles, *Solids State Science and Technology*. 24 (2) 220-226 (Indexed Scopus).
- P.Anigrahawati, M.R.Sahar. (2017). Structural properties of erbium doped tellurite glass embedded with natural ferrite oxide nanoparticles, *Solids State Phenomena*. 268: 177-180 (Indexed Scopus).
- 5. A.A. Salim, Z.A.S. Mahraz, P. Anigrahawati, N.A.M. Jan, S.K. Ghoshal, M.R. Sahar, F. M. Noor, K.A. Samah, S.N.S. Yacoob, S.K.MD. Zain, M.S. Aziz, S.S. Alias, N.H. Ahmad, H. Nurhafizah, A.N. Harun, H. Bakhtiar. E.S. Sazali. (2021). Structural, chemical and magnetic features of gold nanoshapes integrated Er₂O₃ doped tellurite glass system prepared by a conventional melt-quenching technique, *Journal of Applied Physics A*. 127: 673
- P. Anigrahawati, M. R. Sahar, E. S. Sazali. (2022). Physical, structural and spectroscopic analysis of tellurite glass containing natural magnetite Fe₃O₄ nanoparticles, *Journal of Materials Chemistry and Physics*. 286: 126183