
MAGNETOHYDRODYNAMICS EFFECTS ON GENERALISED POWER LAW 

FLUID MODEL OF BLOOD FLOW IN A STENOSED BIFURCATED ARTERY 

 

 

 

 

 

 

 

 

 

 

 

NORLIZA BINTI MOHD ZAIN 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA 



MAGNETOHYDRODYNAMICS EFFECTS ON GENERALISED POWER LAW 

FLUID MODEL OF BLOOD FLOW IN A STENOSED BIFURCATED ARTERY 

 

 

 

 

 

 

 

NORLIZA BINTI MOHD ZAIN 

 

 

 

 

 

 

 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Master of Philosophy 

 

 

 

 

 

Faculty of Science 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

MAY 2019 



 

iv 
 

ACKNOWLEDGEMENT 

 

 

 

 

 First and foremost, a million thanks go to my only supervisor, Dr Zuhaila 

Ismail for her guidance, inspiring thoughts and advices and for always keep trusting 

me throughout my research study. Her positive feedbacks have contributed to my self-

motivation that drive me to always give my very best in this study and never give up. 

 

 

 I also would like to deeply thanks my seniors, Dr Lim Yeou Jiann and Ms Huda 

Salmi Binti Ahmad for sharing their time and knowledge teaching me the method 

which are new to me. Without them, it must be tough for me to fully understand the 

formulation of that method and its implementation on the source code. 

 

 

 Special thanks to my parents for their endless prayers and encouragement that 

has become the main inspirations to me for all this while to keep doing well in 

everything I do. Thank you so much to my beloved mom and my loving husband for 

always being my great listeners through my hardest and joyful moments. To my 

siblings, nieces and nephews, thank you for always cheers me up whenever I am 

feeling down. 

 

 

 Greatest appreciation to my friends in Universiti Teknologi Malaysia for their 

motivation and prayers for me to fulfilled my study with excellent results. Last but not 

least, I would like to thanks Ministry of Higher Education Malaysia for sponsoring my 

study in UTM through a scholarship programme of MyBrainSc. 



v 
 

ABSTRACT 

 

 

 

 

The production of Lorentz force arises according to the 

magnetohydrodynamics principle which allows fluid motion to slow down an 

accelerated fluid and thus resulted in a uniform, calm flow. Due to that, most of the 

clinical treatments of certain cardiovascular diseases utilise this principle in magnetic 

therapy. Unfortunately, an excessive exposure to high magnetic intensity may 

contribute to an irreversible change and it can be harmful towards the organ. Hence, 

in this research, the effects of uniform external magnetic field along the bifurcated 

artery that possesses an overlapping stenosis at the parent’s arterial lumen are 

investigated for further understanding. Several assumptions are considered in this 

study. In particular, the streaming blood is considered steady, laminar, incompressible, 

fully developed and electrically conducted. In addition, the rheological behaviour of 

the streaming blood is assumed to be characterised by a generalised power law model 

corresponding to shear-thinning, Newtonian and shear-thickening nature of blood. 

However, in these conditions, applying the finite element technique using the classical 

Galerkin approach may result in spurious oscillation. In order to deal with this issue, 

the resulting governing equations are solved using a stabilized finite element technique 

called Galerkin least-squares method. This method is convenient to compute a highly 

viscous streaming blood and compatible to circumvent the Babuska-Brezzi stability 

conditions. Comparison of velocity contour, pressure drop and skin friction obtained 

from this present study using MATLAB and COMSOL Multiphysics softwares are 

found in satisfactory agreement with previous work in the literature. Thus, convincing 

enough to be extended by including the magnetohydrodynamics and non-Newtonian 

effects along a bifurcated channel. The results from pattern of streamlines show that 

shear-thinning fluid creates the largest recirculation area in comparison to shear-

thickening and Newtonian fluids. In addition, when external magnetic field is applied 

in a transverse direction, the flow velocity is reduced considerably, restricting the 

occurrence of flow reversal, consequently generating a uniform, calm flow. However, 

the magnetic intensity shows little effect on the constricted region due to the smaller 

diameters of the vessel. Furthermore, as the severity of stenosis is increased, 

significant rise in wall shear stress magnitudes at the throat of an overlapping stenosis 

are noticed which may lead to thrombosis occurrence. Therefore, application of 

Galerkin least-squares method to the flow of blood in a stenosed bifurcated artery with 

the influence of an external magnetic field can be beneficial for magnetic therapy 

predictions and helps to understand the flow dynamics in a stenotic region. 
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ABSTRAK 

 

 

 

 

Pengeluaran daya Lorentz yang wujud berdasarkan prinsip 

magnetohydrodynamics membolehkan gerakan bendalir memperlahankan cecair yang 

sedang memecut justeru menghasilkan aliran yang seragam dan tenang. Oleh itu, 

kebanyakan rawatan klinikal bagi beberapa penyakit kardiovaskular menggunakan 

prinsip ini dalam terapi magnetik. Malangnya, pendedahan yang berlebihan terhadap 

keamatan magnet yang tinggi boleh menyumbang kepada perubahan yang tidak dapat 

dipulihkan dan ia boleh memudaratkan organ. Oleh itu, dalam kajian ini, kesan medan 

magnet luar seragam terhadap saluran darah bercabang yang mempunyai stenosis 

bertindih di lumen cabang utama disiasat untuk pemahaman yang lebih lanjut. 

Beberapa andaian dianggap dalam kajian ini. Khususnya, aliran darah dianggap 

mantap, laminar, tidak boleh dikompresi, aliran terbentuk sepenuhnya dan boleh 

mengalirkan elektrik. Tambahan pula, sifat rheologi aliran darah diandaikan sebagai 

model hukum kuasa teritlak berdasarkan sifat penipisan ricih, Newtonian dan 

penebalan ricih darah. Walaubagaimanapun, dalam situasi ini, dengan menggunakan 

teknik elemen terhingga melalui pendekatan Galerkin klasik boleh mengakibatkan 

ayunan palsu. Bagi menangani masalah ini, persamaan pentadbiran yang terhasil 

diselesaikan dengan menggunakan kaedah satu bentuk teknik unsur terhingga yang 

stabil dikenali sebagai Galerkin kuasa dua-terkecil. Kaedah ini sesuai untuk mengira 

aliran darah yang mempunyai kelikatan yang sangat tinggi dan serasi untuk 

mengelakkan keadaan kestabilan Babuska-Brezzi. Perbandingan ke atas kontur halaju, 

penurunan tekanan dan geseran kulit yang diperoleh dari kajian ini menggunakan 

perisian MATLAB dan COMSOL Multiphysics didapati memperoleh persetujuan 

yang memuaskan dengan kajian sebelumnya dalam literatur. Oleh itu, kaedah ini 

cukup meyakinkan untuk diperluaskan dengan menambah kesan 

magnetohydrodynamics dan bukan-Newtonian pada saluran darah yang bercabang. 

Hasil dari corak aliran menunjukkan bahawa cecair penipisan ricih menghasilkan 

kawasan pengulangan semula yang lebih besar berbanding dengan cecair penebalan 

ricih dan cecair Newtonian. Di samping itu, apabila medan magnet luar digunakan 

dalam arah melintang, halaju aliran berkurangan dengan ketara, menyekat berlakunya 

pembalikan aliran, seterusnya menghasilkan aliran seragam, yang tenang. Walau 

bagaimanapun, keamatan magnet menunjukkan kesan yang tidak ketara ke atas 

kawasan yang sempit disebabkan oleh diameter salur darah yang lebih kecil dari vesel 

tersebut. Tambahan pula, apabila keterukan stenosis meningkat, peningkatan ketara 

dalam magnitud tekanan geseran dinding di tekak stenosis yang bertindih dikesan yang 

kemudiannya boleh menyebabkan terjadinya trombosis. Oleh itu, penggunaan kaedah 

Galerkin kuasa dua-terkecil terhadap aliran darah dalam arteri bifurkasi yang berpusat 

dengan pengaruh medan magnet luar boleh memberi manfaat untuk ramalan terapi 

magnetik dan membantu memahami dinamika aliran di rantau stenosis. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Research Background 

 

 

Cardiovascular diseases are recorded as the most popular cause of deaths 

among humans worldwide. This fact has been verified by World Health Organization 

(WHO 2017) which has confirmed that about 17 million people were estimated to have 

died per year due to these diseases (World Health Organization, 2017; Sankar, 

Gunakala and Comissiong, 2013). This number is expected to grow by year 2030 to 

more than 23.6 million deaths. Among these huge number of mortality, two main 

sources of deaths are caused by cerebrovascular disease and coronary heart disease 

due to the blockage of blood vessels to the brain and heart muscle, respectively. 

 

 

The genesis, diagnosis and prognosis of this vascular diseases are still being 

investigated by researchers all around the world and have become a favourite subject 

of scientific research to be explored. Their effects on biological fluid dynamics are the 

main concern to be discovered and understood. The connection between these two 

helps greater in the prediction of disease progression and how it influences the blood 

flow dynamics. By considering other external forces influence such as body 

acceleration, gravity and external magnetic field on blood flow, these will generate 

more knowledge in this area which in turn may benefit others especially an expert in 

the field of medicine for improving the design of medical devices. 

 

 

Blood is a two-phase fluid, consisting of about 55% continuous Newtonian 

phase fluid (plasma) with a number of suspended formed elements make up over 45%  

volume of blood which composes of red blood cells (erythrocytes), white blood cells 

(leukocytes) and platelets (Kowalewski, 2005). Figure 1.1 summarizes the human 

blood composition as it is being centrifuged. 
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Figure 1.1      Approximate values for the components of human blood (Basicmedical 

Key, 2016) 

 

 

Plasma is made up of 91% water, 7% protein and the rest of it is small amounts 

of organic and inorganic molecules together with the dissolved gasses (Kowalewski, 

2005). Its concentration and volume is essential for the blood pressure control (Rabby, 

Shupti and Molla, 2014). Prominently, red blood cells comprise of mostly the formed 

elements approximately about 99% (Sherwood, Kaliviotis, Dusting and Balabani, 

2014). Red blood cell is a micro polar fluid (small semisolid particles) which majorly 

influences the rheological behaviour of blood due to its dominated viscous effect that 

is predominantly being influenced by the hematocrit distribution; ratio between 

volume of red blood cells to the total volume of blood (Rabby et al, 2014; Sherwood 

et al, 2012; Srivastava and Rastogi, 2010). Meanwhile, there are five types of 

leukocytes which can be classified according to the absence or presence of granules in 

the cytoplasm of the cell as categorized in Figure 1.1, which are especially vital for the 

production of antibodies in order to fight infections by destroying any foreign cells 

(Pincombe, 1999). The smallest formed elements (platelets) functioning in blood 

clotting to stop bleeding of the damaged vessels is thought to be important in the 

development of atherosclerotic lesions (Pincombe, 1999). 

 

 

Zaman, Ali, Sajid and Hayat (2015) stated that in larger arteries, blood is 

assumed as a Newtonian fluid for values of shear rate greater than 100
1s  and behaves 
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differently as a non-Newtonian fluid in narrow arteries (of diameter 2400μm)  

(Srivastava et al, 2010). It is clearly described by Rabby et al (2014) that Newtonian 

fluid viscosity is always constant with the shear rate while the non-Newtonian fluid 

viscosity is continuously changing with the shear rate. This characteristic of 

Newtonian fluid would then later reveal a high potential to the individual being 

attacked by any of the cardiovascular diseases compared to non-Newtonian fluid 

(Rabby et al, 2014). 

 

 

Blood vessels are liable for the transportation of blood throughout the human 

body system. Arteries, capillaries and veins are the three main types of blood vessels, 

each with different roles to be carried out in the human circulatory system. For 

instance, arteries take control of carrying blood away from the heart (Yahya, 2010). 

The main artery is aorta that bifurcates into other major arteries which are the carotid 

arteries, brachial arteries, thoracic arteries, coronary arteries and iliac arteries. The 

major arteries then branch into minor arteries that will further diverge into smaller 

vessels (arterioles) to reach far down into the muscles and organs (Yahya, 2010). 

Arterioles then diverge into the capillary beds which consist of about 10 to 100 

capillaries that deviate further to cells and tissues of the body to enable the blood 

supply to reach every tiny part of the human body (Yahya, 2010). Exchange of oxygen, 

nutrients and waste with tissues at the cellular level takes part at these capillary beds. 

These capillaries then approach venules that are connected with minor veins. Minor 

veins are attached to major veins which are responsible to drain blood rich in carbon 

dioxide back to the heart from the organs and limbs that are being supplied by the 

major arteries. As depicted in Figure 1.2, the network of blood vessels in human body 

system which includes arteries, capillaries and veins can be clearly seen and 

differentiated from one another. 
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Figure 1.2      Human blood vessels (Fact Monster, 2017) 

 

 

Atherosclerotic lesion is the arterial disease that is believed to be responsible 

for the cardiovascular system failure (Ikbal, Chakravarty, Wong, Mazumdar, and 

Mandal, 2009). It is formed due to the narrowing of the arterial lumen as a result of 

plaque deposition which consists of lipid, cholesterol and some other substances 

formed on the inner wall of the artery, which can be called as the endothelium (Rabby 

et al, 2014; Ikbal et al, 2009; Jahangiri, Saghafian and Sadeghi, 2015; Alimohamadi, 

Imani and Shojaeizadeh, 2014). This leads to the abnormal pattern of blood flow which 

severely reduced the flow of blood to the other organs and tissues (Stroud, Berger and 

Saloner, 2002). Plaque might behave differently and lead to different blood rheology. 

In some cases, plaque grows to a certain size and stops without eventually narrowing 

the lumen in which the arterial wall deformed their external diameter itself in order to 

provide sufficient space for the plaque (Ikbal et al, 2009). In such cases, this silent 

plaque can only be detected through intravascular ultrasound since it never caused any 

symptoms due to the plaque formation that does not even block blood flow. However, 

in most cases plaque acts differently where it grows and results in a significant 

blockage of blood circulation. As a consequence, patients of this case experience usual 

symptom like pain on exertion (in the chest or legs). Severe cases demonstrate that 

plaque deposition could suddenly rupture into emboli (particles) and lead to the 

formation of thrombus (blood clot) inside an artery (Ikbal et al, 2009; Stroud et al, 

2002). Blockage of blood flow to the carotid artery and coronary artery particularly as 

a result of thrombus formation lead to neurological symptoms (stroke) and unstable 

angina or myocardial infarction (heart attack), respectively. According to Roh and Kim 
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(2003), atherosclerosis preferably develops at the abdominal aorta, the coronary 

arteries, the carotid arteries, and the peripheral arteries such as femoral and also iliac. 

 

 

Health risks caused by the malfunction of cardiovascular system reveals that 

every human being are at risk of possibly being infected by these cardiovascular 

diseases. Once a mild stenosis has developed, the arterial lumen gets narrower and 

leads to the changes of regional rheological behaviour of blood which further 

influences these diseases to develop and become more severe (Rabby et al, 2014). 

Despite that, still lots of humans are unaware of this health problem. Dietary fat and 

blood cholesterol, high blood pressure and smoking are few risk factors that lead to 

the atherosclerosis infection, which in other words this disease development is much 

related to the human’s way of living (Roh et al, 2003). Hence, there is a growing need 

to investigate the rheological behaviour of blood and identify the fluid dynamic 

properties of blood flow to capture the basic knowledge on diagnosis and treatment of 

cardiovascular and arterial diseases so that most of the human beings could be aware 

of the risk of these diseases. 

 

 

Most of the treatments of cardiovascular diseases are based on the application 

of an external magnetic field which is basically known as magnetic therapy. As 

discovered by Science Daily (2011), a lower magnetic field intensity could decrease 

the viscosity of blood by 20% to 30% which in turn reduce the possibilities of impaired 

vessels and risk of heart attack. As represented in Figure 1.3, the red blood cells 

aggregate and move in a streamline direction as the external magnetic field is 

employed that resulted into further reduction of blood viscosity. This allows the blood 

to move freely while at the same time lowers the friction against wall of the blood 

vessels (Science Daily, 2011). As magnetic field is applied on a moving blood, an 

electric and magnetic fields will be induced (Bhatnagar and Shrivastav, 2014). Since 

blood is composed of suspension of red blood cells that consist of haemoglobin and 

with the presence of ions in the plasma, blood can be classified as an electrically 

conducting fluid that exhibits the magnetohydrodynamics (MHD) principle 

(Bhatnagar et al, 2014; Bose and Banerjee, 2015). 
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Figure 1.3      Aggregated red blood cells clump moving together in a streamline shaped 

(Science Daily, 2011) 

 

 

When both fields are in contact with each other, a body force known as Lorentz 

force arises and slows down the fluid motion following the principle of MHD 

(Bhatnagar et al, 2014; Bose et al, 2015). This benefits especially for the pumping 

action of blood and magnetic resonance imaging (MRI). Another treatment of arterial 

occlusions that makes use of an external magnetic field is magnetic drug carriers (Bose 

et al, 2015). In this treatment, a magnetized drug will be injected to the blood flow 

while a magnetic field is placed at the target region that is facing an injury (Hasanzade, 

2015). These drug particles move following the flow of blood until they reach the 

magnetic site and will be absorbed by the magnetic field (Hasanzade, 2015). Since this 

treatment does not affect any other body cells, hence it would be very efficient and 

safe to treat vascular diseases. 

 

 

Apart from that, another haemodynamic variable to be considered for a better 

understanding on the rheological behaviour of blood is the arterial geometry. Arteries 

and arterioles that consist of curvatures, junctions and bifurcations were reported by 

Rabby et al (2014), Zarins, Giddens, Bharadvaj, Sottiurai, Mabon and Glagov (2015), 

Lou and Yang (1993), and Liu and Tang (2011) as the most favoured sites predisposed 

to atherosclerosis development. This suggests why the flow at certain region has high 

potential to be disturbed by flow disturbances like flow reversal and stagnation. 

Through an exposure of high or low shear stress at wall of these particular regions, the 

genesis as well as progression of the intimal thickenings could be predicted (Rabby et 
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al, 2014; Zarins et al, 2015; Lou et al, 1993). Thus, an incident of thrombosis could be 

overcome. 

 

 

Computational Fluid Dynamics (CFD) uses numerical methods to solve the 

fundamental nonlinear differential equations that describe fluid flow (the Navier-

Stokes and allied equations) for the predefined geometries and boundary conditions. It 

saves cost and turnaround time as well as acquires reliable result. In terms of the 

medical purposes, computational simulations help a lot in the prediction of surgeries 

outcome and in understanding the haemodynamic of blood flow (Sousa, Castro, 

Antonio and Chaves, 2011). Numerical modelling technique for flow characterization 

in the carotid artery has been carried out using CFD simulations which provide a 

source of references for further validation of other related studies (Ro and Ryou, 2010). 

Hence, simulations using CFD have significantly contribute in identifying sites which 

is prone to atherosclerotic lesions formation (Stroud et al, 2002). 

 

 

 

 

1.2 Problem Statements of Research 

 

 

Stenosis can cause the narrowing of blood vessels that may reduce the flow of 

blood supply to the organs and tissues. It disturbs the normal function of human 

circulatory system and is recognized as a leading cause to cardiovascular diseases such 

as heart attack and stroke. There are various geometrical shapes of stenosis to be 

proposed in blood flow studies which are either a single stenosis such as a bell shaped, 

mild, cosine or a multiple stenosis like overlapping and irregular stenosis. Multiple 

stenosis is usually found at the pulmonary and femoral arteries. Hence, by considering 

the presence of an overlapping stenosis in this study the stenosis representation would 

be more critical and almost realistic. 

 

 

Geometry of an artery takes vital control on the behaviour of blood and with 

the presence of stenosis, the blood loading through the vessel is disturbed considerably. 

Bifurcated artery is claimed as the most favoured region to be exposed by 

atherosclerosis formation since it has a sudden change of area and curvature. It caused 
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huge changes to the flow structure such as the formation of flow recirculation and 

stagnation. In fact, studies have shown that bifurcated geometry has the greatest 

influence compared to the fluid viscosity of blood into the flow field. 

 

 

Another factor that should not be neglected in this haemodynamic analysis is 

the rheological behaviour of blood. For high shear rate region like a larger artery, 

representing the blood as a Newtonian fluid is acceptable. It is however not valid when 

it comes to region with low shear rate value especially downstream of stenosis and 

smaller arteries. Assuming the blood as a Newtonian fluid will lead to an inaccurate 

result which further causes incorrect risk estimation of haemodynamic diseases 

dependency. A few non-Newtonian models which can represent the blood are power-

law, generalised power law, Casson, Herschel-Bulkley, and Carreau-Yasuda. The 

most general model for non-Newtonian blood viscosity over the other models is 

generalised power law since it includes the power law model at low shear rate, a 

Newtonian model at high shear rate as well as the Casson model for special cases. 

 

 

Majority of the treatment for cardiovascular diseases utilised a static uniform 

magnetic field in magnetic therapy where the blood is considered as a 

magnetohydrodynamics (MHD) fluid. An exposure to the magnetic field could provide 

a relaxation to the blood vessel while also maintaining the flow of blood. Suitable 

application of magnetic field can also be practical for the conditions like muscles 

sprains, strains, joints pain and headaches. It is also useful for controlling the flow of 

blood during a surgery due to the production of Lorentz’s force that retards the blood 

motion. However, an excessive exposure to a magnetic field can cause an irreversible 

alteration and can be risky to the heart. It might also lead to calcium dynamic changes. 

Therefore, further and careful studies on the influence of an external magnetic field 

should be employed to examine its effects towards the blood flow motion and 

progression of arterial diseases. 

 

 

Finite element method (FEM) has been demonstrated as one of the most 

effective numerical methods for blood flow modelling that can be performed either in 

idealized or patient-specific models. The discretization of governing equations using 

Galerkin weighted residual (GWR) method that transforms the global coordinate to 
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the local one is definitely essential for the solution of the problem within arbitrary 

geometry. This method also provides a faster rate of convergence for even large scale 

transient simulations. However, when the classical Galerkin finite element formulation 

is employed to solve highly viscous incompressible fluid problem, the numerical 

instabilities like locking and spurious oscillations emerged. Due to that, a stabilized 

finite element method is required to deal with such difficulties. A few stabilized finite 

element techniques that can be chosen to overcome those problems are Streamline 

upwind Petrov-Galerkin (SUPG) method, Galerkin least-squares (GLS), unusual 

stabilized finite element method (USFEM) and penalty finite element method. 

 

 

 

 

1.3 Objectives of Research 

 

 

The main aim of this study is to investigate the blood flow characteristics when 

flowing through a bifurcated artery that has a stenosis on the mother artery. Also, by 

considering the electrical conductivity property of blood driven by the MHD 

principles, changes and effects caused by this external forces are studied for further 

understanding. Hence, the proper governing equations with suitable boundary 

conditions are needed for that purpose. The resulting governing equations are then 

solved using a stabilized finite element method which is Galerkin least-squares 

formulation. To be more specific, the objectives are : 

 

(a) To develop a mathematical model that describes the blood flow phenomenon 

in a bifurcated artery with the presence of stenosis at a mother artery 

characterised by generalised power law model with the influence of an external 

magnetic field. 

(b) To develop a source code based on the numerical discretization that has been 

performed by using Galerkin least-squares (GLS) method. 

(c) To investigate the effects of shear-thinning, Newtonian and shear-thickening 

nature of blood passing through a stenotic vessel using generalised power law 

model. 

(d) To examine the impacts of a uniform magnetic field into non-Newtonian 

characteristics of blood corresponding to its shear-thinning and shear-
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thickening nature using generalised power law model in the bifurcated artery 

with the presence of an overlapping stenosis. 

 

 

 

 

1.4 Scope of Research 

 

 

As stated in the objectives of research section, this study is concerned with the 

impact of stenosis and external magnetic field towards any potential haemodynamic 

disturbances and alterations it might cause either to the velocity, streamlines, wall 

shear stress or pressure. In this study, the fluid flow behaviour is modelled based on 

the Navier-Stokes equations with few assumptions imposed to the flow. These few 

assumptions are steady, laminar and two-dimensional considering a rigid wall with no-

slip. Both Newtonian and non-Newtonian fluid models are employed to characterise 

the fluid viscosity of blood in this study. The existence of an overlapping stenosis at 

the mother artery and an externally applied uniform magnetic field are also 

demonstrated in the present investigation while a bifurcated artery is modelled as a 

bifurcated channel using Cartesian coordinates system. The blood flow will then be 

analysed using a stabilized finite element method (FEM) formulation where the 

Galerkin least-squares (GLS) method is utilised to discretize the governing equations 

and boundary conditions. To validate the developed MATLAB source code, a 

verification is performed on both previous studies and the result obtained from 

COMSOL Multiphysics software. Neither clinical nor experimental tests are involved 

in this research on the human or animal arteries. 

 

 

 

 

1.5 Significances of Research 

 

 

Outcome from this study on non-Newtonian fluid theory will help in a better 

understanding on the haemodynamic factors effecting towards the rheological 

behaviour of blood flow and also on the distraction that might be developed. Hence, 

study of blood flow through a stenosed bifurcated artery plays a vital role in 

understanding not only the basic idea but also on the diagnosis and treatment of the 
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cardiovascular disease. A detailed evaluation on the haemodynamic alterations of 

blood flow is especially essential for the early detection of a highly stenosed artery and 

may have a very useful clinical values. 

 

 

Computational fluid dynamics (CFD) simulations used in this study is 

definitely economically cheap for the physician to predict the outcome of alternative 

treatment plans for patients through a combination between physiologic and anatomic 

models. Thus, a construction of a computational model which reflects the true 

geometry of an artery with stenosis is predominantly needed as a comparison with the 

available vivo data in order to validate the resulting information on the occlusion 

caused by the plaque accumulation. 

 

 

Since most of the medical diagnostic devices make use of a magnetic field in 

diagnosing cardiovascular diseases, this investigation would be very helpful for 

medical practitioners to analyse the impact of magnetic field in magnetic therapy 

towards patients. This study is also effective for the future designs of medical devices 

that utilise the magnetic field. 

 

 

 

 

1.6 Outline of the Thesis 

 

 

 This thesis consists of six chapters namely introduction, literature review, 

problem formulation, finite element method implementation, results and discussion 

and ends with a conclusion. A brief description on the background of the research 

involving the composition of blood and its characteristics, blood vessels, genesis of 

atherosclerosis as well as the benefits of magnetic therapy are introduced in Chapter 

1. This chapter then also presents the problem statements, objectives, scope and 

significances of research. 

 

 

 In Chapter 2, reviews on previous studies related to stenotic artery, rheological 

characteristics of blood, magnetic property of blood as well as the method of solution 

in solving the blood flow problem are demonstrated. From there, all the problems 
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involved in this study are solved using one of the stabilization techniques of finite 

element method known as Galerkin-least squares method with the rheological 

characterisation of blood being represented by Newtonian and generalised power law 

models. In addition, the electrical conductivity of blood is also considered by including 

the MHD principles in this study. 

 

 

 Since the arterial geometry is portrayed as a bifurcated artery with the presence 

of an overlapping stenosis deposited on parent’s arterial lumen, a detailed derivation 

on the arterial geometry involved is included in Chapter 3. Apart from that, the 

derivation on governing equations of this research for continuity and momentum 

equations driven by the physical principle of mass conservation and Newton’s second 

law of motion, respectively are explained in the chapter. Based on the assumptions 

imposed, the mathematical model, boundary conditions and stress tensor are also 

prescribed. 

 

 

 Chapter 4 describes the stabilization technique of finite element method 

implementation which involves spatial discretization, interpolation function, Gaussian 

quadrature to evaluate the numerical integrals and Newton-Raphson method to 

linearize the non-linear terms. Algorithms developed in solving the proposed problems 

using the Galerkin-least squares formulation are also explored and presented in this 

chapter. To validate the source code that has been developed, result on maximum 

velocity and its location is validated with previous work and simulation from 

COMSOL multiphysics that is found in a great agreement. Comparison of results 

obtained for pressure drop and skin friction at certain locations are also reported in a 

good agreement with the previous work by Xenos and Tzirtzilakis (2013). 

 

 

 In Chapter 5, focus has been made on the effects of different type of fluid 

characterisations (shear-thinning, Newtonian and shear-thickening) into the blood 

flow characteristics. The effects of Reynolds number, severity of stenosis as well as 

generalised power law index into the velocity profiles, pressure, wall shear stress and 

streamlines pattern are examined and discussed in the chapter. In addition, the second 

problem seek to examine the influences of external magnetic field into the blood flow 

behaviours where fluid is assumed to behave according to the nature of shear-thinning 
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and shear-thickening only. Results are presented in a similar form as depicted in the 

previous problem with an additional effect of Hartmann number introduced for this 

second problem. 

 

 

 In the last chapter of this thesis, the whole outcome obtained from this study 

has been summarised as presented in Chapter 6. Furthermore, a few recommendations 

to improve this current research in the future are suggested. 
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