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ABSTRACT

Predictive maintenance (PdM) systems have the potential to detect underlying 

issues in electric motors, and this can allow them to prevent production downtime and 

loss of manufacturing yield. However, majority of the PdM systems for electric motors 

that have been proposed so far are unsuitable for industrial implementation, since they 

require hours of manual data collection and annotation, and are unable to account for 

more than one type of motor fault. Therefore, this thesis presents an unsupervised long 

short-term memory (LSTM) autoencoder-based anomaly detection system for electric 

motors. It analyzes the vibration and current consumption data from motors to detect 

anomalies, which is sufficient to account for the various motor defects. Aside from 

this, it can adapt to varying operating conditions. The system is created to 

autonomously collect vibration and current consumption data from the motor, and then 

use the data to train the LSTM autoencoder model and deploy it in real-time to detect 

anomalies. In addition to this, the system comes with several features including 

personal computer and web user interfaces that enable ease of access as well as remote 

monitoring of the motor’s conditions. To test the system, a hardware test bench using 

a stepper and a brushless direct current (BLDC) motor is made to simulate defective 

conditions. LSTM autoencoder models are trained on the data from this setup and 

deployed once the training is completed. If the system detects increasing rate of 

anomalies, the users are informed through an email or a short message service 

notification. The presented anomaly detection system is tested on hardware test bench. 

Based on the experimental results, as the simulated defect worsened, the rate of 

anomalies detected by the system increased, with the maximum anomaly rate reaching

7 anomalies per second. Additionally, the LSTM autoencoder technique is also 

compared with principal component analysis and isolation forest for validation 

purposes, and it proved to be the most accurate in the case of both the stepper and 

BLDC motors with accuracies of 66.24% and 86.43% respectively.
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ABSTRAK

Sistem penyelenggaraan ramalan (PdM) berpotensi untuk mengesan isu 

kerosakan di dalam motor elektrik, dan ini boleh menghalang masa henti pengeluaran 

dan kehilangan hasil pembuatan. Walau bagaimanapun, kebanyakan sistem PdM 

untuk motor elektrik yang telah dicadangkan setakat ini tidak sesuai untuk pelaksanaan 

perindustrian, kerana ia memerlukan pengumpulan data dalam masa beberapa jam dan 

anotasi manual, dan tidak dapat mengambil kira lebih daripada satu jenis kerosakan 

motor. Oleh itu, tesis ini membentangkan sistem pengesanan anomali berasaskan 

pengekod auto memori jangka pendek (LSTM) tanpa pengawasan untuk motor 

elektrik. Ia menganalisis data getaran dan penggunaan arus elektrik daripada motor 

untuk mengesan anomali, yang didapati mencukupi untuk mengambil kira pelbagai 

kerosakan motor. Selain daripada itu, ia boleh diadaptasi dalam keadaan operasi yang 

berbeza-beza. Sistem ini dicipta untuk mengumpul data getaran dan penggunaan arus 

elektrik secara autonomi daripada motor, dan kemudian menggunakan data tersebut 

untuk melatih model pengekod auto LSTM dan menggunakannya dalam masa sebenar 

untuk mengesan anomali. Di samping itu, sistem ini dilengkapi dengan beberapa ciri 

termasuk aplikasi komputer peribadi dan web yang membolehkan akses mudah serta 

pemantauan jarak jauh keadaan motor. Untuk menguji keberkesanan sistem, sebuah 

perkakasan bangku ujian yang terdiri daripada motor pelangkah dan arus terus tanpa 

berus (BLDC) telah dibina untuk mensimulasikan kerosakan motor. Model pengekod 

auto LSTM dilatih menggunakan data daripada persediaan ini dan digunakan sebaik 

sahaja latihan selesai. Jika sistem mengesan peningkatan kadar anomali, pengguna 

dimaklumkan melalui e-mel atau pemberitahuan khidmat pesanan. Sistem pengesanan 

anomali yang dibentangkan diuji pada bangku ujian perkakasan. Berdasarkan 

keputusan eksperimen, apabila kecacatan simulasi semakin teruk, kadar anomali yang 

dikesan oleh sistem meningkat, dengan kadar anomali maksimum mencapai 7 anomali 

sesaat. Selain itu, teknik pengekod auto LSTM juga dibandingkan dengan analisis 

komponen utama dan hutan pengasingan untuk tujuan pengesahan, dan ia terbukti 

paling tepat dalam kes kedua-dua motor pelangkah dan BLDC dengan ketepatan 

masing-masing 66.24% dan 86.43%.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

Electric motors play several irreplaceable roles in companies. Automations 

ranging from conveyor belts to robotic arms all require motors to operate. With 

manufacturing demands on the rise, most machines may be required to run 

continuously for an entire day. Due to continuous usage motors are no strangers to 

frequent failures. They may suffer from both mechanical faults, such as worn-out 

bearings or broken shafts (Guo & Liu, 2018), and electrical faults, whereby there may 

be open-circuit or short circuit faults in the motor (Lee et al., 2008). If motor faults are 

not detected on time, they may eventually lead to catastrophic failures. Such disasters 

may be ruinous for production schedules and consume a significant chunk of financial 

resources in companies. Furthermore, if motor faults are not treated at an earlier stage, 

they may inflict damage on expensive equipment, increasing the repair cost (Nandi et 

al., 2005). Therefore, having a system that predicts possible motor failures could prove 

to be immensely useful for reducing maintenance costs and to avoid machine 

downtime. Thus, many industries are in dire need of an intelligent fault diagnosis 

system that keeps track of motor conditions and predicts any possible failures that may 

occur (Rahman et al., 2010). In order to build a system which is capable of 

accomplishing such feats, it is necessary to have an algorithm that mimics human 

intelligence or can analyse large quantities of data in real-time.

Fortunately, the advent of the fourth industrial revolution has led to vast 

progress in the fields of machine learning, deep learning, and artificial intelligence 

(AI). As such, over the past few years many fault classification systems based on 

machine learning algorithms, like support vector machine (SVM), fuzzy logic 

inference, etc. have been proposed (Shao et al., 2020). Nevertheless, predictive 

maintenance models are rarely implemented in industries. Fault classification
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techniques can be divided into two groups, supervised and unsupervised learning 

techniques. Most of the proposed state-of-the-art fault diagnosis systems make use of 

supervised learning, which while effective is not without flaws. In the case of 

supervised learning, an expert has to spend hours analysing and acquiring data from 

industrial motors under both normal and faulty conditions. This is much easier said 

than done, since an industrial motor may suffer from a variety of faults. Acquisition of 

data under different faulty conditions can be tremendously time consuming. This is 

also the reason why many of the proposed supervised models are not applicable for 

detecting multiple motor faults. Additionally, the operating conditions of motors must 

also be taken into consideration. The vibration and current consumption of motors may 

vary from machine to machine as they may need to operate at different torque and 

speed. Supervised models are trained under fixed operating conditions, which means 

they are not dynamic to change. Considering all these issues, supervised fault 

classification systems are barely implementable for real-time fault detection of motors 

in industries. Furthermore, data acquisition and labelling under different conditions 

require considerable manpower, which most companies cannot afford. Thus, fault 

classification systems are still very rare in industries.

It is often forgotten that when it comes to fault classification, anomaly 

detection can also be a technique for finding any possible faults (Vercruyssen et al., 

2018). This technique does not always require users to spend hours labelling their data. 

In fact, it is possible to develop unsupervised anomaly detection techniques. Hence, 

this thesis proposes a real-time unsupervised anomaly detection system for electric 

motors.

To save companies the time to acquire data, the presented system (upon 

implementation) will initially collect current consumption and vibration data from the 

motor for a certain period of time. After that it will autonomously train a long-short 

term memory (LSTM) autoencoder model for pattern recognition autonomously, 

without any manual scripting from operators. The trained model is then used to detect 

anomalies in the present vibration and current consumption data. A rising number of 

anomalies on a regular basis would be indicative of a faulty motor. Such a fault
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detection system would be applicable to a motor without the need to worry about 

variance in load and motor speed.

1.2 Problem Statement

Electric motors are used in every corner of modern-day industries. However, 

their frequent usage tends to lead to unexpected motor failures that may interrupt the 

production cycle and degrade manufacturing profits (Taplak et al., 2016). Motor faults 

come in many forms, from worn out bearings to short circuit faults in stator windings 

(Guo & Liu, 2018). Thus, to avoid unexpected machine downtimes, it is necessary to 

have an intelligent fault diagnosis system that can detect abnormalities at an earlier 

stage. Unfortunately, while many proposed motor fault classification systems have 

shown potential, they are quite impractical and are rarely implemented in industries 

(Lei et al., 2016).

When it comes to training fault classification models, vast data acquisition is 

an inescapable issue. Most of the proposed systems make use of supervised learning 

models, as explained by the works of Altaf et al.(2017), Hendrickx et al. (2020), and 

Song and Shi (2018). They are required to be trained with labelled data collected under 

different motor conditions (both healthy and defective conditions). Data acquisition 

coupled with labelling of the multiple issues that may occur in an industrial motor can 

consume tremendous amounts of time and manpower, something that is unacceptable 

for companies. Furthermore, these techniques are not dynamic as they were trained on 

data collected under a fixed set of operating conditions. For example, a model trained 

on data from a conveyor belt induction motor may not perform well if it is applied to 

another induction motor used in a brushing machine. Reasons for this could be 

variation in load or motor velocity. Training fault detection models under all possible 

conditions is not practical. As a result of such impracticalities, industries still lack 

effective predictive maintenance systems that can carry out real-time fault detection of 

electric motors in industrial machines.
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What many researchers often forget is that a less tedious way to diagnose motor 

faults is to simply use anomaly detection techniques, which may not always require 

users to spend hours labelling the data. In industries, managers only care whether the 

electric motor is working well, they do not care for a specific fault that may occur. 

Therefore, a motor anomaly detection system is enough to account for all faults. 

Unsupervised learning techniques can be used for anomaly detection. The LSTM 

autoencoder technique (which is an unsupervised learning method) proposed in this 

thesis has been applied for detecting anomalies from motor data in the works of 

Principi et al. (2019) and Abdellatif et al. (2019). Although effective, the works did 

not outline a system to deploy the model on industrial machines. Additionally, they 

also did not display how the fault diagnosis model would function under different 

operating conditions. Thus, this thesis presents a real-time unsupervised anomaly 

detection system that deploys an LSTM autoencoder model to detect abnormalities in 

electric motors. Upon implementation, the system collects data for a certain period to 

train the model before deployment. Due to this reason, the system is capable of 

adapting to different operating conditions.

1.3 Research Goal

Electric motors are used in every corner of present-day industries and are 

subjects to various defects. Therefore, the primary goal of this thesis is to design an 

anomaly detection system for electric motors, which can carry out data acquisition, 

and model training and deployment without supervision. Since the system carries out 

anomaly detection, it can also account for multiple motor faults, a shortcoming of most 

proposed predictive maintenance methods, especially the ones proposed by Altaf et 

al.(2017), Hendrickx et al. (2020), and Song and Shi (2018).

The most important step to create any machine learning model is to collect 

data. As a procedure to train and test the proposed system, this project involves 

creating an experimental setup using industrial motors (for this project stepper and 

BLDC motors will be used). The motors are run with different load conditions and 

speed. Vibration and current consumption of the motors is collected under simulated
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conditions from the setup. The data for the anomalous conditions are gathered by 

simulating a motor bearing defect in the setup. Since the motor data plays a crucial 

part in this project, it is necessary to study the current and vibration patterns of the 

stepper and brushless DC motor. The amount of horsepower they provide and the 

maximum rotations per minute (RPM) the motors operate on has been recorded.

The core part of the proposed anomaly detection system is the unsupervised 

LSTM autoencoder model. Without it, the anomaly detection system will be 

ineffective. The model will basically filter anomalies by reconstructing familiar input 

signal patterns. Therefore, a great deal of research is done on LSTM autoencoders to 

determine how good they are at reconstructing time series data. Finally, the anomaly 

detection system is designed such that it is capable of adapting to different motor 

operating conditions. To make that possible, the system is programmed to 

automatically collect data for a period, so that it is able to capture variations in current 

and vibration of the electric motor. Therefore, this project involves a software 

architecture that automates the data collection, training and deployment phase for the 

machine learning model.

1.3.1 Research Objectives

The primary objectives of the research are:

(a) To develop LSTM-based autoencoder models that can detect anomalies by 

analysing the patterns of vibration and current consumption data from electric 

motors.

(b) To design a real-time and unsupervised anomaly detection system that can be 

calibrated or recalibrated to give accurate results based on changing motor 

operating conditions such as different torque and speed.
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(c) To compare the LSTM autoencoder algorithm with other anomaly detection 

techniques for validation purposes and to analyse the performance of each 

method.

(d) To implement an anomaly detection system that enables users to keep track of 

motor fault conditions as determined by the rate of anomalies through a web 

application.

1.4 Research Scope

The entire motor anomaly detection system is made in such a way that it can 

operate autonomously. The system can carry out data acquisition and model training 

automatically without the need of manual scripting from operators. As such, the overall 

anomaly detection system will be unsupervised.

The project proposed in this thesis involves much research regarding anomaly 

detection of motors. For this project, the long-short term memory (LSTM) autoencoder 

technique will be used for pattern recognition. LSTMs can analyse sequential data and 

autoencoders are a type of neural network architecture that can reconstruct familiar 

signal patterns. By using the mean squared error (MSE) between the original signal 

and its reconstructed counterpart as a threshold, it is possible to filter anomalies. As 

part of the scope, in depth research must be carried out on LSTM autoencoders. A 

novel LSTM autoencoder model architecture will be created for this project. The 

model will be trained using the current consumption and vibration data from the motor.

The motor anomaly detection should be applicable to detecting defects in two 

types of electric motors: stepper motor and brushless DC (BLDC) motor. To test the 

effectiveness of the system, an experimental setup is built to accommodate 

experiments for each motor. The setups will be used to simulate motor bearing defects, 

to test whether the anomaly detection system can truly detect faults or not. The 

experimental setups must be made to simulate variance in load conditions as well as
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the velocity of the motor. The specifications of the two motors that will be used in this 

project are displayed in Table 1.1.

Table 1.1: Specifications of motors that will be experimented on.

Motor Type Input

Voltage

(V)

Max

Torque

(N/m)

Max

Current

(A)

Max

Speed

(RPM)

Weight

(kg)

Stepper

Motor

12 V (DC) 400 1.7 300 0.28

BLDC motor 12 V (DC) 1961.33 5.2 3000 1.3

Majority of the code for this project, will be written in Python, since it has the 

most contemporary libraries for machine learning. The code must be written such that 

the system collects data for a certain period of time after the sensors are initially 

connected to a motor. The microcontroller board which will be interfaced with the 

current and accelerometer sensor, should be programmed in C++.

For this project, an LSTM autoencoder model will be trained for pattern 

recognition, so that it may detect anomalies from the current consumption and 

vibration data from the motor. It should, however, be noted that there are other 

algorithms can carry out similar operations like LSTM autoencoders and are applicable 

for anomaly detection. Thus, algorithms such as principal component analysis (PCA), 

and isolation forest can be used for anomaly detection as well. Hence, the LSTM 

autoencoder method will be compared with other techniques.

Last but not least, the anomaly detection system should enable the user to 

remotely monitor the condition of the motor. The user should be able to observe the 

number of anomalies the system detected in the motor. If the condition of the motor 

degrades too far, the user will receive a warning notification to change the motor. For 

this purpose, a simple web application is created to enable remote monitoring of the 

electric motor’s conditions. Aside from this, the system also comes with a PC user 

interface (UI), which eases the use of the anomaly detection system.
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1.5 Thesis Outline

This document is divided into five chapters. The first chapter includes an 

overall introduction to the requirement of fault diagnosis techniques for industrial 

motors. The vital requirement of a motor fault detection systems are explained under 

the Problem Statement. The sub section also goes in depth about why most of the 

proposed predictive maintenance techniques are not implementable in industries.

The second chapter, Literature Review, includes previous research on fault 

diagnosis of motors. All the algorithms and predictive maintenance techniques 

proposed for motors are described in this section.

The project methodology has been illustrated under Chapter 3, this includes 

the block diagram and flowchart of the anomaly detection system. It also includes 

description of the LSTM autoencoder model. It is also explained how the model is 

used to filter the anomalies. as well as detailed explanations of the experiments that 

have been carried out for the preliminary results. The calculations used to separate the 

abnormal data from the normal ones are shown as well.

The results of conducted experiments are illustrated in Chapter 4. The 

outcomes are also explained in detail. Finally, Chapter 5 provides the conclusion of 

this thesis.
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