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ABSTRACT

Urban water distribution systems (WDS) should be designed not only for the 
safe provision of services but should also be resilient to unexpected threats that may 
lead to catastrophic system failure. Outdated facilities, water shortage, limited water 
resources, global population growth, industrial revolutions, global warming, and 
climate changes including flash floods and prolonged droughts are the potential 
challenges to the urban WDS. These challenges urge many countries to strategize and 
seek innovative ideas to secure a sustainable supply of water. With the emergence of 
the Internet of Things (IoT), cloud computing, big data analytic, and smart sensors, 
massive real-time information can be remotely collected and monitored. Capability in 
utilizing data analytics in real-time operation promises greater efficiency in WDS 
management. Thus, there is an increasing need to leverage IoT-based technologies to 
ensure the WDS infrastructure and operation are sustainable and resilient. Therefore, 
the present study develops an automated real-time decision-making mechanism for a 
smart WDS. A logical consensus algorithm is developed to coordinate multiple 
sensors, controllers, and actuators by utilizing real-time information on the overall 
system. The logical consensus is a binary triggered detection system that is suitable 
for WDS applications that requires opening and closing valves to optimize the normal 
operation and to react efficiently upon failure occurrence. The framework proposed is 
based on the algebraic graph theory, which consists of visibility, communication, and 
reachability matrices and the iteration rules designed based on the cellular automata 
(CA). The CA is a dynamic structure of a discrete computation model that is 
fundamentally based on local interaction and computation. Two different physical 
WDS layouts are considered; the basic combined configuration and the actual Balok 
water supply layout which represent multiple combinations of branch and grid 
configurations. The proposed algorithm is designed and simulated using MATLAB 
programming and mathematical computing software. To analytically validate the 
convergence achieved in simulation, the reachability analysis is conducted using 
Hamiltonian Cycle and full rank matrix. The simulation result shows that the proposed 
algorithm has a significant advantage in terms of convergence time by converging 45% 
faster compared to the benchmark algorithm which is more computational demand due 
to the combination of several rules. Based on the developed algorithm, a large number 
of devices including valves can be activated and de-activated simultaneously. The 
implementation of the CA in the logical consensus control algorithm has increased the 
sustainability of WDS operation, particularly at a partial operation. The results of this 
study further broaden the application of logical consensus with CA in a control system, 
and most importantly, the developed algorithm will be useful to the development of 
the next generation of resilient and efficient WDS.
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ABSTRAK

Sistem pengagihan air (WDS) bandar harus dirancang bukan hanya untuk 
penyediaan perkhidmatan yang selamat tetapi juga harus mempunyai ketahanan 
terhadap ancaman yang tidak dijangka. Kemudahan yang ketinggalan zaman, 
kekurangan air, sumber air yang terhad, pertumbuhan populasi global, revolusi 
perindustrian, pemanasan global, dan perubahan iklim termasuk banjir kilat juga 
kemarau yang berpanjangan adalah potensi cabaran kepada WDS terkini. Cabaran ini 
menggesa banyak negara untuk menyusun strategi dan mencari idea inovatif untuk 
mendapatkan bekalan air yang mampan. Dengan munculnya Internet Pelbagai Benda 
(IoT), pengkomputeran awan, data raya beranalisis, dan sensor pintar, maklumat masa 
nyata yang besar dapat dikumpulkan dan dipantau dari jauh. Keupayaan dalam 
menggunakan analisis data dalam operasi masa nyata menjanjikan kecekapan yang 
lebih besar dalam pengurusan WDS. Oleh itu, terdapat peningkatan keperluan untuk 
memanfaatkan teknologi berdasarkan IoT dalam memastikan infrastruktur dan operasi 
WDS dapat bertahan dan bingkas. Oleh itu, kajian ini membangunkan mekanisme 
membuat keputusan masa nyata berautomatik bagi WDS pintar. Algoritma konsensus 
logik dibangunkan untuk mengkoordinasikan pelbagai sensor, pengawal, dan 
penggerak dengan menggunakan maklumat masa nyata pada keseluruhan sistem. 
Konsensus logik adalah sistem pengesanan yang dicetuskan binari yang sesuai untuk 
aplikasi WDS yang memerlukan pembukaan dan penutupan injap untuk 
mengoptimumkan operasi normal dan bertindak balas dengan cekap apabila berlaku 
kegagalan. Kerangka yang dicadangkan berdasarkan teori grafik aljabar, yang terdiri 
dari matriks kebolehlihatan, komunikasi, dan jangkauan dan peraturan lelaran yang 
direkabentuk berdasarkan automata bersel (CA). CA adalah struktur dinamik kepada 
model pengiraan diskret yang pada asasnya berdasarkan interaksi dan pengiraan 
tempatan. Dua susunatur fizikal WDS yang berbeza dipertimbangkan; tatarajah 
gabungan asas dan susunatur bekalan air Balok sebenar yang mewakili gabungan 
pelbagai tatarajah cawangan dan grid. Algoritma cadangan tersebut direka dan 
diselakukan menggunakan pengaturcaraan dan perisian pengkomputeran matematik 
MATLAB. Untuk mengesahkan penumpuan beranalisis yang dicapai dalam simulasi, 
analisis jangkauan dijalankan menggunakan Kitaran Hamiltonian dan matriks 
peringkat penuh. Hasil simulasi menunjukkan bahawa algoritma yang dicadangkan 
mempunyai kelebihan yang ketara dari segi masa penumpuan dengan menumpu 45% 
lebih cepat berbanding algoritma penanda aras yang lebih permintaan pengiraan 
kerana gabungan beberapa peraturan. Hasil algoritma yang dibangunkan menunjukkan 
bahawa dalam kebanyakan kes, topologi rangkaian dengan lebih banyak unsur bukan 
sifar dalam matriks kebolehlihatan mempunyai kelebihan yang signifikan dari segi 
masa penumpuan. Berdasarkan algoritma yang dibangunkan, sebilangan besar peranti 
termasuk injap dapat diaktifkan dan dinyahaktifkan secara serentak. Pelaksanaan CA 
dalam algoritma kawalan konsensus logik telah meningkatkan kebolehtahanan operasi 
WDS terutamanya pada kendalian separa. Hasil kajian ini memperluas penerapan 
konsensus logik dengan CA dalam sistem kawalan, dan yang paling penting, algoritma 
yang dibangunkan adalah berguna untuk perkembangan WDS generasi berikutnya 
yang berdaya tahan dan cekap.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter provides an introductory overview on the main aspects considered 

throughout the thesis. The background of the problem is briefly discussed on water 

utilities, water distribution system (WDS) and the importance to implement 

information and communications technologies (ICT) on WDS in Section 1.2 and it is 

then narrowed down into a more specific problem statement to clarify the needs and 

motivations of the thesis as in Section 1.3. The research objectives in Section 1.4 are 

constructed to reflect the problem statements. The scopes of research are mapped in 

Section 1.5 to set the boundaries of the study followed by significance of study in 

Section 1.6 to signify how the proposed algorithm will improve the scientific 

knowledge and capability. Finally, this chapter is descriptively concluded in Section

1.7 by laying out the skeleton of the thesis.

1.2 Problem Background

The work in [1] has reported that the biggest threat to modern civilization is 

water shortage, caused by urbanization. The increasing population and effect of global 

warming causing bizarre weather patterns had contributed significantly towards the 

water distribution problem. Specifically, in ASEAN countries, this problem is 

amplified by the WDS design and facilities that are outdated and inefficient. The 

steady increment of the population in these countries means that these facilities are 

stretched to the limit causing frequent failure and disruptions, resulting in poor 

performance [2].
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According to Singapore’s National Water Agency, Public Utilities Board 

(PUB), upgrading WDS to be resilient towards disruption is one of the key points of 

the discussion in digitalizing water. Various national plans have been addressed to 

enhance the sustainability and resilience of the water supply including developing a 

smart water grid (SWG). To help the water utilities to operate more efficiently with 

limited water resources during the disruption, integrated solutions using the Internet 

of Things (IoT) is suggested in [3]. With sensors are getting cheaper by the 

advancement in electronics, the affordable integrated system can be easily developed 

and deployed to get real-time information to enhance water management and overall 

operations [4].

Even though there are significant efforts in developing and enhancing the 

execution of water conveyance particularly amid facilities disruption, the majority of 

them did not incorporate advanced technologies such as IoT. The key challenge in 

implementing the IoT for WDS is the coordination and cooperation among various 

units such as sensors, controllers, and actuators. However, manipulation of the vast 

information available through the application of IoT requires the application of control 

system design specifically for achieving efficient operation through consensus while 

minimizing the impacts of water supply disruption to customers.

One of the most crucial parts of the Smart Water Grid System (SWGS) is to 

integrate ICT into WDS management [5], which involves a combination of numerous 

sensors, actuators, meters, tanks, and analytic tools that replicates a water supply 

facility representing a distributed control system (DCS). In the present study, the water 

distribution is governed by consensus-based control to establish a smart WDS. The 

network communication topology with the ability to disseminate information 

throughout the system will be configured to limit the aggregate impact of unplanned 

disruption and allow the maintenance work to be performed simultaneously. The 

primary part of the control is to coordinate actions based on the state of the available 

resources, the sensing information, the network topology, and the goals of the system 

(consensus).
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The designed control system decision is versatile and can be overridden by the 

human operator to ensure flexibility. The performance of the developed system was 

demonstrated in a simulation using a multiple water tanks system. This study is 

expected to be able to help in developing a control system that is suitable for water 

supply application, not only within Malaysia but also could be shared and adapted to 

other regional needs.

1.3 Problem Statement

The World Economic Forum 2016 stated that water crisis is one of the global 

biggest threats [4]. The increasing population and effect of global warming causing a 

bizarre weather pattern have contributed significantly towards the water distribution 

problems. Specifically, in ASEAN countries, this problem is amplified by the water 

distribution design and facilities that are outdated and inefficient [2]. With the 

motivation to provide water sustainability for the communities and guarantee access 

to drinking water, this thesis binds the problem by providing the solution to upgrade 

the WDS facility into a SWGS to offer more reliability for the system’s operation.

In the new paradigm for WDS, ICT is being implemented to demonstrate the 

comprehensive planning and implementation tool to manage and develop the water 

resources in a way that balances social and economic needs which leads to a SWGS 

with a goal to sustain adequate water supply for urban areas [6]. The motivation of this 

study is the digitalizing water roadmap of Singapore where the advancements in digital 

and information communications technologies were transforming the global 

landscape, and could offer water utilities new methods of enhancing their productivity 

and efficiency in planning, operations and service delivery without greatly impacting 

costs. SWGS is designed to achieve three different tasks simultaneously; to modernize 

the WDS with smart devices, to educate the consumers on their water usage, and also 

to ensure the security of the water resources which have been widely conducted in 

Singapore, Australia, European Union countries, United States of America, and South 

Korea. By exploiting advantages of advanced communication technologies nowadays, 

the first task is more appropriate to be studied. Urban WDS structures with optimal

3



performance can be planned by using these technologies, ensuring the system’s 

efficiency and stability.

With the motivation to implement ICT on WDS with fault detection 

mechanism, the work in [7] first conducted a simulation study that served as our 

benchmark. The findings, however, are presented without comprehensive analytical 

validation [7]. Furthermore, the network topology planning is not investigated. Hence, 

the primary goal of this study is to design a generic framework of logical consensus 

control for WDS that is both analytically proven and extensible to other Networked 

Multi-Agent System (NMAS) applications.

1.4 Research Objectives

The objectives of the research are:

(a) To develop logical consensus control algorithm to facilitate WDS real-time 

decision-making based on network communication topology regardless of 

physical configuration.

(b) To provide analytical validation to the developed logical consensus control.

1.5 Scope of W ork

Based on objectives, the general goal of this research is to bring the vast 

potential of advanced technologies and theoretical knowledge of consensus-based 

control into WDS applications. With this mindset, the entire research process has been 

centered on developing a consensus-based control strategy for a smart WDS.
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In the employed smart WDS, a single unit of a water tank system that is 

independently equipped with a tank, valve, withdrawal line, and network 

communication is considered as an agent. However, this study is constructed with the 

limitation on the geometrical structures of WDS including the dynamic, volume, 

distance, and dimension. In this case, the geometrical structures are neglected so that 

it will be easily expanded besides increasing its flexibility. The study intended to 

develop the consensus-based control that is universal, which applies to homogeneous 

or heterogeneous WDS dynamics and can be easily extended to any arbitrary WDS 

configurations. The proposed algorithm is developed based on communication matrix, 

visibility matrix, and reachability matrices properties related to algebraic graph theory 

and iteration algorithm based on simple computation called cellular automata (CA). 

Specifically, the implementation of CA in this study involves a deterministic linear 

CA considering null and periodic boundaries with additive update rules. The proposed 

algorithm is validated using reachability analysis which involves Hamiltonian Cycle 

(HC) and full rank matrix to verify the system’s reachability. The present study 

considers two types of WDS configurations; basic combined configuration and 

complex combined configuration from the actual layout available in [8]. The proposed 

algorithm is designed, simulated, and analyzed using m-file coding in MATLAB.

1.6 Significance of Research W ork

Water availability is gradually stressed by the increasing global population 

growth, industrial revolutions, global warming, and climate changes which can lead to 

water shortage. With the outdated and inefficient WDS designs and facilities, most 

countries are in need to improve WDS scarcity to ensure water sustainability for the 

communities and guarantee access to drinking water. Integrating advanced ICT with 

advanced decision-making and control algorithms in WDS operation and management 

is one way to attain this goal.

To date, no comprehensive work has been conducted for consensus-based 

control in smart WDS with the utilization of logical inputs and CA algorithms. The 

developed algorithm is generic, simple, and does not rely on the dynamic of agents.
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Furthermore, the algorithm proposed is flexible and not limited to WDS application 

but applies to any NMAS that require coordination or decision-making facility at a 

partial operation due to fault occurrence.

1.7 Organization of Thesis

Chapter 1 provides a brief overview of the research topic. Generally, the 

research is described with the background of the study, followed by a detailed 

explanation of problem statements, objectives, limitations, and significance of the 

research.

Chapter 2 reviews significant works on consensus-based control strategies that 

have been accomplished over the past few decades. The literature is grouped into five 

types of consensus including average consensus, min-max consensus, consensus 

function, logical consensus, and external tracking consensus. Then, the literature 

describes the advancement and classification of WDS configurations. This chapter also 

presents detailed literature on CA which has to be the main part of developing the 

logical consensus control algorithm.

Chapter 3 illustrates the systematic execution of this work. The methodology 

will include the workflow of the entire research. The framework of this study is also 

presented in this chapter. A few definitions, theorems, and examples are included in 

this chapter to enhance the understanding of this study.

Chapter 4 presents the results of the work done in parallel directions as in 

Chapter 3 to achieve the objectives. With the ambitious goals, the understanding of 

this study is grasped through simulations beforehand. The work done will be validated 

through a series of theoretical analysis to justify the results obtained.

The final chapter sums up the whole idea of the research topic and provides the 

means to develop this extremely important study on consensus-based control strategy, 

as it is essential to meet the plans for future directions
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