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ABSTRACT

Shear Wave Velocity (Vs) profile plays a crucial part in determining seismic 

site classification. However, field measurement incurs extra cost and time. Economic 

factors urge the need for a cheaper and faster alternative. Previous studies proposed 

the use of empirical equations, however there are growing evidence that Machine 

Learning (ML) methods may produce better results. Thus, this study was designed to 

develop a feasible method of predicting Vs value using ML Models. Due to the 

impact of weathering profile on seismic site classification, the results of this study 

are limited to sites with similar geological formation of the study area, which is 

composed of granitic rocks. The study utilized four types of ML algorithms to 

develop the predictive model. The ML algorithms used were Multi Linear Regression 

(MLR), Random Forest (RFR), Artificial Neural Network (ANN) and Support Vector 

Machine (SVR). The independent variables are Standard Penetration Resistance (Nspt) 

and depth of soil (Ds), while the dependent variable is Vs. Consequently, this study 

conducted a Multichannel Analysis of Surface Wave (MASW) survey to get the 

required dataset. Furthermore, this study verified the Vs profiles using Nspt data. In 

addition, the hyperparameters for the ML models were determined using Random 

Search and k-fold Cross Validation. On top of that, this study also used Coefficient 

of Determination (R ), Mean Absolute Error (MAE) and Root Mean Squared Error 

(RMSE) as the performance metrics for model selection. The best ML model was 

determined to be RFR based on the performance metrics (R = 0.9, MAE = 16.93 and 

RMSE = 19.79). It was then determined that the average percentage difference 

between the actual and predicted Vs30 was 10.7%. This study also presents the 

development of a software, pyMASW, for the processing of the raw seismic data. In 

conclusion, the RFR model can predict Vs30 values for seismic site classification with 

an accuracy of 89.3%.
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ABSTRAK

Profil Halaju Gelombang Ricih (Vs) memainkan peranan penting dalam 

menentukan klasifikasi kawasan seismik. Walau bagaimanapun, pengukuran 

lapangan memerlukan kos dan masa tambahan. Faktor ekonomi mendorong perlunya 

alternatif yang lebih murah dan cepat. Kajian sebelumnya mencadangkan 

penggunaan persamaan empirikal, namun terdapat bukti yang semakin meningkat 

bahawa kaedah Pembelajaran Mesin (ML) dapat memberi hasil yang lebih tepat. 

Oleh itu, tujuan kajian ini adalah untuk mengkaji kaedah yang mampu meramalkan 

nilai Vs menggunakan Model ML. Oleh kerana kesan daripada profil luluhawa 

kepada klasifikasi kawasan seismik, hasil kajian ini terbatas kepada lokasi dengan 

formasi geologi kawasan kajian yang serupa, iaitu batuan granit. Kajian ini 

menggunakan empat jenis algoritma ML sebagai model ramalan. Algoritma ML yang 

digunakan adalah Regresi Linear Berganda (MLR), Hutan Rawak (RFR), Jaringan 

Saraf Tiruan (ANN) dan Mesin Vektor Sokongan (SVR). Pemboleh ubah bebas 

adalah nilai ketukan N  daripada Ujian Penusukan Piawai (Nspt) dan kedalaman tanah 

(Ds), sementara pemboleh ubah bersandar adalah Vs. Seterusnya, kajian ini 

melakukan tinjauan Analisis Gelombang Permukaan Berbilang Saluran (MASW) untuk 

mendapatkan set data yang diperlukan. Selanjutnya, kajian ini mengesahkan profil Vs 

menggunakan data Nspt. Di samping itu, kajian ini menentukan hiperparameter untuk 

model ML menggunakan kaedah Pencarian Rawak dan Pengesahan Silang Lipat-k. 

Di samping itu, kajian ini juga menggunakan Pekali Penentuan (R ), Ralat Mutlak 

(MAE) dan Ralat Punca Kuasa Dua Min (RMSE) sebagai metrik pemilihan model. 

Model ML terbaik dalam kajian ini adalah RFR berdasarkan metrik prestasi (R = 0.9, 

MAE = 16.93 dan RMSE  = 19.79). Kajian ini juga mendapati bahawa perbezaan 

peratusan purata antara Vs30 yang sebenarnya dan yang diramalkan adalah 10.7%. 

Selain itu, kajian ini turut menghasilkan sebuah perisian, pyMASW, yang digunakan 

untuk memproses data seismik. Kesimpulannya, model RFR dapat meramalkan nilai 

Vs30 untuk klasifikasi kawasan seismik dengan ketepatan 89.3%.
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CHAPTER 1

INTRODUCTION

1.1 Background of Research

A structure’s seismic site can be categorized into six categories: class A, B, 

C, D, E and F (Building Seismic Safety Council, 2015). In order to obtain the most 

accurate site classification, the average shear wave velocity up to the depth of 30 m 

(Vs30) needs to be acquired. This classification is a crucial part in designing an 

earthquake resistant structure. Generally, slower average Shear Wave Velocity (Vs) 

value would imply greater soil amplification (Building Seismic Safety Council,

2015). Furthermore, Vs is considered a key component in predicting soil response to 

seismic loading (Tan et al., 2013). Vs is defined as the velocity of a shear wave, also 

known as S-wave or secondary waves. A particular wave may be classified as a shear 

wave based on the particle motion in the medium through which the wave passes 

through. The resultant particle motion of a shear wave would move in perpendicular 

to the direction of the wave’s propagation. Obtaining the Vs30 profile of a site is an 

important part of determining the characteristics of earthquake motion at the site. It is 

an integral step for structural engineers in determining the seismic site classification 

and seismic design forces. However, field measurement of Vs would incur additional 

cost and time son top of the geotechnical investigations while requiring specialized 

personnel to conduct the test. Therefore, a cheaper and faster alternative is needed for 

when field measurement is not economically feasible.

Furthermore, through common geotechnical investigation such as bore 

logging, information about type of soils and penetration resistance (Nspt) can be 

easily obtained. Nspt is a soil property derived from an in-situ dynamic penetration 

test through the Standard Penetration Resistance (SPT) Test. Nspt is defined as the 

number of blows required to drive the sampler through 300 mm of soil. This value

1



can be then used for geotechnical design purposes. The ability to use this simple and 

inexpensive geotechnical test of the sites to obtain Vs profile would be a favorable 

alternative to conducting costly in-situ Vs measurement. Indeed, there are many 

studies conducted in the past which presents empirical correlation between Vs and 

Nspt (Kirar, Maheshwari, & Muley, 2016). However, through the bore log alone, a lot 

more information such as type of soil can be obtained which can help in the 

prediction of Vs in addition to Nspt.

There are several in-situ tests which can be used to measure Vs. These include 

cross-hole test, suspension logging, downhole test, seismic reflection, seismic 

refraction and surface wave test (Tan et al., 2013). Surface wave test, such as 

Spectral Analysis of Surface Wave (SASW) and Multichannel Analysis of Surface 

Waves (MASW), are considered the simplest and most efficient technique of 

measuring shear wave velocity. The difference between the two technique is that 

SASW  is typically deployed in a dual-station setup while MASW is deployed in a 

multi-station setup. An advantage of M ASW  over SASW  is that a multi-station setup 

allows a wider and deeper range as well higher level of redundancy (Tan et al., 

2012).

Efforts has been made by researchers to establish empirical correlations 

between Vs and standard penetration resistance (Nspt). These relations are mostly 

described in the form of Equation (1.1).

Vs=xNSpty (1.1)

where x  and y are constant coefficients which are determined through regression 

analysis. Equation (1.1) is a power equation model. Thus, x is a parameter which 

affects the amplitude while y affects the curvature of the relationship (Gautam, 

2016). In addition, most of the correlations are region specific. Thus, it may not be 

applicable to different regions around the worlds.
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This thesis presents the implementation of Machine Learning (ML) algorithm 

to develop a predictive model for Vs. In order to develop the predictive model which 

will be used to predict Nspt, four ML algorithms will be considered. The ML 

algorithms used are Multi Linear Regression (MLR), Random Forest (RFR), 

Artificial Neural Network (ANN) and Support Vector Machine (SVR).

1.2 Problem Statem ent

Obtaining the Shear Wave Velocity (Vs) profile of a site is an important part 

of determining the characteristics of earthquake motion at the site. However, field 

measurement of Vs using the M ASW  method would incur additional cost and time 

while requiring specialized personnel to conduct the test. When using the MASW  

method to obtain Vs3 o profile, results may also vary due to a need for the process of 

manually picking the dispersion curve. This is highly dependent on the experience 

and expertise of the person conducting the analyses. Differences in the dispersion 

curve that were manually picked would result in inconsistent results in terms of the 

final profile. Therefore, a cheaper and faster alternative is needed for cases where 

field measurement is not economically feasible while also capable of producing 

consistent results.

Previously, various empirical correlation between Vs and Nspt has been 

proposed by researchers for the purpose of Vs prediction. Regardless, most of these 

correlations are specific to a region and not applicable to all region (Kirar et al.,

2016). Furthermore, most of the existing Vs empirical model proposed are based on 

conventional statistical regression method. However, conventional statistical 

regression method shouldn’t be the only method considered for a prediction model, 

considering recent advances in ML algorithms. For the purpose of industrial 

applications, ML algorithms should be considered alongside conventional statistical 

regression method in order to optimize the accuracy of parameter prediction. Thus, 

this study proposes the use of four ML models to predict Vs value using Nspt value as 

the input.
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1.3 Objectives of Research

The aim of this research is to develop a feasible method of predicting shear 

wave velocity value for seismic site classification. In order to achieve that aim, the 

following objectives were set:

i. To develop a tool for processing raw for processing raw Multichannel

Analysis of Surface Wave (MASW) data in order to obtain Shear Wave 

Velocity (Vs) profile.

ii. To develop predictive models using Machine Learning (ML) with Shear

Wave Velocity (Vs) as the dependent variable.

iii. To verify the performance of the Machine Learning (ML) prediction models

using observed data collected through M ASW  method.

1.4 Scope of Research

This study will focus on seismic site classification using shear wave velocity 

as detailed in MS EN 1998-1:2015 (2017). Meanwhile, soil parameters which are 

going to be used as inputs for the ML models are Nspt and RLs. In addition, the Vs 

data will be collected using the multichannel analysis of surface waves (MASW) 

technique. Particularly, shear wave velocity up to 30 m depth will be the focus of this 

research.

1.5 Significance of Research

A structure’s seismic site classification is important in order to assess how 

vulnerable the structure’s site is to ground movement. Through the development of 

the Vs prediction model, engineering projects would be able to benefit in three 

different aspects: efficiency, convenience and cost saving.
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1.6 Limitations of Research

An important factor of a seismic site classification is the weathering profile of 

a particular site’s geological formation. More specifically, it is of particular 

importance because the rate of weathering is highly dependent on the type of rock 

formation. The site that is used for the data collection phase of this research is 

situated above a granite bedrock formation. This factor will directly influence the 

results of the study, therefore the results and implications of this study should only be 

applied to sites that has a similar geological profile.
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