MAGNETICALLY RECOVERABLE BIOSYNTHESISED GOLD NANOPARTICLES AS CATALYSTS FOR OXIDATION OF BENZYL ALCOHOL AND REDUCTION OF 4-NITROPHENOL

SUHAILA BINTI BORHAMDIN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Chemistry)

> Faculty of Science Universiti Teknologi Malaysia

> > SEPTEMBER 2019

For my beloved husband, children, parents and family, thank you for everything

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful. Praise be to Allah s.w.t, the Almighty God for giving me the strength, patience and good health to complete this work.

First of all, I wish to express my sincere appreciation to my supervisor, Prof. Dr. Mustaffa Shamsuddin, for an opportunity to join his research group, for his supervision, guidance, encouragement, immense knowledge and understanding throughout the course of my research. This thesis is a notable accomplishment for me, and I am very thankful for his advice and detailed direction to make this thesis a success. I would also like to give my special thanks to my co-supervisor, Assoc. Prof. Dr. Abdolhamid Alizadeh from Razi University, Iran, and my former co-supervisor, Dr. Jon Efendi from Universitas Negeri Padang, Indonesia, for their valuable guidance, advice and motivation on my research work.

I am also indebted to the Ministry of Higher Education Malaysia (MoHE) for a scholarship under MyBrainSc Program and research funding (Vot 03H06 and 4F779). I would also like to thank Prof. Dr. Yun Yeong-Sang from Chonbuk National University, Korea, for his generous help on my sample characterization, Dr. Dwi Gustiono Riban from Agency for the Assessment and Application of Technology, Indonesia and Prof. Dr. Gopinathan Sankar from University College London, UK, for their valuable opinion on my research work.

I wish to extend my sincerest gratitude to the technical staff from the Department of Chemistry, Faculty of Science and the Centre for Sustainable Nanomaterials (CSNano) UTM, in particular to Mdm. Asma, Mr. Amin, Mdm. Mariam, Mr. Azani, Mr. Rahim, Mr. Mohamed, Mr. Faizal, Mdm. Azleena and Mdm. Hidayah, for their assistance and support in handling the instruments. My fellow colleagues, Siti Kamilah, Amel, Khalisah, Atiqa, Shahrul, Rapidah, Hafizah, Parwa, Aziza, Faraidoon, Gul Naz, Wong Sze Ting, Falynee, Fadzilah, Afiqah, Omar, Nurul Huda, Fazreen and Fazleen, your friendship and support, mentally and physically were greatly appreciated.

Last but not least, a very warm thank you to my beloved family especially my husband, Ahmad Safuan A. Rashid, my children, Muhammad Umar Mukhtar, Muhammad Uwais, Hafsah Ulfah and Muhammad Usaid, my parents, Biah Anong and Borhamdin Abdullah, my parents-in-law, Sharipah Wan Ismail and A Rashid Omar and my siblings for their love, patience, countless support, encouragement and sacrifices. Without all of them, I wouldn't have made this far.

ABSTRACT

In recent years, gold nanoparticles (AuNPs) have received considerable attention owing to their unique properties which are promising in diverse fields and applications such as biomedical science and catalysis. AuNPs has been considered as the catalyst of choice for numerous organic reactions. Vast numbers of chemical, physical and biological strategies have been employed to synthesise AuNPs. Among these approaches, the biological method employing plant extract is gaining attention as it is simple and environmentally friendly. In this research, a green biosynthetic approach for the preparation of AuNPs using aqueous leaf extract of *Polygonum* minus as reducing and stabilising agent is described. The reduction of Au(III) ions to elemental Au occurred rapidly and it was completed within 20 min at room temperature as monitored by ultraviolet-visible (UV-Vis) spectroscopy. High resolution transmission electron microscopy/energy-dispersive X-ray (HRTEM/ EDX) and X-ray diffraction (XRD) analytical data indicated that the nanoparticles were in fcc crystalline shape, mostly icosahedral and nearly monodispersed with an average size of 23 ± 5.1 nm. Fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry (CV) analyses of the AuNPs and the leaf extract revealed that the oxidised (quinone) form of quercetin and myricetin were presumably the main stabilising agents in the formation of stable nanoparticles. The biosynthesised AuNPs showed good catalytic activity, with a turnover frequency (TOF) of 85.2 h^{-1} for the oxidation of benzyl alcohol and a normalised rate constant, K_{nor} of 0.06 s⁻¹ mmol⁻¹ in the reduction of 4-nitrophenol. The same bioreduction process was employed in the preparation of AuNPs catalysts supported on highly branched metforminfunctionalised silica-coated magnetite (Fe₃O₄-SiO₂-Met). The structural, surface and magnetic properties of the support material (Fe₃O₄-SiO₂-Met) was investigated by elemental carbon-hydrogen-nitrogen FTIR. XRD. HRTEM/EDX, (CHN). thermogravimetry (TGA) and vibrating sample magnetometry (VSM) analyses. The XRD, HRTEM/EDX, X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS) analytical data revealed that AuNPs with smaller average sizes (6.1 \pm 2.2 nm and 16.2 \pm 8.3 nm) were well-dispersed on the Fe₃O₄-SiO₂-Met support. Under optimum benzyl alcohol oxidation reaction conditions, 0.3% Au/Fe₃O₄-SiO₂-Met catalyst displayed an enhanced catalytic performance as compared to the unsupported AuNPs, with a TOF improvement factor of 2.5. Meanwhile, the catalytic performance of the 6% Au/Fe₃O₄-SiO₂-Met catalyst showed enhancement with an increase in the normalised rate constant, K_{nor} value by a factor of 8.8 as compared to the unsupported AuNPs under an optimised 4-nitrophenol reduction reaction conditions. The supported AuNPs catalyst could be easily recovered magnetically and reused for at least four times and three times in the oxidation and reduction reactions, respectively, without significant loss of activity.

ABSTRAK

Dalam beberapa tahun kebelakangan ini, nanopartikel emas (AuNPs) telah mendapat perhatian disebabkan oleh sifat-sifat uniknya yang menjanjikan dalam pelbagai bidang dan penggunaan, misalnya sains bioperubatan dan pemangkinan. AuNPs telah dianggap sebagai mangkin pilihan bagi pelbagai tindak balas organik. Banyak strategi kimia, fizik dan biologi telah digunakan untuk mensintesis AuNPs. Antara pendekatan ini, kaedah biologi yang menggunakan ekstrak tumbuhan telah mendapat perhatian kerana ia mudah dan mesra alam sekitar. Kajian ini menghuraikan pendekatan biosintesis hijau bagi penyediaan AuNPs menggunakan ekstrak akueus daun Polygonum minus sebagai agen penurunan dan agen penstabilan. Penurunan ion Au(III) kepada unsur Au telah berlaku dengan cepat dan ia selesai dalam masa 20 minit pada suhu bilik sebagaimana yang dipantau menggunakan spektroskopi ultra ungu-cahaya nampak (UV-Vis). Data mikroskopi elektron penghantaran resolusi tinggi/serakan tenaga sinar-X (HRTEM/EDX) dan pembelauan sinar-X (XRD) menunjukkan nanopartikel adalah berbentuk hablur fcc, kebanyakannya ikosahedral dan hampir mono-tersebar dengan saiz purata 23 ± 5.1 nm. Analisis spektroskopi inframerah transformasi Fourier (FTIR) dan voltammetri berkitar (CV) bagi AuNPs dan ekstrak daun menunjukkan bahawa bentuk teroksida (kuinon) bagi kuersetin dan mirisetin dianggap sebagai agen penstabilan yang utama dalam pembentukan nanopartikel yang stabil. AuNPs yang telah dibiosintesis menunjukkan aktiviti pemangkinan yang baik, dengan frekuensi pusingan balik (TOF) 85.2 j⁻¹ bagi pengoksidaan benzil alkohol dan pemalar kadar dinormalkan, K_{nor} 0.06 s⁻¹ mmol⁻¹ dalam penurunan 4-nitrofenol. Proses biopenurunan yang sama telah digunakan dalam penyediaan mangkin AuNPs disokong magnetit bersalut silika berkefungsian metformin (Fe₃O₄-SiO₂-Met) yang sangat bercabang. Sifat struktur, permukaan dan kemagnetan bahan penyokong (Fe₃O₄-SiO₂-Met) telah dikaji menggunakan analisis FTIR, XRD, HRTEM/EDX, penentuan unsur karbonhidrogen-nitrogen (CHN), termogravimetri (TGA) dan magnetometri sampel bergetar (VSM). Data XRD, HRTEM/EDX, spektroskopi fotoelektron sinar-X (XPS) dan spektroskopi serapan atom (AAS) menunjukkan AuNPs yang bersaiz lebih kecil $(6.1 \pm 2.2 \text{ nm and } 16.2 \pm 8.3 \text{ nm})$ telah tersebar dengan seragam pada penyokong Fe₃O₄-SiO₂-Met. Di bawah keadaan tindak balas pengoksidaan benzil alkohol yang optimum, mangkin 0.3% Au/Fe₃O₄-SiO₂-Met telah memaparkan peningkatan prestasi pemangkinan berbanding dengan AuNPs tanpa penyokong, dengan peningkatan TOF 2.5 kali ganda. Sementara itu, prestasi pemangkinan mangkin 6% Au/Fe₃O₄-SiO₂-Met menunjukkan peningkatan dengan kenaikan nilai pemalar kadar dinormalkan, K_{nor} 8.8 kali ganda berbanding dengan AuNPs tanpa penyokong di bawah keadaan tindak balas penurunan 4-nitrofenol yang optimum. Mangkin AuNPs berpenyokong boleh diperoleh semula dengan mudah secara magnetik dan boleh digunakan semula sekurang-kurangnya masing-masing empat kali dan tiga kali bagi tindak balas pengoksidaan dan penurunan, tanpa pengurangan aktivti yang ketara.

TABLE OF CONTENTS

TITLE

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xvii
LIST OF SYMBOLS	xix
LIST OF APPENDICES	xxi

CHAPTER	1	INTR	ODUCTION	1
	1.1	Backg	round of the Research	1
	1.2	Proble	m Statements	2
	1.3	Object	ives of the Research	5
	1.4	Scope	of the Research	5
	1.5	Signifi	cance of the Research	7
CHAPTER	2	LITE	RATURE REVIEW	9
	2.1	Cataly	sis by Gold	9
		2.1.1	Gold Nanoparticles in Catalysis	9
	2.2	Synthe	esis of Gold Nanoparticles	10
		2.2.1	Biosynthesis of Gold Nanoparticles	12
			2.2.1.1 Microorganisms	13
			2.2.1.2 Plants	14
		2.2.2	Polygonum minus as Reducing and	
			Stabilising Agent	16

	2.3	Magnetically Recoverable Gold Nanoparticles	18
		2.3.1 Magnetite (Fe ₃ O ₄) as Catalyst Support	19
		2.3.2 Silica-Coated Magnetite (SiO ₂ -Fe ₃ O ₄)	20
		2.3.3 Functionalisation of Silica-Coated	
		Magnetite	22
		2.3.3.1 Metformin	22
	2.4	Oxidation of Benzyl Alcohol	23
	2.5	Reduction of 4-Nitrophenol	24
CHAPTER	3	EXPERIMENTAL	27
	3.1	General	27
	3.2	Instrumental Analysis	27
	3.3	Preparation of Polygonum minus Leaf Extract	30
	3.4	Biosynthesis of Gold Nanoparticles (AuNPs)	30
		3.4.1 Optimisation of Reaction Time	30
		3.4.2 Optimisation of Polygonum minus Leaf	
		Extract Volume	31
		3.4.3 Optimisation of Polygonum minus Leaf	
		Extract pH	31
	3.5	Synthesis of Gold Nanoparticles (AuNPs) Using	
		Quercetin	31
	3.6	Preparation of AuNPs Supported on Highly	
		Branched Metformin-Functionalised Silica-Coated	
		Magnetite (Au/Fe ₃ O ₄ -SiO ₂ -Met)	32
		3.6.1 Synthesis of Magnetite (Fe ₃ O ₄)	
		Nanoparticles	32
		3.6.2 Synthesis of Silica-Coated Magnetite	
		$(Fe_3O_4-SiO_2)$	32
		3.6.3 Synthesis of Amine-Functionalised	
		Silica-Coated Magnetite (Fe ₃ O ₄ -SiO ₂ -NH ₂)	33
		3.6.4 Preparation of Free Metformin	33
		3.6.5 Synthesis of Highly Branched Metformin-	
		Functionalised Silica-Coated Magnetite	

		(Fe ₃ O ₄ -SiO ₂ -Met)	34
		3.6.6 Immobilisation of AuNPs on Highly	
		Branched Metformin-Functionalised Silica-	
		Coated Magnetite (Au/Fe ₃ O ₄ -SiO ₂ -Met)	34
	3.7	Catalytic Oxidation of Benzyl Alcohol	35
	3.8	Catalytic Reduction of 4-Nitrophenol	37
CHAPTER	4	BIOSYNTHESIS, CHARACTERISATION OF	
		GOLD NANOPARTICLES AND CATALYTIC	
		ACTIVITY TOWARDS BENZYL ALCOHOL	
		OXIDATION AND 4-NITROPHENOL	
		REDUCTION	39
	4.1	Introduction	39
	4.2	Biosynthesis of Gold Nanoparticles	39
	4.3	Catalytic Applications of Biosynthesised Gold	
		Nanoparticles	52
		4.3.1 Catalytic Oxidation of Benzyl Alcohol	52
		4.3.2 Catalytic Reduction of 4-Nitrophenol	54
	4.4	Summary	58
CHAPTER	5	BIOSYNTHESIS, CHARACTERISATION AND	
		CATALYTIC PROPERTIES OF GOLD	
		NANOPARTICLES IMMOBILISED ON	
		Fe3O4-SiO2-Met SUPPORT	59
	5.1	Introduction	59
	5.2	Synthesis and Characterization of Au/Fe ₃ O ₄ -SiO ₂ -	
		Met	59
	5.3	Catalytic Oxidation of Benzyl Alcohol	72
		5.3.1 Effect of Au Loading	72
		5.3.2 Effect of Catalyst Amount	74
		5.3.3 Effect of Reaction Temperature	75
		5.3.4. Effect of Solvent Volume	76
		5.3.5 Effect of Reaction Time	77

		5.3.6	Effect of Reactant to Oxidant Mole Ratio	78
		5.3.7	Control Experiments	80
		5.3.8	Recyclability of the Catalyst	80
		5.3.9	Hot Filtration Test	81
		5.3.10	Comparison of Oxidation Activity Between	
			Au/Fe ₃ O ₄ -SiO ₂ -Met with Unsupported	
			AuNPs and Analogous Catalyst	82
	5.4	Cataly	tic Reduction of 4-Nitrophenol	84
		5.4.1	Effect of Au Loading	85
		5.4.2	Effect of Catalyst Amount	87
		5.4.3	Recyclability of the Catalyst	89
		5.4.4	Comparison of Reduction Activity Between	
			Au/Fe ₃ O ₄ -SiO ₂ -Met with Unsupported	
			AuNPs and Analogous Catalyst	90
		5.4.5	Summary	91
CHAPTER	6	CONC	CLUSION AND SUGGESTION	93
	6.1	Conclu	ision	93
	6.2	Sugges	stion	94
REFERENC	CES			97
Appendices A	A-L			115

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	AuNPs biosynthesis using plant extracts	16
Table 4.1	Oxidation of benzyl alcohol using AuNPs as the catalyst. (Reaction conditions: 1:2 reactant:oxidant mole ratio, 70°C, 24 h, 10 mL acetonitrile)	54
Table 5.1	Optimum catalytic conditions	79
Table 5.2	Control experiments for catalytic oxidation of benzyl alcohol. (Reaction conditions: 10 mg catalyst, 1:1.5 reactant:oxidant mole ratio, 80°C, 10 mL acetonitrile, 24 h)	80
Table 5.3	Comparison of benzyl alcohol oxidation with previous studies.	84
Table 5.4	Comparison of 4-nitrophenol reduction with previous studies.	91

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
Figure 1.1	Research flow-chart outline	6
Figure 2.1	The top-down and bottom-up approaches in metal nanoparticles synthesis	11
Figure 2.2	Possible chemical constituents of plant extract responsible for the bioreduction of metal ions (Mittal <i>et al.</i> , 2013)	15
Figure 2.3	Scheme illustrating a tentative mechanism of polyol oxidation by metal ions to α,β -unsaturated carbonyl groups (Mondal <i>et al.</i> , 2011)	15
Figure 2.4	Photograph of Polygonum minus	17
Figure 2.5	Phenolic compounds in <i>Polygonum minus</i> (Miean and Mohamed, 2001)	18
Figure 2.6	Crystal structure of Fe ₃ O ₄ , green atoms are Fe(II), brown atoms are Fe(III), white atoms are oxygen. (Yang <i>et al.</i> , 2011)	20
Figure 2.7	General scheme for the formation of SiO_2 -Fe ₃ O ₄ support via the sol-gel process (Wong, 2017)	21
Figure 2.8	Various forms of metformin in solution at different pH values (Zhu <i>et al.</i> , 2002)	23
Figure 4.1	UV-Vis spectra of (a) (i) AuNPs synthesised using <i>Polygonum minus</i> leaf extract, (ii) <i>Polygonum minus</i> leaf extract, (iii) HAuCl ₄ (1 mM); [inset: colour change due to AuNPs formation], (b) UV-Vis spectrum of AuNPs synthesised using commercial quercetin	40
Figure 4.2	(a) UV-Vis spectra of AuNPs formation recorded at different time interval; (b) Plot of absorbance, λ_{max} at 535 nm versus time	41
Figure 4.3	 (a) UV-Vis spectra of AuNPs formed with different amount of <i>Polygonum minus</i> aqueous leaf extract; [inset: Colour of AuNPs at the different volume of leaf extract]; (b) Plot of maximum absorbance versus 	

extract volume

Figure 4.4	(a) UV-Vis spectra of AuNPs formed with different pH of <i>Polygonum minus</i> aqueous leaf extract; [inset: Colour of AuNPs at different pH of leaf extract]; (b) Plot of maximum absorbance versus extract pH	44
Figure 4.5	UV-Vis spectra of AuNPs synthesised using (a) fresh aqueous leaf extract and (b) aqueous leaf extract after being kept for 50 days	45
Figure 4.6	(a)-(c) HRTEM images of AuNPs (2 mL extract volume, pH 5) at different magnifications; (d) Model of icosahedral particle; (e) Particle size distribution histogram	46
Figure 4.7	EDX spectrum of AuNPs	47
Figure 4.8	XRD pattern of AuNPs	48
Figure 4.9	FTIR spectra of (a) <i>Polygonum minus</i> leaf powder and (b) AuNPs	49
Figure 4.10	Proposed mechanism for the formation and stabilisation of AuNPs by flavonoids of <i>Polygonum minus</i> leaf extract	51
Figure 4.11	Cyclic voltammograms of (a) aqueous leaf extract of <i>Polygonum minus</i> and (b) stabilised AuNPs colloid; scan rate: 100 mVs^{-1}	52
Figure 4.12	Oxidation of benzyl alcohol to benzaldehyde with TBHP as oxidant and AuNPs as the catalyst	52
Figure 4.13	Effect of the catalyst amount on the conversion of benzyl alcohol and selectivity of benzaldehyde. (Reaction conditions: 1:2 reactant:oxidant mole ratio, 70°C, 24 h, 10 mL acetonitrile)	53
Figure 4.14	Reduction of 4-nitrophenol to 4-aminophenol with hydrazine hydrate as reductant and AuNPs as the catalyst	55
Figure 4.15	UV-Vis spectra of (a) 4-nitrophenol before and after addition of hydrazine hydrate [inset: colour change of solution] and (b) 4-nitrophenolate ions devoid of AuNPs (control reaction); Time-dependent UV-Vis spectra for the reduction of 4-nitrophenol with (c) 1 mg and (d) 2 mg AuNPs catalyst [inset: colour change of solution]	56

42

Figure 4.16	((a) Plot of $ln(A_t/A_0)$ versus time (s) for the reduction of 4-nitrophenol; (b) The conversion of 4-nitrophenol as a function of reaction time for 1 h using a different amount of AuNPs catalyst	57
Figure 5.1	Synthesis of Au/Fe ₃ O ₄ -SiO ₂ -Met	61
Figure 5.2	FTIR spectra of (a) citrate stabilised Fe_3O_4 , (b) Fe_3O_4 - SiO ₂ (c) Fe_3O_4 -SiO ₂ -NH ₂ (d) Fe_3O_4 -SiO ₂ -Met and (e) free metformin	63
Figure 5.3	TGA curves of (a) Fe_3O_4 -SiO ₂ , (b) Fe_3O_4 -SiO ₂ -NH ₂ and (b) Fe_3O_4 -SiO ₂ -Met	64
Figure 5.4	Room temperature magnetisation curves of (a) citrate stabilised Fe_3O_4 and (b) Fe_3O_4 -SiO ₂ -Met; [Inset: Fe_3O_4 -SiO ₂ -Met support before and after applying an external magnet]	65
Figure 5.5	XRD spectra of (a) Citrate stabilised Fe ₃ O ₄ , (b) Fe ₃ O ₄ - SiO ₂ -Met and various loading of Au in Au/Fe ₃ O ₄ - SiO ₂ -Met: (c) 0.3%, (d) 0.7%, (e) 1%, (f) 3% and (g) 6 w%. The shapes symbolised: • : Amorphous silica layer, \blacksquare : Fe ₃ O ₄ and \bigstar : Au	66
Figure 5.6	HRTEM images of (a-1)-(a-2) Fe ₃ O ₄ -SiO ₂ and various loadings of Au in Au/Fe ₃ O ₄ -SiO ₂ -Met: (b-1)-(b-2) 0.3, (c-1) 0.7, (d-1) 1, (e-1) 3, (f-1) 6 and (g-1) 8 wt%; [inset: Colour of Au/Fe ₃ O ₄ -SiO ₂ -Met at various loadings of Au]; Particle size distribution histograms of AuNPs measured by ImageJ software for various loadings of Au in Au/Fe ₃ O ₄ -SiO ₂ -Met: (b-3) 0.3, (c-2) 0.7, (d-2) 1, (e-2) 3, (f-2) 6 and (g-2) 8 wt%	68
Figure 5.7	EDX analysis for (a) Fe_3O_4 -SiO ₂ , (b) $0.3\%Au/Fe_3O_4$ -SiO ₂ -Met, (c) $0.7\%Au/Fe_3O_4$ -SiO ₂ -Met, (d) $1\%Au/Fe_3O_4$ -SiO ₂ -Met, (e) $3\%Au/Fe_3O_4$ -SiO ₂ -Met, (f) $6\%Au/Fe_3O_4$ -SiO ₂ -Met and (g) $8\%Au/Fe_3O_4$ -SiO ₂ -Met; (h) wt% of elements detected	70
Figure 5.8	XPS analysis of (a) 0.3%Au/Fe ₃ O ₄ -SiO ₂ -Met and (b) 3%Au/Fe ₃ O ₄ -SiO ₂ -Met	71
Figure 5.9	(a) Effect of Au loading on the conversion of benzyl alcohol and selectivity of benzaldehyde. (Reaction conditions: 40 mg Au/Fe ₃ O ₄ -SiO ₂ -Met, 1:2 reactant:oxidant mole ratio, 70°C, 24 h, 10 mL acetonitrile); (b) Effect of Au particle size on the conversion of benzyl alcohol for samples with Au	

Figure 5.10	loading of 0.3, 0.7, 1 and 3 wt% Effect of the catalyst amount on the conversion of benzyl alcohol and selectivity of benzaldehyde. (Reaction conditions: 0.3%Au/Fe ₃ O ₄ -SiO ₂ -Met, 1:2 reactant:oxidant mole ratio, 70°C, 24 h, 10 mL acetonitrile)	73 74
Figure 5.11	Effect of temperature on the conversion of benzyl alcohol and selectivity of benzaldehyde. (Reaction conditions: 10 mg 0.3% Au/Fe ₃ O ₄ -SiO ₂ -Met, 1:2 reactant:oxidant mole ratio, 24 h, 10 mL acetonitrile)	75
Figure 5.12	Effect of the solvent volume on the conversion of benzyl alcohol and selectivity of benzaldehyde. (Reaction conditions: 10 mg 0.3%Au/Fe ₃ O ₄ -SiO ₂ -Met, 1:2 reactant:oxidant mole ratio, 80°C, 24 h, acetonitrile)	77
Figure 5.13	Effect of reaction time on the conversion of benzyl alcohol and selectivity of benzaldehyde. (Reaction conditions: 10 mg 0.3%Au/Fe ₃ O ₄ -SiO ₂ -Met, 1:2 reactant:oxidant mole ratio, 80°C, 10 mL acetonitrile)	78
Figure 5.14	Effect of reactant to oxidant mole ratio on the conversion of benzyl alcohol and selectivity of benzaldehyde. (Reaction conditions: 10 mg 0.3% Au/Fe ₃ O ₄ -SiO ₂ -Met, 80°C, 24 h, 10 mL acetonitrile)	79
Figure 5.15	Recycle test of 0.3%Au/Fe ₃ O ₄ -SiO ₂ -Met catalyst. (Reaction conditions: 10 mg 0.3%Au/Fe ₃ O ₄ -SiO ₂ -Met, 1:1.5 reactant:oxidant mole ratio, 80°C, 10 mL acetonitrile, 24 h)	81
Figure 5.16	Leaching test for 0.3% Au/Fe ₃ O ₄ -SiO ₂ -Met catalyst. Plot of conversion versus time for (a) catalyst removal after 2 h and (b) with catalyst. (Reaction conditions: $10 \text{ mg} ext{ 0.3\%Au/Fe_3O_4-SiO_2-Met}, ext{ 1:1.5}$ reactant:oxidant mole ratio, 80°C, 10 mL acetonitrile)	82
Figure 5.17	Time-dependent UV-Vis spectra for the reduction of 4- nitrophenol using Au/Fe ₃ O ₄ -SiO ₂ -Met catalyst with Au loading of (a) 1 wt%, (b) 3 wt%, (c) 6 wt% and (d) 8 wt%; (e) Plot of $\ln(A_t/A_0)$ versus time (s) for the reduction of 4-nitrophenol and (f) the conversion of 4- nitrophenol as a function of reaction time. (Reaction conditions: 5 mg Au/Fe ₃ O ₄ -SiO ₂ -Met, 1:3 reactant:reductant mole ratio RT 1 h)	86
Figure 5.18	Time-dependent UV-Vis spectra for the reduction of 4-	00

XV

nitrophenol using (a) 5 mg, (b) 7.5 mg, (c) 10 mg and (d) 12.5 mg of 6%Au/Fe₃O₄-SiO₂-Met catalyst; (e) Plot of $ln(A_t/A_0)$ versus time (s) for the reduction of 4nitrophenol and (f) the conversion of 4-nitrophenol as a function of reaction time. (Reaction conditions: 6%Au/Fe₃O₄-SiO₂-Met, 1:3 reactant:reductant mole ratio, RT, 1 h)

Figure 5.19Recycle test of 6%Au/Fe₃O₄-SiO₂-Met catalyst.
(Reaction conditions: 10 mg 6%Au/Fe₃O₄-SiO₂-Met,
1:3 reactant:reductant mole ratio, RT, 1 h)

89

88

LIST OF ABBREVIATIONS

AAS	-	atomic absorption spectroscopy
APTES	-	(3-aminopropyl)-triethoxysilane
AuNPs	-	gold nanoparticles
CC	-	cyanuric chloride
CHN	-	carbon-hydrogen-nitrogen
CV	-	cyclic voltammetry
CVD	-	chemical vapour deposition
DIPEA	-	N,N-diisopropylethylamine
EDX	-	energy-dispersive X-ray
EXAFS	-	extended X-ray absorption fine structure
fcc	-	face-centred cubic
FFT	-	fast fourier transform
FRAP	-	ferric reducing antioxidant power
FTIR	-	fourier transform infrared
GAE		gallic acid equivalent
GC-FID	-	gas chromatography-flame ionization detector
HRTEM	-	high resolution transmission electron microscopy
JCPDS	-	The Joint Committee on Powder Diffraction Standards
KBSI	-	Korea Basic Science Institute
Met	-	metformin
NCIM	-	National Collection of Industrial Microorganisms
RT	-	room temperature
SPR	-	surface plasmon resonance

TAE	-	tannic acid equivalent
ТВНР	-	tert-butyl hydroperoxide
TEOS	-	tetraethyl orthosilicate
TGA	-	thermogravimetric analysis
THF	-	tetrahydrofuran
TOF	-	turnover frequency
TON	-	turnover number
TPC	-	total phenolic content
UKM	-	Universiti Kebangsaan Malaysia
UV-Vis	-	ultraviolet-visible spectroscopy
VSM	-	vibrating sample magnetometer
XPS	-	X-ray photoelectron spectroscopy
XRD	-	X-ray powder diffraction

LIST OF SYMBOLS

%	-	percent
% w/v	-	percent weight per volume
°C	-	degree Celcius
°C min ⁻¹	-	degree Celcius per minute
μm	-	micrometer
μmol	-	micromole
20	-	Bragg angle
Å	-	Ångström
cm	-	centimeter
cm^{-1}	-	frequency
emu g^{-1}	-	magnetic moment per gram
eV	-	electronvolt
g	-	gram
h	-	hour(s)
h^{-1}	-	per hour
Ka	-	rate constant
K _{nor}	-	normalised rate constant
keV	-	kiloelectronvolt
kOe	-	kiloOersted
kV	-	kilovolt
М	-	Molarity
$M_{ m s}$	-	saturation magnetisation
m	-	meter

MΩ∙cm	-	conductivity
mA	-	miliampere
mg	-	milligram
min	-	minute(s)
mL	-	milliliter
mm	-	millimeter
mM	-	millimolar
mmol	-	millimole
mVs^{-1}	-	millivolt per second
nm	-	nanometer
0	-	degree angle
ppm	-	part per million
rpm	-	revolutions per minute
S	-	second(s)
s^{-1}	-	per second
$s^{-1} \text{ mmol}^{-1}$	-	per second per milimole
V	-	volt
wt%	-	weight percent
λ	-	wavelength
λ_{\max}	-	wavelength maxima

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Measurement of lattice fringes spacing for AuNPs using Gatan software	115
Appendix B	Calculation of nanoparticles crystallite size using Debye-Scherer's equation	116
Appendix C	Calculation of % conversion, % selectivity, TON and TOF for AuNPs from the GC-FID analysis	117
Appendix D	Calculation of % conversion for 4-nitrophenol with 1 mg AuNPs, 2 mg AuNPs and control (without catalyst) from the UV-Vis analysis	118
Appendix E	Calculation of APTES and metformin branches loading for Fe ₃ O ₄ -SiO ₂ -Met support	119
Appendix F	Measurement of lattice fringes spacing using Gatan software: (a) Fe_3O_4 , (b) $0.3\%Au/Fe_3O_4$ -SiO ₂ -Met, (c) $3\%Au/Fe_3O_4$ -SiO ₂ -Met and (d) $6\%Au/Fe_3O_4$ -SiO ₂ -Met	120
Appendix G	Calculation of actual Au loading for $0.3\%Au/Fe_3O_4\-SiO_2\-Met$ and $6\%Au/Fe_3O_4\-SiO_2\-Met$ catalysts	121
Appendix H	Calculation of normalised rate constants, $K_{\rm nor}$ for 4-nitrophenol reduction with 2 mg AuNPs and 10 mg 6%Au/Fe ₃ O ₄ -SiO ₂ -Met	122
Appendix I	Quantitative gas chromatography calibration plot of benzyl alcohol by using ethyl benzoate as internal standard	123
Appendix J	An example of GC chromatogram for oxidation of benzyl alcohol to benzaldehyde by using ethyl benzoate as internal standard	124
Appendix K	Quantitative UV-Vis calibration plot of 4-nitrophenol added with 0.3 mM of hydrazine hydrate	125
Appendix L	List of publication, conferences and patent	126

CHAPTER 1

INTRODUCTION

1.1 Background of the Research

Gold (Au) is known to be highly resistant towards oxidation and corrosion as compared to other metals and is traditionally regarded as chemically inert and catalytically inactive (Housecroft and Sharpe, 2008). However, when the size of Au is reduced to nanometres, the catalytic properties of Au are revealed. Bond et al (1973) first reported the hydrogenation of olefins using supported Au nanocatalysts. More than a decade later, Haruta et al (1987) discovered the surprising activity of Au nanoparticles (AuNPs) with diameters of less than 10 nm in promoting the lowtemperature oxidation of CO. Since then, many findings on the catalytic properties of AuNPs have been published. Currently, AuNPs is considered the catalyst of choice for organic reactions such as oxidation of CO, alcohols and alkenes, hydrogenation of unsaturated carbonyls and nitro group, alkyne activation and C–C coupling reactions (Takale, Bao and Yamamoto, 2014; Hutchings, 2018; Zhao and Jin, 2018).

AuNPs can be synthesised by using a variety of physical and chemical methods. Although the existing methods have successfully produced well-defined and pure AuNPs, the processes are expensive, require high energy, involve the use of hazardous chemicals and generate by-products that are potentially harmful to the environment (Thakkar, Mhatre and Parikh, 2010; Alex and Tiwari, 2015; Santhoshkumar, Rajeshkumar and Kumar, 2017; Zada et al, 2018).

Recently, the utilisation of biological systems has appeared as a novel and reliable method for the synthesis of AuNPs due to growing demand to develop ecofriendly processes in nanomaterials syntheses. Organisms such as bacteria, fungi, yeast, algae and plants have been employed in the AuNPs syntheses. Among these, plants have more advantages compared to other organisms since the biosynthesis using plants is eco-friendly, simple, non-toxic, inexpensive, easily scalable, faster reaction rate and produce more stable and various morphologies of AuNPs (Iravani, 2011; Noruzi, 2015; Singh et al, 2016). Besides, plant extracts contain biomolecules such as flavonoids, terpenoids, alkaloids, and polyphenols that may act as reducing and stabilising agents in the formation of AuNPs (Mittal, Chisti and Banerjee, 2013; Jeevanandam, Chan and Danquah, 2016).

Generally, AuNPs are not stable and tend to form larger particles to minimise its high surface energy, which contributed by its high surface-to-volume ratio properties. When synthesised colloidal AuNPs are used directly as a catalyst in the liquid phase, the activity will decrease with time due to the agglomeration of AuNPs (Panigrahi et al, 2007). Moreover, the very small AuNPs are difficult to be separated from the reaction mixture by traditional filtration techniques (Karimi, Mansouri and Mirzaei, 2015). Therefore, AuNPs have been dispersed onto a solid support to protect it from agglomeration and make it easily separated and possibly reuse.

1.2 Problem Statements

Traditionally, AuNPs can be successfully synthesised via physical and chemical methods. However, the physical methods such as laser ablation, laser pyrolysis and ultrasonic fields, that require expensive high technology device and high pressure and temperature are not energy-efficient (Tangeysh et al, 2013; Bouhadoun et al, 2015; Okitsu et al, 2001). Meanwhile, chemicals such as sodium borohydride, hydroxylamine hydrochloride and tetrakis(hydroxymethyl)phosphonium chloride being used as reducing and stabilising agents are hazardous, not eco-friendly and may contribute to the toxicity issue and potentially harmful to the environment (Iwamoto et al, 2005; Haiss et al, 2007; Zhang et al, 2013). These problems can be principally minimised by using the proposed biological synthesis method in the preparation of AuNPs.

Recently, the biological synthesis method employing plant extracts has appeared as a non-toxic, simple, eco-friendly and rapid method for the synthesis of AuNPs. Moreover, this biosynthesis method is suitable for large-scale production due to its low cost and is readily conducted at room temperature and pressure (Iravani, 2011; Noruzi, 2015; Singh et al, 2016). Hence, in this research, a biosynthesis method employing *Polygonum minus* aqueous leaf extract has been studied. Aqueous leaf extract of *Polygonum minus* has been reported to have the highest total phenolic content (TPC) which is 44.35 mg/ 100 g fresh weight, tannic acid equivalent (TAE) and 55.5 mg/ g extract, gallic acid equivalent (GAE). It also has the highest reducing power with the ferric reducing antioxidant power (FRAP) values of 849.33 mmol GAE/ g extract among several herbs in Malaysia (Huda-Faujan et al, 2007; Qader et al, 2011). Phenolic compounds such as flavonoids quercetin and myricetin were identified in the aqueous leaf extract of *Polygonum minus* have great potential as reducing and stabilising agents in the preparation of AuNPs (Miean and Mohamed, 2001).

AuNPs have been immobilised on various solid supports such as carbon, silica, metal oxides and zeolites to ease the catalyst recovery and enhance the catalyst stability (Bond and Thompson, 1999). However, the use of these traditional inorganic supports requires time and energy-consuming workup procedures such as filtration and centrifugation to recover the supported AuNPs catalysts. In order to conquer this problem, the utilisation of magnetic nanoparticles as catalyst support has emerged as a viable alternative as their paramagnetic and insoluble nature enables easy and efficient catalyst recovery (Karimi et al, 2015). In this research, magnetite (Fe₃O₄) nanoparticles were used as the catalyst support as it could facilitate the dispersion of AuNPs as well as can be easily recovered and separated from the reaction mixture by using an external magnetic field.

Generally, the Fe_3O_4 nanoparticles are coated with a silica (SiO₂) shell to form a core-shell Fe_3O_4 -SiO₂ structure to improve the dispersity, chemical stability and thermal stability of the catalyst support. However, the surface of SiO₂ is not suitable for the deposition of AuNPs due to weak interactions between AuNPs and the support, which resulted in low metal loading. Furthermore, the AuNPs tend to agglomerate and form larger particles, which leads to loss of catalytic activity. Hence, the AuNPs has to be stabilised to prevent agglomeration. With the aim of addressing this problem, the ligands with metal affinity groups, such as amino $(-NH_2)$ group has been post-grafted onto the surface of SiO₂ to stabilise and disperse the AuNPs (Oliveira, Kiyohara and Rossi 2010; Oliveira et al, 2011). In this study, the highly branched metformin-functionalised silica-coated magnetite (Fe₃O₄-SiO₂-Met) has been synthesised as catalyst support. Metformin (Met), a polydentate biguanide derivative, contains $-NH_2$ groups that anchored the AuNPs onto the solid support via electrostatic interaction and therefore can control the particle size, circumvent agglomeration, increase stability and dispersion of AuNPs

Benzaldehyde with a characteristic almond-like odour is the second most important aromatic molecule after vanillin used in the perfumery, cosmetics, pharmaceutical, dyestuff, food and agrochemical industries (Pina, Falletta and Rossi, 2008; Santra et al, 2016). Commercially, benzaldehyde is synthesised via hydrolysis of benzal chloride and the air oxidation of toluene (Kroschwitz, 2004). However, the benzaldehyde produced is contaminated with chlorine in the first process, and the latter provides poor selectivity of benzaldehyde. Recently, catalytic liquid-phase oxidation of benzyl alcohol to benzaldehyde is practically a preferred reaction as it provides chlorine-free and high selectivity of benzaldehyde, which is required in perfumery and pharmaceutical industries (Ndolomingo and Meijboom, 2017). Commonly, oxidation of alcohols has been carried out with a stoichiometric amount of metal-based oxidants, notably chromium(VI) and permanganate reagents (Hudlický, 1990). However, these oxidants have a disadvantage of generating a large amount of toxic heavy metal waste, thus, cause severe environmental problems. Hence, in this study, a non-toxic and environmentally benign oxidant, tert-butyl hydroperoxide (TBHP) was used in the liquid-phase oxidation of benzyl alcohol to benzaldehyde in conjunction with biosynthesised AuNPs catalysts.

4-Nitrophenol is a common organic pollutant that exists in industrial and agricultural effluents. It possesses high toxicity, suspected carcinogens and is listed in the 58th position out of the 129 priority pollutants by the United States Environmental Protection Agency (2014). Usually, the removal of 4-nitrophenol by

physicochemical treatment and biological method are difficult due to the high stability and biorefractory characteristics of 4-nitrophenol. Thus, the development of a method for efficient removal of 4-nitrophenol is important for public health and can help to restore impacted environments. On the other hand, 4-aminophenol is an important intermediate to produce pharmaceuticals substances, photographic materials and rubber materials (Gkizis, Stratakis and Lykakis, 2013). Generally, 4-aminophenol can be synthesised via catalytic reduction of 4-nitrophenol. However, the process requires extreme reaction condition such as high temperature, high hydrogen pressure and use of organic solvents (Vaidya, Kulkarni and Chaudhari, 2003; Du et al, 2004). In order to overcome this problem, an effective catalytic reduction of 4-nitrophenol to 4-aminophenol in aqueous solution and under mild condition by using biosynthesised AuNPs as a catalyst and clean reductant, hydrazine hydrate have been carried out in this study.

1.3 Objectives of the Research

The objectives of the research are:

- To synthesise AuNPs using *Polygonum minus* aqueous leaf extract as reducing and stabilising agents.
- (ii) To immobilise the biosynthesised AuNPs onto highly branched metforminfunctionalised silica-coated magnetite support.
- (iii) To evaluate the performance of the biosynthesised AuNPs and supported biosynthesised AuNPs catalysts in the oxidation of benzyl alcohol and reduction of 4-nitrophenol.

1.4 Scope of the Research

This research focused on the preparation of AuNPs using aqueous leaf extract of *Polygonum minus* as reducing and stabilising agents with varying parameters namely, the reaction time, volume and pH of leaf extract to obtain the optimum reaction parameters. Then, the AuNPs supported on metformin-functionalised silicacoated magnetite materials (Au/Fe₃O₄-SiO₂-Met) were prepared by using a similar biosynthesis method. The catalytic activity of the biosynthesised AuNPs and Au/Fe₃O₄-SiO₂-Met have been tested in the liquid-phase oxidation of benzyl alcohol to benzaldehyde using TBHP as oxidant and the reduction of 4-nitrophenol to 4aminophenol using hydrazine hydrate as reductant. The samples were characterised by an analytical technique such as UV-Vis, FTIR, XRD, HRTEM/EDX, XPS, VSM, TGA, CV, AAS, CHN and GC-FID. The research outline is illustrated in **Figure 1.1**.

Figure 1.1 Research flow-chart outline

1.5 Significance of the Research

The biosynthesis method using aqueous leaf extract of locally available Polygonum minus plant employed in this research is an eco-friendly, simple, nontoxic and rapid process. Furthermore, this approach is significant in the preparation of large-scale metal nanoparticles due to its low cost, easily scalable and readily conducted at room temperature and pressure thus can avoid the use of hazardous and toxic chemicals. The magnetically recoverable magnetic support used in the catalyst design can be considered a green technology since it is efficient, fast, consumes low energy and avoid the use of solvents. Moreover, the magnetic separation can facilitate the catalyst recovery in the recycling process and thus, enhance the catalyst reusability. The magnetically separable biosynthesised AuNPs catalyst in this research could be a promising catalyst in the chemical industries, especially in the alcohol oxidation process and the removal of nitroarenes pollutants from wastewater. Besides, this research may be useful in developing a green oxidation and reduction processes by employing clean oxidant and reductant, utilising eco-friendly biosynthesised catalyst as well as demonstrating the efficient catalyst separation and recovery techniques.

REFERENCES

- Agnihotri, M., Joshi, S., Kumar, A. R., Zinjarde, S., and Kulkarni, S. (2009) 'Biosynthesis of gold nanoparticles by the tropical marine yeast *Yarrowia lipolytica* NCIM 3589', *Materials Letters*, 63(15), 1231-1234.
- Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., and Sastry, M. (2005) 'Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, *Trichothecium sp.*', *Journal of Biomedical Nanotechnology*, 1(1), 47-53.
- Akhtar, M. S., Panwar, J., and Yun, Y.-S. (2013) 'Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chemistry & Engineering, 1, 591-602.
- Alex, S. and Tiwari, A. (2015) 'Functionalized gold nanoparticles: synthesis, properties and applications—A review', *Journal of Nanoscience and Nanotechnology*, 15(3), 1869-1894.
- Alizadeh, A., Khodaei, M. M., Abdi, G., and Kordestani, D. (2012a) 'The first report on chemoselective biguanide-catalyzed Henry reaction under neat conditions', *Bulletin of the Korean Chemical Society*, 33(11), 3640-3644.
- Alizadeh, A., Khodaei, M. M., Beygzadeh, M., Kordestani, D., and Feyzi, M. (2012b) 'Biguanide-functionalized Fe₃O₄/SiO₂ magnetic nanoparticles: an efficient heterogeneous organosuperbase catalyst for various organic transformations in aqueous media', *Bulletin of the Korean Chemical Society*, 33(8), 2546-2552.
- Amel Musa Babiker Taha (2015) Chitosan Supported Biosynthesized Gold Nanoparticles as Catalyst for Oxidation and Reduction Reactions. PhD Thesis, Universiti Teknologi Malaysia, Skudai.
- Armendariz, V., Gardea-Torresdey, J. L., José-Yacamán, M., Gonzalez, J., Herrera, I., and Parsons, J. G. (2002) Gold nanoparticle formation by oat and wheat biomasses. *Waste Research Technology Conference*. July 30-Aug 1. Kansas City, 1-9.
- Aromal, S. A., and Philip, D. (2012) 'Green synthesis of gold nanoparticles using *Trigonella foenum-graecum* and its size-dependent catalytic activity',

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 1-5.

- Attia, Y. A., Farag, Y. E., Mohamed, Y. M., Hussien, A. T., and Youssef, T. (2016)
 'Photo-extracellular synthesis of gold nanoparticles using Baker's yeast and their anticancer evaluation against Ehrlich ascites carcinoma cells', *New Journal of Chemistry*, 40(11), 9395-9402.
- Balalakshmi, C., Gopinath, K., Govindarajan, M., Lokesh, R., Arumugam, A., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., and Benelli, G. (2017) 'Green synthesis of gold nanoparticles using a cheap *Sphaeranthus indicus* extract: Impact on plant cells and the aquatic crustacean *Artemia nauplii*', *Journal of Photochemistry & Photobiology, B: Biology*, 173, 598-605.
- Bayat, A., Shakourian-Fard, M., Ehyaei, N., and Hashemi, M. M. (2014) 'A magnetic supported iron complex for selective oxidation of sulfides to sulfoxides using 30% hydrogen peroxide at room temperature', RSC Advances, 4, 44274-44281.
- Beveridge, T. J., and Murray, R. G. (1980) 'Sites of metal deposition in the cell wall of *Bacillus subtilis*', *Journal of Bacteriology*, 141(2), 876-887.
- Beygzadeh, M., Alizadeh, A., Khodaei, M. M., and Kordestani, D. (2013) 'Biguanide/Pd(OAc)₂ immobilized on magnetic nanoparticle as a recyclable catalyst for the heterogeneous Suzuki reaction in aqueous media', *Cataysis Communications*, 32, 86-91.
- Binupriya, A. R., Sathishkumar, M., Vijayaraghavan, K., and Yun, S.-I. (2010) 'Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of *Aspergillus oryzae* var. *viridis*', *Journal of Hazardous Materials*, 177, 539-545.
- Birtcher, R. C., Donnelly, S. E., and Schlutig, S. (2004) 'Nanoparticle ejection from gold during ion irradiation', *Nuclear Instruments and Methods in Physics Research B*, 215(1-2), 69-75.
- Blotny, G. (2006) 'Recent applications of 2,4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis', *Tetrahedron*, 62(41), 9507-9522.

- Bond, G. C., Sermon, P. A., Webb, G., Buchanan, D. A. and Wells, P. B. (1973) 'Hydrogenation over supported gold catalysts', *Journal of the Chemical Society, Chemical Communications*, (13), 444-445.
- Bond, G. C., and Thompson, D. T. (1999) 'Catalysis by gold', *Catalysis Reviews: Science and Engineering*, 41, 319-388.
- Bouhadoun, S., Guillard, C., Dapozze, F., Singh, S., Amans, D., Bouclé, J., and Herlin-Boime, N. (2015) 'One step synthesis of N-doped and Au-loaded TiO₂ nanoparticles by laser pyrolysis: Application in photocatalysis', *Applied Catalysis B: Environmental*, 174-175, 367-375.
- Brett, A. M. O., and Ghica, M.-E. (2003) 'Electrochemical oxidation of quercetin', *Electroanalysis*, 15(22), 1745-1750.
- Bukhtiyarov, A. V., Prosvirin, I. P., and Bukhtiyarov, V. I. (2016) 'XPS/STM study of model bimetallic Pd–Au/HOPG catalysts', *Applied Surface Science*, 367, 214-221.
- Caldera-Villalobos, M., Herrera-González, A. M., García-Serrano, J., Martins-Alho, M. A. and Montalvo-Sierra, M. I. (2016) 'Polyelectrolytes with tetrazole pendant groups useful in the stabilization of Au and Ag nanoparticles', *Journal of Applied Polymer Scence*, 133(31), 43773.
- Chairam, S., Konkamdee, W., and Parakhun, R. (2017) 'Starch-supported gold nanoparticles and their use in 4-nitrophenol reduction', *Journal of Saudi Chemical Society*, 21, 656-663.
- Chang, C.-K., Chen, Y.-J. and Yeh, C.-T. (1998) 'Characterizations of aluminasupported gold with temperature-programmed reduction', *Applied Catalysis* A: General, 174, 13-23.
- Chaudhari, M. P., and Sawant, S. B. (2005) 'Kinetics of heterogeneous oxidation of benzyl alcohol with hydrogen peroxide', *Chemical Engineering Journal*, 106(2), 111-118.
- Cheng, J. P., Yu, J. Shi, D. Wang, D. S., Liu, Y. F., Liu, F. Zhang, X. B., and Li, J. G. (2012) 'Controllable one-step synthesis of magnetite/carbon nanotubes composite and its electrochemical properties', *Applied Physics A*, 106, 837-842.

- Choudhary, M. K., Kataria, J., and Sharma, S., (2017) 'A biomimetic synthesis of stable gold nanoparticles derived from aqueous extract of *Foeniculum vulgare* seeds and evaluation of their catalytic activity', *Applied Nanoscience*, 7(7), 439-447.
- Choudhary, V. R., and Dumbre, D. K. (2009) 'Supported nano-gold catalysts for epoxidation of styrene and oxidation of benzyl alcohol to benzaldehyde. *Topics in Catalysis*, 52, 1677-1687.
- Choudhary, V. R., and Dumbre, D. K. (2010) 'Solvent-free selective oxidation of benzyl alcohol to benzaldehyde by *tert*-butyl hydroperoxide over U₃O₈-Supported Nano-Gold catalysts', *Applied Catalysis A: General*, 375, 252-257.
- Choudhary, V. R., Jha, R., and Jana, P. (2007) 'Solvent-free selective oxidation of benzyl alcohol by molecular oxygen over uranium oxide supported nano-gold catalyst for the production of chlorine-free benzaldehyde', *Green Chemistry*, 9(3), 267-272.
- Christapher, P. V., Parasuraman, S., Christina, J. M. A., Asmawi, M. Z., and Vikneswaran, M. (2015) 'Review on *Polygonum minus*. Huds, a commonly used food additive in Southeast Asia', *Pharmacognosy Research*, 7(1), 1-6.
- Corma, A., and Garcia, H. (2008) 'Supported gold nanoparticles as catalysts for organic reactions', *Chemical Society Reviews*, 37(9), 2096-2126.
- Costa, N. J. S., and Rossi, L. M. (2012) 'Synthesis of supported metal nanoparticle catalysts using ligand assisted methods', *Nanoscale*, 4, 5826-5834.
- Das, D. K., Chakraborty, A., Bhattacharjee, S., and Dey, S. (2013) 'Biosynthesis of stabilised gold nanoparticle using an aglycone flavonoid, quercetin', *Journal* of Experimental Nanoscience, 8(4), 649-655.
- Dauthal, P., and Mukhopadhyay, M. (2012) 'Prunus domestica fruit extract mediated synthesis of gold nanoparticles and its catalytic activity for 4-nitrophenol reduction', Industrial & Engineering Chemistry Research, 51, 13014-13020.
- Deng, J. P., Wu, C., Yang, C. H., and Mou, C. Y. (2005) 'Pyrene-assisted synthesis of size-controlled gold nanoparticles in sodium dodecyl sulfate micelles', *Langmuir*, 21(19), 8947-8951.

- Deng, Y.-H., Wang, C.-C., Hu, J.-H., Yang, W.-L., and Fu, S.-K. (2005) 'Investigation of formation of silica-coated magnetite nanoparticles via solgel approach', *Colloids and Surfaces A: Physicochem. Eng. Aspects*, 262, 87-93.
- Du, L., Jiang, H., Liu, X., and Wang, E. (2007) 'Biosynthesis of gold nanoparticles assisted by *Escherichia coli* DH5α and its application on direct electrochemistry of hemoglobin', *Electrochemistry Communications*, 9(5), 1165-1170.
- Du, Y., Chen, H., Chen, R., and Xu, N. (2004) 'Synthesis of *p*-aminophenol from *p*nitrophenol over nano-sized nickel catalysts', *Applied Catalysis A: General* 277, 259-264.
- Fu, Q., Weber, A. and Flytzani-Stephanopoulos, M. (2001) 'Nanostructured Au-CeO₂ catalysts for low-temperature water–gas shift', *Catalysis Letters*, 77, 87-95.
- Gardea-Torresdey, J. L., Parsons, J. G., Gomez, E., Peralta-Videa, J., Troiani, H. E., Santiago, P., and Yacaman, M. J. (2002) 'Formation and growth of Au nanoparticles inside live alfalfa plants', *Nano Letters*, 2(4), 397-401.
- Gardea-Torresdey, J. L., Tiemann, K. J., Gamez, G., Dokken, K., Tehuacanero, S., and José-Yacamán, M. (1999) 'Gold nanoparticles obtained by bioprecipitation from gold(III) solutions', *Journal of Nanoparticle Research*. 1, 397-404.
- Gawande, M. B., Monga, Y., Zboril, R., and Sharma, R. K. (2015) 'Silica-decorated magnetic nanocomposites for catalytic applications', *Coordination Chemistry Reviews*, 288, 118-143.
- Gericke, M., and Pinches, A. (2006) 'Microbial production of gold nanoparticles', *Gold Bulletin*, 39(1), 22-28.
- Ghoreishi, S. M., Behpour, M., and Khayatkashani, M. (2011) 'Green synthesis of silver and gold nanoparticles using *Rosa damascena* and its primary application in electrochemistry', *Physica E*, 44, 97-104.
- Gkizis, P. L., Stratakis, M., and Lykakis, I. N. (2013) 'Catalytic activation of hydrazine hydrate by gold nanoparticles: chemoselective reduction of nitro compounds into amines', *Catalysis Communications*, 36, 48-51.

- Gruber-Woelfler, H., Radaschitz, P. F., Feenstra, P. W., Haas, W., and Khinast, J. G.
 (2012) 'Synthesis, catalytic activity, and leaching studies of a heterogeneous Pd-catalyst including an immobilized bis(oxazoline) ligand. *Journal of Catalysis*, 286, 30-40.
- Gunasekaran, S., Natarajan, R. K., Renganayaki, V., and Natarajan, S. (2006) 'Vibrational spectra and thermodynamic analysis of metformin', *Indian Journal of Pure & Applied Physics*, 44, 495-500.
- Haiss, W., Thanh, N. T. K., Aveyard, J., Fernig, D.G. (2007) 'Determination of size and concentration of gold nanoparticles from UV-vis spectra', *Analytical Chemistry*, 79, 4215-4221.
- Hakami, O., Zhang, Y., and Banks, C. J. (2012) 'Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of hg from water', *Water Research*, 46(12), 3913-3922.
- Haruta, M., Kobayashi, T., Sano, H. and Yamada, N. (1987) 'Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C', *Chemistry Letters*, 16(2), 405-408.
- Haw, C. Y., Chia, C. H., Zakaria, S., Mohamed, F., Radiman, S., Teh, C. H., Khiew,
 P. S., Chiu, W. S., and Huang, N. M. (2011) 'Morphological studies of randomized dispersion magnetite nanoclusters coated with silica,' *Ceramic Internationals*, 37(2), 451-464.
- Heneczkowski, M., Kopacz, M., Nowak, D., and Kuźniar, A. (2001) 'Infrared spectrum analysis of some flavonoids', *Acta Poloniae Pharmaceutica - Drug Research*, 58(6), 415-420.
- Hong, S., and Li, X. (2013) 'Optimal size of gold nanoparticles for surface-enhanced Raman spectroscopy under different conditions', *Journal of Nanomaterials*, 2013, 1-9.
- Hong, Y., Jing, X., Huang, J., Sun, D., Odoom-Wubah, T., Yang, F., Du, M., and Li, Q. (2014) 'Biosynthesized bimetallic Au-Pd nanoparticles supported on TiO₂ for solvent-free oxidation of benzyl alcohol', ACS Sustainable Chemistry & Engineering, 2, 1752-1759.
- Housecroft, C. E. and Sharpe, A. G. (2008) *Inorganic Chemistry* (3rd ed.). Essex, England: Pearson Education Limited.

- Huda-Faujan, N., Noriham, A., Norrakiah A. S., and Babji, A. S. (2007) 'Antioxidative activities of water extracts of some malaysian herbs', *ASEAN Food Journal*, 14(1), 61-68.
- Hudlický, M. (1990) Oxidations in Organic Chemistry. Washington, DC: American Chemical Society.
- Hulkoti, N. I., and Taranath, T. C. (2014) 'Biosynthesis of nanoparticles using microbes—A review', *Colloids and Surfaces B: Biointerfaces*, 121, 474-483.
- Hutchings, G. J. (2018) 'Heterogeneous gold catalysis', ACS central science, 4(9), 1095-1101.
- Iravani, S. (2011) 'Green synthesis of metal nanoparticles using plants', *Green Chemistry*, 13, 2638-2650.
- Iravani, S. (2014) 'Bacteria in nanoparticle synthesis: current status and future prospects', *International Scholarly Research Notices*, 2014, 1-18.
- Iwamoto, M., Kuroda, M., Kanzow, J., Hayashi, S., and Faupel, F. (2005) 'Size evolution effect of the reduction rate on the synthesis of gold nanoparticles', *Advanced Powder Technology*, 16(2), 137-144.
- Jacinto, M. J., Kiyohara, P. K., Masunaga, S. H., Jardim, R. F., and Rossi, L. M. (2008) 'Recoverable rhodium nanoparticles: synthesis, characterization and catalytic performance in hydrogenation reactions', *Applied Catalysis A: General*, 338, 52-57.
- Jeevanandam, J., Chan, Y. S., and Danquah, M. K. (2016) 'Biosynthesis of metal and metal oxides nanoparticles', *ChemBioEng Reviews*, 3, 55-67.
- Kadam, H. K., and Tilve, S. G. (2015) 'Advancement in methodologies for reduction of nitroarenes', *RSC Advances*, 5, 83391-83407.
- Karimi, B. Mansouri, F., and Mirzaei, H. M. (2015) 'Recent applications of magnetically recoverable nanocatalysts in C–C and C–X coupling reactions. *ChemCatChem Reviews*, 7, 1736-1789.
- Keating, C. D., Musick, M. D., Keefe, M. H., and Natan, M. J. (1999) 'Kinetics and thermodynamics of Au colloid monolayer self-assembly: undergraduate experiments in surface and nanomaterials chemistry', *Journal of chemical education*, 76(7), 949-955.

- Khalil, M. M. H., Ismail, E. H., and El-Magdoub, F. (2012) 'Biosynthesis of Au nanoparticles using olive leaf extract', *Arabian Journal of Chemistry*, 5, 431-437.
- Khosroshahi, M. E., and Ghazanfari, L. (2012) 'Physicochemical characterization of Fe₃O₄/SiO₂/Au multilayer nanostructure', *Materials Chemistry and Physics*, 133, 55-62.
- Kroschwitz, J. I. (2004) *Kirk-Othmer Encyclopedia of Chemical Technology*. (5th ed.). Hoboken, New Jersey: Wiley–Interscience Publication.
- Kumar, S. K., Amutha, R., Arumugam, P., and Berchmans, S. (2011) 'Synthesis of gold nanoparticles: An ecofriendly approach using *Hansenula anomala*', ACS Applied Materials & Interfaces, 3(5), 1418-1425.
- Kumar, S. S., Kumar, C. S., Mathiyarasu, J., and Phani, K. L. (2007) 'Stabilized gold nanoparticles by reduction using 3,4-ethylenedioxythiophenepolystyrenesulfonate in aqueous solutions: nanocomposite formation, stability, and application in catalysis', *Langmuir*, 23(6), 3401-3408.
- Kuroda, K., Ishida, T., and Haruta, M. (2009) 'Reduction of 4-nitrophenol to 4aminophenol over Au nanoparticles deposited on PMMA', *Journal of Molecular Catalysis A: Chemical*, 298(1-2), 7-11.
- Larsen, G. K., Farr, W., and Hunyadi Murph, S. E. (2016) 'Multifunctional Fe₂O₃– Au nanoparticles with different shapes: Enhanced catalysis, photothermal effects, and magnetic recyclability', *The Journal of Physical Chemistry C*, 120(28), 15162-15172.
- Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., and Muller, R. N. (2008) 'Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications', *Chemical Reviews*, 108(6), 2064-2110.
- Lee, K.-S., and El-Sayed, M. A. (2006) 'Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition', *The Journal of Physical Chemistry B*, 110, 19220-19225.
- Li, G., Abroshan, H., Liu, C., Zhuo, S., Li, Z., Xie, Y., Kim, H. J., Rosi, N. L., and Jin, R. (2016) 'Tailoring the electronic and catalytic properties of Au₂₅ nanoclusters *via* ligand engineering', ACS Nano, 10(8), 7998-8005.

- Li, H., Gao, S., Zheng, Z., and Cao, R. (2011) 'Bifunctional composite prepared using layer-by-layer assembly of polyelectrolyte–gold nanoparticle films on Fe₃O₄–silica core–shell microspheres', *Catalysis Science & Technology*, 1(7), 1194-1201.
- Liu, H., Hao, H., Xing, J., Dong, J., Zhang, Z., Zheng, Z., and Zhao, K. (2016) 'Enhanced photocatalytic capability of zinc ferrite nanotube arrays decorated with gold nanoparticles for visible light-driven photodegradation of rhodamine B', *Journal of Materials Science*, 51, 5872-5879.
- Lu, A. H., Salabas, E. L., and Schüth, F. (2007) 'Magnetic nanoparticles: synthesis, protection, functionalization, and application', *Angewandte Chemie International Edition*, 46, 1222-1244.
- Ma, C. Y., Cheng, J., Wang, H. L., Hu, Q., Tian, H., He, C., and Hao, Z. P. (2010) 'Characteristics of Au/HMS catalysts for selective oxidation of benzyl alcohol to benzaldehyde', *Catalysis Today*, 158, 246-251.
- Mandal, S., Bando, K. K., Santra, C., Maity, S., James, O. O., Mehta, D., and Chowdhury, B. (2013) 'Sm-CeO₂ supported gold nanoparticle catalyst for benzyl alcohol oxidation using molecular O₂', *Applied Catalysis A: General*, 452, 94-104.
- Manjari, G., Saran, S., Arun, T., Rao, A. V. B., and Devipriya, S. P. (2017) 'Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from *Aglaia elaeagnoidea* flower extract', *Journal of Saudi Chemical Society*, 21, 610-618.
- Markus, J., Mathiyalagan, R., Kim, Y.-J., Abbai, R., Singh, P., Ahn, S., Perez, Z. E. J., Hurh, J., and Yang, D. C. (2016) 'Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic *Lactobacillus kimchicus* DCY51^T isolated from Korean kimchi', *Enzyme and Microbial Technology*, 95, 85-93.
- Melinda-Emese, F., Diudea, M. V., and Gabriel, K. (2016) 'Catalytic reduction of 4nitrophenol using new Cu(0)/aromatic core dendrimer complexes', *Studia* UBB Chemia, 61(1), 43-50.

- Miean, K. H., and Mohamed, S. (2001) 'Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants', *Journal of Agricultural and Food Chemistry*, 49, 3106-3112.
- Mirjalili, B. F., Zolfigol, M. A., Bamoniri, A., and Zarei, A. (2004) 'Solvent-free oxidation of alcohols by silica sulfuric acid/sodium dichromate dihydrate or potassium permanganate/wet SiO₂ system', *Journal of the Chinese Chemical Society*, 51, 509-512.
- Mittal, A. K., Chisti, Y., and Banerjee, U. C. (2013) 'Synthesis of metallic nanoparticles using plant extracts', *Biotechnology Advances*, 31, 346-356.
- Mojtaba Beygzadeh (2013) Surface Modification of Iron-Based Magnetic Nanoparticles and Their Potential Applications: From Drug Delivery to Chemical Transformations. PhD Thesis, Razi University, Iran.
- Mondal, S., Roy, N., Laskar, R. A., Sk, I., Basu, S., Mandal, D., and Begum, N. A. (2011) 'Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (*Swietenia mahogani* JACQ.) leaves', *Colloids and Surfaces B: Biointerfaces*, 82, 497-504.
- Montes, M. O., Mayoral, A., Deepak, F. L., Parsons, J. G., José-Yacamán, M., Peralta-Videa J. R., and Gardea-Torresdey, J. L. (2011) 'Anisotropic gold nanoparticles and gold plates biosynthesis using alfalfa extracts', *Journal of Nanoparticle Research*, 13, 3113-3121.
- Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Ramani, R., Parischa, R., Ajayakumar, P. V., Alam, M., and Sastry, M. (2001) 'Bioreduction of AuCl₄⁻ ions by the fungus, *Verticillium sp.* and surface trapping of the gold nanoparticles formed', *Angewandte Chemie International Edition*, 40(19), 3585-3588.
- Munshi, A. M., Shi, M., Thomas, S. P., Saunders, M., Spackman, M. A., Iyer, K. S., and Smith, N. M. (2017) 'Magnetically recoverable Fe₃O₄@Au-coated nanoscale catalysts for the A³-coupling reaction', *Dalton Transactions*, 46(16), 5133-5137.
- Murugan, E., and Jebaranjitham, J. N. (2012) 'Synthesis and characterization of silver nanoparticles supported on surface-modified poly(*N*-vinylimidazale) as

catalysts for the reduction of 4-nitrophenol', *Journal of Molecular Catalysis A: Chemical*, 365, 128-135.

- Murugan, K., Benelli, G., Panneerselvam, C., Subramaniam, J., Jeyalalitha, T., Dinesh, D., Nicoletti, M., Hwang, J. S., Suresh, U., and Madhiyazhagan, P. (2015) '*Cymbopogon citratus*-synthesized gold nanoparticles boost the predation efficiency of copepod *Mesocyclops aspericornis* against malaria and dengue mosquitoes', *Experimental Parasitology*, 153, 129-138.
- Mur, V. I. (1964) '2,4,6-trichloro-1,3,5-triazine (cyanuryl chloride) and its future applications', *Russion Chemical Reviews*, 33(2), 92-103.
- Narayanan, K. B., and Sakthivel, N. (2010) 'Phytosynthesis of gold nanoparticles using leaf extract of *Coleus amboinicus* Lour', *Materials Characterization*, 61, 1232-1238.
- Narayanan, S., Vijaya, J. J., Sivasanker, S., Kennedy, L. J., and Ariharan, A. (2014) 'Enhanced selectivity to benzaldehyde in the liquid phase oxidation of benzyl alcohol using nanocrystalline ZSM-5 zeolite catalyst', *Journal of Porous Materials*, 21(5), 633-641.
- Ndokoye, P., Li, X., Zhao, Q., Li, T., Tade, M. O., and Liu, S. (2016) 'Gold nanostars: Benzyldimethylammonium chloride-assisted synthesis, plasmon tuning, SERS and catalytic activity', *Journal of Colloid and Interface Science*, 462, 341-350.
- Ndolomingo, M. J., and Meijboom, R. (2017) 'Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by *tert*-butyl hydroperoxide over γ-Al₂O₃ supported copper and gold nanoparticles', *Applied Surface Science*, 398, 19-32.
- Niu, W., Zhang, L., and Xu, G. (2013) 'Seed-mediated growth of noble metal nanocrystals: Crystal growth and shape control', *Nanoscale*, 5, 3172-3181.
- Noruzi, M. (2015) 'Biosynthesis of gold nanoparticles using plant extracts', Bioprocess and Biosystems Engineering, 38(1), 1-14.
- Noruzi, M., Zare, D., and Davoodi, D. (2012) 'A rapid biosynthesis route for the preparation of gold nanoparticles by aqueous extract of cypress leaves at room temperature', *Spectrochimica Acta Part A*, 94, 84-88.

- Nuryono, N., Rosiati, N. M., Rusdiarso, B., Sakti, S.C.W. and Tanaka, S. (2014) 'Coating of magnetite with mercapto modified rice hull ash silica in a one-pot process', *SpringerPlus*, 3(1), 515-526.
- Okitsu, K., Yue, A., Tanabe, S., Matsumoto, H., and Yobiko, Y. (2001) 'Formation of colloidal gold nanoparticles in an ultrasonic field: Control of rate of gold(III) reduction and size of formed gold particles', *Langmuir*, 17, 7717-1720.
- Oliveira, R. L., Kiyohara, P. K., Rossi, L. M. (2010) 'High performance magnetic separation of gold nanoparticles for catalytic oxidation of alcohols', *Green Chemistry*, 12, 144-149.
- Oliveira, R. L., Zanchet, D., Kiyohara, P. K., and Rossi, L. M. (2011) 'On the stabilization of gold nanoparticles over silica-based magnetic supports modified with organosilanes', *Chemistry - A European Journal*, 17, 4626-4631.
- Panigrahi, S., Basu, S., Praharaj, S., Pande, S., Jana, S., Pal, A., Ghosh, S.K., and Pal,
 T. (2007) 'Synthesis and size-selective catalysis by supported gold nanoparticles: study on heterogeneous and homogeneous catalytic process. *The Journal of Physical Chemistry C*, 111, 4596-4605.
- Pina, C. D., Falletta, E., and Rossi, M. (2008) 'Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold–copper catalyst', *Journal of Catalysis*, 260, 384-386.
- Piovesan, J. V., and Spinelli, A. (2014) 'determination of quercetin in a pharmaceutical sample by square-wave voltammetry using a poly(vinylpyrrolidone)-modified carbon-paste electrode', *Journal of the Brazilian Chemical Society*, 25(3), 517-525.
- Premalatha, K., Raghavan, P. S., and Viswanathan, B. (2012) 'Liquid phase oxidation of benzyl alcohol with molecular oxygen catalyzed by metal chromites', *Applied Catalysis A: General*, 419-420, 203-209.
- Qader, S. W., Abdulla, M. A., Chua, L. S., Najim, N., Zain, M. M., and Hamdan, S. (2011) 'Antioxidant, total phenolic content and cytotoxicity evaluation of selected malaysian plants', *Molecules*, 16, 3433-3443.

- Qader, S. W., Abdulla, M. A., Lee, S. C., and Hamdan, S. (2012) 'Potential bioactive property of *Polygonum minus* Huds (kesum) review', *Scientific Research and Essays*. 7, 90-93.
- Rashid, M. H., Bhattacharjee, R. R., Kotal, A., and Mandal, T. K. (2006) 'Synthesis of spongy gold nanocrystals with pronounced catalytic activities', *Langmuir*. 22(17), 7141-7143.
- Reverberi, A. P., Kuznetsov, N. T., Meshalkin, V. P., Salerno, M., and Fabiano, B. (2016) 'Systematical analysis of chemical methods in metal nanoparticles synthesis', *Theoretical Foundations of Chemical Engineering*, 50(1), 59-66.
- Reyes-Gasga, J., Tehuacanero-Nuñez, S., Montejano-Carrizales, J. M., Gao, X., and Jose-Yacaman, M. (2007) 'Analysis of the contrast in icosahedral gold nanoparticles', *Topics in Catalysis*, 46, 23-30.
- Rostami, A., Pourshiani, O., Darvishi, N., and Atashkar, B. (2017) 'Efficient and green oxidation of alcohols with *tert*-butyl hydrogenperoxide catalyzed by a recyclable magnetic core-shell nanoparticle-supported oxo-vanadium ephedrine complex', *Comptes Rendus Chimie*, 20, 435-439.
- Roy, S., Das, T. K., Maiti, G. P., and Basu, U. (2016) 'Microbial biosynthesis of nontoxic gold nanoparticles', *Materials Science and Engineering B*, 203, 41-51.
- Saha, S., Pal, A., Kundu, S., Basu, S., and Pal, T. (2010) 'Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction', *Langmuir*. 26(4), 2885-2893.
- Sahu, S. C., Samantara, A. K., Ghosh, A., and Jena, B. K. (2013) 'A bioinspired approach for shaping Au nanostructures: The role of biomolecule structures in shape evolution', *Chemistry–A European Journal*, 19(25), 8220-8226.
- Santhoshkumar, J., Rajeshkumar, S., and Kumar S.V. (2017) 'Phyto-assisted synthesis, characterization and applications of gold nanoparticles–A review', *Biochemistry and Biophysics Reports*, 11, 46-57.
- Santra, C., Pramanik, M., Bando, K. K., Maity, S., and Chowdhury, B. (2016) 'Gold nanoparticles on mesoporous Cerium-Tin mixed oxide for aerobic oxidation

of benzyl alcohol', *Journal of Molecular Catalysis A: Chemical*, 418-419, 41-53.

- Sedelmeier, J., Ley, S. V., Baxendale, I. R., and Baumann, M. (2010) 'KMnO4mediated oxidation as a continuous flow process', *Organic Letters*, 12(16), 3618-3621.
- Shafiqa, A. R., Aziz, A. A., and Mehrdel, B. (2018) 'Nanoparticle optical properties: Size dependence of a single gold spherical nanoparticle', *Journal of Physics: Conference Series*, 1083(1), 012040.
- Shankar, S. S., Ahmad, A., Pasricha, R., and Sastry, M. (2003) 'Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes', *Journal of Materials Chemistry*, 13(7), 1822-1826.
- Shen, W., Qu, Y., Pei, X., Li, S., You, S., Wang, J., Zhang, Z., and Zhou, J. (2017) 'Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of *Aspergillus* sp. WL-Au. *Journal of Hazardous Materials*, 321, 299-306.
- Sheny, D. S., Mathew, J., and Philip, D. (2011) 'Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of *Anacardium occidentale. Spectrochimica Acta Part A*, 79, 254-262.
- Singaravelu, G., Arockiamary, J. S., Kumar, V. G., and Govindaraju, K. (2007) 'A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, *Sargassum wightii* Greville. *Colloids and Surfaces B: Biointerfaces*, 57(1), 97-101.
- Singh, P., Kim, Y. J., Zhang, D., and Yang, D. C. (2016) 'Biological synthesis of nanoparticles from plants and microorganisms', *Trends Biotechnology*, 34(7), 588-599.
- Smitha, S. L., Philip, D., and Gopchandran K. G. (2009) 'Green synthesis of gold nanoparticles using *Cinnamomum zeylanicum* leaf broth', *Spectrochimica Acta Part A*, 74, 735-739.
- Soisuwan, S., Warisnoicharoen, W., Lirdprapamongkol, K., and Svasti, J., (2010) 'Eco-friendly synthesis of fucoidan-stabilized gold nanoparticles', *American Journal of Applied Sciences*, 7(8), 1038-1042.

- Southam, G., and Beveridge, T. J. (1994) 'The in vitro formation of placer gold by bacteria', *Geochimica et Cosmochimica Acta*, 58(20), 4527-4530.
- Su, F.-Z., Chen, M., Wang, L.-C., Huang, X.-S., Liu, Y.-M., Cao, Y., He, H.-Y., and Fan, K.-N. (2008) 'Aerobic oxidation of alcohols catalyzed by gold nanoparticles supported on gallia polymorphs', *Catalysis Communications*, 9(6), 1027-1032.
- Sun, Z., Yue, Q., Liu, Y., Wei, J., Li, B., Kaliaguine, S., Deng, Y., Wu, Z., and Zhao, D. (2014) 'Rational synthesis of superparamagnetic core-shell structured mesoporous microspheres with large pore sizes', *Journal of Materials Chemistry A*, 2, 18322-18328.
- Takale, B. S., Bao, M. and Yamamoto, Y. (2014) 'Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis', Organic & Biomolecular Chemistry, 12(13), 2005-2027.
- Tamuly, C., Hazarika, M., and Bordoloi, M. (2013) 'Biosynthesis of Au nanoparticles by *Gymnocladus assamicus* and its catalytic activity. *Materials Letters*, 108, 276-279.
- Tangeysh, B., Moore Tibbetts, K., Odhner, J. H., Wayland, B. B., and Levis, R. J. (2013) 'Gold nanoparticle synthesis using spatially and temporally shaped femtosecond laser pulses: post-irradiation auto-reduction of aqueous [AuCl₄]⁻', *The Journal of Physical Chemistry C*, 117(36), 18719-18727.
- Tao, A. R., Habas, S., and Yang, P. (2008) 'Shape control of colloidal metal nanocrystals', Small, 4(3), 310-325.
- Teja, A. S., and Koh, P.-Y. (2009) 'Synthesis, properties, and applications of magnetic iron oxide nanoparticles. *Prog. Cryst. Growth Ch.* 55, 22-45.
- Thakkar, K. N., Mhatre, S. S. and Parikh, R. Y. (2010) 'Biological synthesis of metallic nanoparticles', *Nanomedicine: Nanotechnology, Biology and Medicine*, 6(2), 257-262.
- Tsuji, M., Ogino, M., Matsuo, R., Kumagae, H., Hikino, S., Kim, T., Yoon, S.-H. (2010) 'Stepwise growth of decahedral and icosahedral silver nanocrystals in DMF', *Crystal Growth & Design*, 10, 296-301.
- United States Environmental Protection Agency. (2014, December). Priority pollutant list. Retrieved from the Environmental Protection Agency website:

https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf.

- Vaidya, M. J., Kulkarni, S. M., and Chaudhari, R. V. (2003) 'Synthesis of paminophenol by catalytic hydrogenation of p-nitrophenol', Organic Process Research & Development, 7, 202-208.
- Vallejos, S., Umek, P., Stoycheva, T., Annanouch, F., Llobet, E., Correig, X., De Marco, P., Bittencourt, C., and Blackman, C. (2013) 'Single-step deposition of Au- and Pt-nanoparticle-functionalized tungsten oxide nanoneedles synthesized via aerosol-assisted CVD, and used for fabrication of selective gas microsensor arrays', *Advanced Functional Material*, 23, 1313-1322.
- Venkatesan, J., Manivasagan, P., Kim, S. K., Kirthi, A. V., Marimuthu, S., and Rahuman, A. A. (2014) 'Marine algae-mediated synthesis of gold nanoparticles using a novel *Ecklonia cava*', *Bioprocess and Biosystems Engineering*, 37(8), 1591-1597.
- Vimala, S., Rohana, S., Rashih, A. A., and Juliza, M. (2012) 'Antioxidant evaluation in malaysian medicinal plant: *Persicaria minor* (Huds.) leaf', *Science Journal* of Medicine & Clinical Trials, 9-16.
- Wahajuddin, and Arora, S. (2012) 'Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers', *International Journal of Nanomedicine*, 7, 3445-3471.
- Wang, J., Zheng, S., Shao, Y., Liu, J., Xu, Z., and Zhu, D. (2010) 'Aminofunctionalized Fe₃O₄@SiO₂ core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal', *Journal of Colloid and Interface Science*, 349(1), 293-299.
- Wang, M. L., and Huang, T. H. (2007) 'Kinetic study of benzyl alcohol oxidation under phase transfer catalysis conditions', *Chemical Engineering Communications*, 194(5), 618-634.
- Wang, P., Liu, Z.-G., Chen, X., Meng, F.-L., Liu, J.-H., and Huang, X.-J. (2013) 'UV irradiation synthesis of an Au-graphene nanocomposite with enhanced electrochemical sensing properties. *Journal of Materials Chemistry A*, 1, 9189-9195.

- Wen, L., Lin, Z., Gu, P., Zhou, J., Yao, B., Chen, G., and Fu, J. (2009) 'Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. *Journal of Nanoparticle Research*, 11(2), 279-288.
- Wong Sze Ting (2017) Biosynthesized Mono- and Bimetallic Gold-Palladium Nanoparticles as Catalysts for Reduction of 4-Nitrophenol and Oxidation of Benzyl Alcohol. PhD Thesis, Universiti Teknologi Malaysia, Skudai.
- Wong, S.-T., Shamsuddin, M., Alizadeh, A., and Yun, Y.-S. (2016) 'In-situ generated palladium seeds lead to single-step bioinspired growth of Au-Pd bimetallic nanoparticles with catalytic performance', *Materials Chemistry* and Physics, 183, 356-365.
- Yang, C., Wu, J., and Hou, Y. (2011) 'Fe₃O₄ nanostructures: synthesis, growth mechanism, properties and applications', *Chemical Communications*, 47, 5130-5141.
- Yang, D., Hu, J., and Fu, S. (2009) 'Controlled synthesis of magnetite-silica nanocomposites via a seeded sol-gel approach', *The Journal of Physical Chemistry C*, 113(18), 7646-7651.
- Yuan, C.-G., Huo, C., Gui, B., and Cao, W.-P. (2016) 'Green synthesis of gold nanoparticles using *Citrus maxima* peel extract and their catalytic/antibacterial activities', *IET Nanobiotechnology*, 11(5), 523-530.
- Zada, S., Ahmad, A., Khan, S., Iqbal, A., Ahmad, S., Ali, H., and Fu, P. (2018) 'Biofabrication of gold nanoparticles by *Lyptolyngbya* JSC-1 extract as super reducing and stabilizing agents: Synthesis, characterization and antibacterial activity. *Microbial Pathogenesis*, 114, 116-123.
- Zayed, M. F., and Eisa, W. H. (2014) 'Phoenix dactylifera L. leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity', Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121, 238-244.
- Zhan, G., Huang, J., Du, M., Sun, D., Ibrahim, A.-R., Lin, W., Hong, Y., and Li, Q. (2012) 'Liquid phase oxidation of benzyl alcohol to benzaldehyde with novel uncalcined bioreduction Au catalysts: high activity and durability', *Chemical Engineering Journal*, 187, 232-238.

- Zhang, C.-W., Zeng, C.-C., and Xu, Y. (2014) 'Preparation and characterization of surface-functionalization of silica-coated magnetite nanoparticles for drug delivery', *NANO: Brief Reports and Reviews*. 9(4), 1450042-1-1450042-8.
- Zhang, Z., Xu, L., Li, H., and Kong, J. (2013) 'Wavelength-tunable luminescent gold nanoparticles generated by cooperation ligand exchange and their potential application in cellular imaging', *RSC Advances*. 3, 59-63.
- Zhao, J., and Jin, R. (2018) 'Heterogeneous catalysis by gold and gold-based bimetal nanoclusters', *Nano Today*, 18, 86-102.
- Zhu, M., Lu, L., Yang, P., and Jin, X. (2002) 'Bis(1,1-dimethylbiguanido)nickel(II)', *Acta Crystallographica Section E*, E58, 272-274.

Appendix L

List of publication, conferences and patent

- Suhaila Borhamdin, Mustaffa Shamsuddin and Abdolhamid Alizadeh. (2016). Biostabilised Icosahedral Gold Nanoparticles: Synthesis, Cyclic Voltammetric Studies and Catalytic Activity Towards 4-Nitrophenol Reduction. *Journal of Experimental Nanoscience*. 11(7), 518-530. https://doi.org/10.1080/17458080.2015.1090021 (Q2, IF: 2.482)
- Suhaila Borhamdin, Mustaffa Shamsuddin and Abdolhamid Alizadeh. Biomediated Synthesis of Icosahedral Gold Nanoparticle using *Polygonum minus* Leaf Extract and Its Catalytic Activity for 4-Nitrophenol Reduction. (2014). *Paper presented at the 18th Malaysian International Chemical Congress (18MICC)*. November 3-5. PWTC, Kuala Lumpur.
- Suhaila Borhamdin, Mustaffa Shamsuddin and Abdolhamid Alizadeh. Gold Clusters on Thiol-Functionalized Fe₃O₄@SiO₂ Nanoparticles: A Novel Bioreduced Catalyst for Oxidation of Benzyl Alcohol. (2014). *Paper presented at the Twelfth Regional Annual Fundamental Science Symposium (12th RAFSS)*. September 8-10. Persada Johor International Convention Centre, Johor Bahru, Johor.
- Suhaila Borhamdin, Mustaffa Shamsuddin and Jon Efendi. Biosynthesis of Gold Nanoparticles Using Leaf Extract of *Polygonum Minus*. (2013). *Paper* presented at the 4th International Conference for Young Chemists (4th ICYC). January 30 - February 1. Bayview Hotel, Georgetown, Penang.
- Suhaila Borhamdin and Mustaffa Shamsuddin. Method of Preparing "Green" Gold Nanoparticles Using *Polygonum minus* Aqueous Leaf Extract. Malaysian Patent file no: PI 2014700170. (2014).